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Abstract. We propose a simple algorithm for lattice point counting in
rational polygons. A rational polygon is one whose vertices have ratio-
nal coordinates. The algorithm decomposes a given polygon into right
trapezoids and counts the number of lattice points in the right trapezoids.
Each right trapezoid can be dissected into a rectangle and a right-angled
triangle in the obvious way. The number of lattice points in the rectangle
is easy to determine, and we find that a short recursive function com-
putes the number of lattice points in the right-angled triangle. We also
give an algorithm for counting lattice points on line segments.

1 Introduction

Counting lattice points (i.e. points with integer coordinates) in polygons, poly-
hedrons, and polytopes (i.e. higher dimensional analogues of polygons and/or
polyhedrons) is a fundamental mathematical problem. This problem has been
studied for a long time, and the literature [8] shows many efforts to date on this
problem and various applications.

The simpler problem of counting lattice points in polygons whose vertices
have integer coordinates was successfully solved by Pick in the nineteenth cen-
tury. Pick presented a formula, which is widely known as Pick’s Theorem [12],
and the formula has been generalized to three- and higher dimensions [11].

Counting lattice points in polytopes whose vertices have rational coordinates
has also been studied for a long time. When the number of dimensions is fixed,
Barvinok [2, 3] showed that there is a polynomial-time algorithm for counting the
lattice points in rational polytopes. For two-dimensional rational polygons, Beck
and Robins [4] gave an efficient algorithm which uses a triangulation algorithm
of polygons and a formula for counting lattice points in right-angled triangles.

However, the existing algorithms for rational coordinates are not useful in
practice. Because the algorithm by Barvinok, which is proposed in 1993, is too
hard to implement, it has not been implemented until 2004. Recently De Loera
et al. have shown a first implementation of the algorithm, named LattE [9].
Even the algorithm by Beck and Robins is not so easy to use either, because
the triangulation algorithm involves lengthy calculations and the formula for
right-angled triangles is long.

In this paper, we propose a simple and efficient algorithm for counting lat-
tice points in rational polygons. Our algorithm is much simpler than Beck and



Robins’s algorithm [4], while the two algorithms have the same time complexity.
Simplicity of algorithms is important, because simplicity makes easy to imple-
ment the algorithms and may lead to reduce the possibility of adding bugs in
programs. It is also reasonable to expect that a simple program runs faster in
practice, when two programs have the same time complexity in theory.

First, our algorithm decomposes a polygon into right trapezoids instead of tri-
angles as in existing algorithm, including Beck and Robins’. The decomposition
is done by a similar way to the algorithm for calculating the area of polygons (see
details in section 4). This makes our algorithm simpler than the algorithm by
Beck and Robins, which relies on a complex O(n) time triangulation algorithm
by Chazel [6], where n is the number of vertices of a given polygon. Although
the triangulation algorithm could be replaced by simpler algorithms such as
O(n log log n) algorithm by Kirkpatrick et al [10] or O(n log∗ n) randomized al-
gorithm by Seidel [13], this would increase the time complexity. Note that our
algorithm takes O(n) time.

Second, we introduce a simple algorithm for counting lattice points in the
right-angled triangles, which is used to count the lattice points in the decomposed
right trapezoids. Our algorithm consists of a short recursive function (see Fig. 4
in Section 3) which counts the number of lattice points in a right-angled triangle,
while the time complexity of our algorithm is no worse than existing algorithms
including the one used in Beck and Robins’. The recursive function is developed
by finding a small right-angled triangle such that the difference between the
number of lattice points in the small triangle and that in the original triangle is
easy to compute.

In order to count the number of lattice points in polygons, another non-
trivial problem is counting the number of lattice points on rational segments,
namely the boundary of the rational polygons. This problem is considerably
easier than counting the number of lattice points in two-dimensional regions,
but it is still non-trivial and has only recently been completely solved [5, 14].
Because both papers only gives formulas for counting the number of nonnegative
integer solutions to the equation ax+ by = c with positive integers a, b, and c, it
is not directly applicable for counting the number of lattice points on segments.
We give an algorithm that can be used directly for this problem, and it has the
same time complexity as the existing algorithms.

The rest of this paper is organized as follows. In Section 2, we propose an
algorithm for counting lattice points on rational segments. In Section 3, we
propose an algorithm for counting lattice points in right-angled triangles. The
two algorithms proposed in Sections 2–3 are then used to construct an algorithm
for counting lattice points in rational polygons in Section 4.

Notation In this paper, bxc denotes the greatest integer not more than x, dxe
denotes the least integer not less than x, and {x} denotes x − bxc.



2 Algorithm for Line Segments

In this section, we give an algorithm for calculating the number of lattice points
on a given line segment. In order to construct the algorithm, we use the following
notation and two existing lemmas.

