
September 27, 2005
RT0628
Computer Science; Human-Computer Interaction; Service Science 12 pages

Research Report
Complexity Evaluation of Web Service Interfaces for End
Users

Takayuki Yamaizumi, Takashi Sakairi, Masaki Wakao,
Hideaki Shinomi
IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It
has been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or
copies of the article legally obtained (for example, by payment of royalities).

Complexity Evaluation of Web Service Interfaces

for End Users

Takayuki Yamaizumi1, Takashi Sakairi1, Masaki Wakao2, Hideaki Shinomi2

1 Tokyo Research Laboratory, IBM Japan Ltd.
1623-14 Shimo-tsuruma, Yamato-shi, Kanagawa 242-8502, Japan

{zumi|sakairi}@jp.ibm.com
2 Yamato Software Laboratory, IBM Japan Ltd.

1623-14 Shimo-tsuruma, Yamato-shi, Kanagawa 242-8502, Japan
{wakao|shinomi}@jp.ibm.com

Abstract. Providing simple interfaces which can be easily handled by
people who have neither programming skills nor deep understanding
about Web service is a key factor in releasing Web services to end users
as well as developers. This paper describes an algorithm to evaluate the
usability of Web services by evaluating the complexity of the structures
that are provided as the input of the Web service methods. The proposed
algorithm is quite simple, because the outputs of the algorithm can be
written as a scalar value which can be calculated by reading and analyz-
ing the WSDL (Web Services Definition Language) file on a Web service
provider.

The usability of the methods which are defined in some Web services that
can be accessed through the Internet were analyzed with the algorithm
proposed in this paper. The evaluation results of the proposed algorithm
are discussed from some perspectives such as the number of methods, the
average complexity of each Web service, and the complexity comparison
between the Web services which has the similar functionality. This