Definition 1. Let x1, y1, x2, and y2 be rational numbers. We define L(x1, y1, x2,
y2) as the number of lattice points on the line segment (including its endpoints)
which connects the two points (x1, y1) and (x2, y2).

Lemma 1. [7] (Extended Euclidean Algorithm) Given two nonnegative integers
a and b, there is an algorithm which computes their greatest common divisor
(GCD(a, b)) as well as integers x and y such that ax + by = GCD(a, b).

Lemma 2. [1] The linear Diophantine equation ax + by = c has a solution if
and only if c is divisible by d, where d = GCD(a, b). Furthermore, if (x0, y0) is
a solution of this equation, then the set of solutions of the equation consists of
all integer pairs (x, y), where

x = x0 +
b

d
k, y = y0 −

a

d
k (k = . . . ,−2,−1, 0, 1, 2, . . .).

We are now ready to construct our algorithm.

Theorem 1. L(x1, y1, x2, y2) can be calculated in O(max{log |x1|, log |y1|,
log |x2|, log |y2|}) steps.

Proof. Without loss of generality, we can assume that 0 ≤ x1 ≤ x2 and y1 ≥ y2 ≥
0 (e.g. change (x1, y1) and (x2, y2) into (−x1, y1) and (−x2, y2) if x2 ≤ x1 < 0
and y1 ≥ y2 > 0). Because x1, y1, x2, and y2 are rational numbers, we can find
nonnegative integers a, b, and c such that the line ax + by = c passes through
the two points (x1, y1) and (x2, y2). If a = 0 or b = 0, then L(x1, y1, x2, y2)
is trivially computable. Otherwise, by Lemma 1, we can compute the greatest
common divisor d of a and b as well as integers p and q such that ap + bq = d.
Because (x, y) = ((c/d)p, (c/d)q) satisfies the equation ax + by = c, by Lemma
2, all integer solutions of the equation can be represented in the following form:

x =
c

d
p +

b

d
k, y =

c

d
q − a

d
k (k = . . . ,−2,−1, 0, 1, 2, . . .).

Because x1 ≤ x ≤ x2, the following inequality must be satisfied: (x1−(c/d)p)(d/b)
≤ k ≤ (x2 − (c/d)p)(d/b). Hence,

L(x1, y1, x2, y2) =
⌊(

x2 −
c

d
p
) d

b

⌋
−

⌈(
x1 −

c

d
p
) d

b

⌉
+ 1.

The most time-consuming part of the algorithm is the extended Euclidean
algorithm, which takes O(max{log a, log b}) steps. Therefore this lemma holds.

ut



3 Algorithm for Triangle

In this section, we give a short recursive function for counting the number of
lattice points in a right-angled triangle. To construct the algorithm, we first
show three lemmas (Lemmas 3–5).

Before showing the lemmas, we introduce the following notations.

Definition 2. Let a, b, and c be positive integers. We define the right-angled
triangle T (a, b, c) as follows:

T (a, b, c) = {(x, y) ∈ R2 | ax + by ≤ c, x > 0, y > 0}.

Definition 3. Let a, b, and c be positive integers. We define N(a, b, c) as the
number of lattice points in the triangle T (a, b, c).

By definition, it is easy to verify the following lemma.

Lemma 3. Let a, b, and c be positive integers. Then, N(a, b, c) = N(b, a, c).

When a = b, it is also easy to verify the following lemma.

Lemma 4. Let a and c be positive integers. Then N(a, a, c) = bc/ac(bc/ac −
1)/2.

By the above two lemmas, it is sufficient to consider the case a > b. We show
the following lemma.

Lemma 5. Let a, b, and c be positive integers with a > b. Let m = bc/ac,
h = (c − am)/b, k = b(a − 1)/bc, and c′ = c − b(km + bhc). Then the following
equation holds:

N(a, b, c) = N(a − bk, b, c′) + km(m − 1)/2 + mbhc.

Proof. First, we express the area of the triangle T (a, b, c) by using N(a, b, c).
When we look at the unit squares (squares consisting of four lattice points with
area 1) in the triangle T (a, b, c), the number of unit squares in T (a, b, c) is equal
to N(a, b, c). Then, we divide the remainder of the triangle T (a, b, c) into multiple
trapezoids Sis and a triangle R (see Fig. 1). For each integer 0 < i ≤ m, we
define trapezoid Si as follows:

Si = {(x, y) ∈ R2 | ax + by ≤ c, i − 1 ≤ x ≤ i, y ≥ b(c − ai)/bc}.

We define triangle R as follows:

R = {(x, y) ∈ R2 | ax + by ≤ c, x ≥ m, y ≥ 0}.

Then, the area of the triangle T (a, b, c) is given by

|T (a, b, c)| = N(a, b, c) +
m∑

i=1

|Si| + |R|.
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Fig. 1. Decomposition of the triangle T (a, b, c)

It is easy to verify that |T (a, b, c)| = c2/(2ab) and |R| = h(c/a−m)/2, noting
that the triangle R consists of the three vertices (m, h), (m, 0), and (c/a, 0).
The area of the region Si is also easily computable as follows (see Fig. 2):

|Si| =
1
2

((
c − a(i − 1)

b
−

⌊
c − ai

b

⌋)
+

(
c − ai

b
−

⌊
c − ai

b

⌋))
=

1
2

(
a

b
+ 2

{
c − ai

b

})
.

T
T
T
T
T
T
TT

p(i − 1, (c − a(i − 1))/b)

x = i − 1 x = i

p (i, (c − ai)/b)

p (i, b(c − ai)/bc)

¡¡ª
y = (c − ax)/b

-y = b(c − ai)/bc

Fig. 2. The region Si

Hence, N(a, b, c) is given as follows:

N(a, b, c) = |T (a, b, c)| − |R| −
m∑

i=1

|Si|

=
c2

2ab
− h

2

( c

a
− m

)
− 1

2

m∑
i=1

(
a

b
+ 2

{
c − ai

b

})

=
cm

2b
+

h

2
m − 1

2

m∑
i=1

(
a

b
+ 2

{
c − ai

b

})
.



The third equality is due to the fact that c−bh = am, because the line ax+by = c
passes through the point (m,h).

It is easy to verify that a− bk > 0, since k = b(a−1)/bc. While the line ax+
by = c passes through the two points (0, c/b) and (m, h), the line (a−bk)x+by =
c′ passes through the two points (0, c′/b) and (m, {h}) (see Fig. 3). Therefore,
by a similar argument to that used for N(a, b, c), we have N(a − bk, b, c′) as
follows:

N(a − bk, b, c′) =
c′m

2b
+

{h}
2

m − 1
2

m∑
i=1

(
a − bk

b
+ 2

{
c′ − (a − bk)i

b

})
.
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Fig. 3. The lines ax + by = c and (a − bk)x + by = c′

We then have

N(a, b, c) − N(a − bk, b, c′)

=
cm

2b
− c′m

2b
+

h

2
m − {h}

2
m

−1
2

m∑
j=1

((
a

b
+ 2

{
c − aj

b

})
−

(
a − bk

b
+ 2

{
c′ − (a − bk)j

b

}))
=

cm

2b
− (c − b(km + bhc))m

2b
+

1
2
mbhc

−1
2

m∑
j=1

((
a

b
+ 2

{
c − aj

b

})
−

(
a

b
− k + 2

{
c − aj

b

}))

=
(km + bhc)m

2
+

1
2
mbhc − 1

2

m∑
j=1

k

=
k

2
m(m − 1) + mbhc.

Hence, we have proven the lemma. ut



Now we can construct our algorithm.

Theorem 2. Let a, b, and c be positive integers. Then N(a, b, c) can be calcu-
lated in O(max{log a, log b}) steps.

Proof. Let k = b(a − 1)/bc. It is easy to verify that a − bk equals b when a is
divisible by b and that a− bk equals a mod b when a is not divisible by b. Hence
0 < a − bk ≤ b holds.

By Lemma 3, without loss of generality, we can assume that a ≥ b in the
following arguments. By Lemma 4, Lemma 5, and the fact that 0 < a − bk ≤ b,
we have the following algorithm “calcN” for calculating N(a, b, c).

Algorithm calcN(a, b, c)
a, b, and c are positive integers such that a ≥ b

begin
m := bc/ac
if a = b then

return m(m − 1)/2;
else

k := b(a − 1)/bc; h′ := b(c − am)/bc;
return calcN(b, a − bk, c − b(km + h′)) + km(m − 1)/2 + mh′;

endif
end

Fig. 4. Algorithm for counting lattice points in the right-angled triangle

Let us consider the running time of the computation of “calcN”. You see that
it is proportional to the number of recursive calls which the algorithm “calcN”
makes. When a is not divisible by b, it makes a recursive call changing the
parameters (a, b) into (b, a mod b). When a is divisible by b, it makes a (final)
recursive call changing the parameters (a, b) into (b, b). Hence the number of
recursive calls in the algorithm “calcN” is equal to the number of recursive calls
in the Euclidean algorithm. Therefore, our algorithm takes O(log a) steps. ut

Note that the algorithm “calcN” deals with only integers. It also contributes
simplicity of our algorithm.

4 Algorithm for Polygons

In this section, we give an algorithm for counting the number of lattice points
in a given polygon. First we describe main ideas of our algorithm and then we
show details of our algorithm.

A polygon is formally defined as follows. Let P be a two-dimensional rational
polygon with n vertices p0, p1, . . ., pn such that pn = p0, and its sides are the line



segments connecting pi and pi+1 (for 0 ≤ i < n). Each vertex pi has coordinates
(xi, yi) where xi and yi are positive rational numbers. We assume that the
vertices are given by clockwise ordering and that the polygon is not degenerate,
namely, two sides can intersect only at a common endpoint and no point will
occur as a vertex more than once. Note that the polygon is not necessarily
convex.

We present main ideas of our algorithm here. For simplicity, suppose here
that there are no lattice points on the sides of the polygon P and none of the
vertices of P has integer coordinates. We count the number of lattice points by
using a formula similar to that of the area of the given polygons. The area of
the polygon P is computable by using the following formula:

area(P ) =

∣∣∣∣∣
n∑

i=1

(xi − xi−1)(yi + yi−1)
2

∣∣∣∣∣ .

Let region Di be the trapezoid whose vertices are (xi−1, yi−1), (xi−1, 0), (xi,
0), and (xi, yi). Then the area of the polygon P can be rewritten as follows:
area(P ) = |

∑n
i=1 sgn(xi − xi−1)|Di||, where sgn(x) equals 1 if x > 0 otherwise

−1. The number of lattice points in the polygon P is given as follows:

num(P ) =

∣∣∣∣∣
n∑

i=1

sgn(xi − xi−1)(#{(x, y) ∈ Z2 | (x, y) ∈ Di})

∣∣∣∣∣ .

The remaining problem is how to calculate the number of lattice points in the
trapezoid Di. All we have to do is to divide the trapezoid Di into a rectangle and
a right-angled triangle, because counting lattice points in rectangles are trivial
and the number of lattice points in right-angled triangles can be calculated by
the algorithm “calcN” in the previous section.

Based on the above ideas, we show our algorithm. If there are lattice points
on the sides of the polygon P or some of the vertices of P has integer coordinates,
we have to modify the above algorithm.

Before showing our algorithm, we introduce the following notation:

Definition 4. Let xi−1, yi−1, xi, and yi be positive rational numbers such that
xi−1 6= xi. We define N(xi−1, yi−1, xi, yi) as the number of lattice points in the
trapezoid Di (including its boundary).

First we show our algorithm for a convex polygon. The number of lattice
points in the polygon P can be calculated by the following formula:

num(P ) =

∣∣∣∣∣
n∑

i=1

(N(Di) − u(P, i))

∣∣∣∣∣ ,

where

N(Di) =

N(xi−1, yi−1, xi, yi) if xi−1 < xi,
−(N(xi, yi, xi−1, yi−1) − L(xi, yi, xi−1, yi−1)) if xi−1 > xi,
0 if xi−1 = xi.



and

u(P, i) =
{
byic + 1 if xi is integer and xi−1 < xi < xi+1,
−dyie if xi is integer and xi−1 > xi > xi+1.

We can verify that the above formula correctly counts the number of lattice
points in the polygon P . Note that the u(P, i) is incorporated to avoid double
counting. If u(P, i) did not exist, the formula would count some points twice
(e.g. open circles in Fig. 5).

´
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Fig. 5. Double counting on sides

For nonconvex polygons, we have to incorporate further modifications to the
above formula. It is because some vertices of the polygon P may mistakenly
counted as interior points (not vertices) of the polygon. The open circle in Fig. 6
is an example of this type of double counting. To avoid this, let v(P, i) be defined
as follows:

v(P, i) =


1 if (xi, yi) ∈ Z2, xi−1, xi+1 < xi, and

∣∣∣∣xi − xi−1 xi+1 − xi

yi − yi−1 yi+1 − yi

∣∣∣∣ > 0,

−1 if (xi, yi) ∈ Z2, xi−1, xi+1 > xi, and
∣∣∣∣xi − xi−1 xi+1 − xi

yi − yi−1 yi+1 − yi

∣∣∣∣ < 0;

where |A| is the determinant of the matrix A, and let

num(P ) =

∣∣∣∣∣
n∑

i=1

(N(Di) − u(P, i) − v(P, i))

∣∣∣∣∣ .
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Fig. 6. Double counting on vertices

Thus we have a linear time (in the number of vertices of polygons) algorithm
for counting the lattice points in polygons.

While our algorithm assumes that the vertices of the polygons are given by a
clockwise ordering, you can also see that our algorithm calculates the number of



lattice points in the interior of polygons (i.e. excluding the lattice points on its
boundary) if the vertices of polygons are given by a counterclockwise ordering.

5 Concluding Remarks

We have shown that our simple algorithm calculates the number of lattice points
in a given polygon. Because our algorithm does not need to store all of the
vertices of the given polygon at a time, our algorithm uses smaller space than
the counting algorithms which uses a triangulation algorithm. This also makes
our algorithm easy to implement.

Our future work is to generalize our algorithm to three and higher dimensions.
We hope that generalizing our algorithm leads to reduce the time complexity of
existing algorithms.
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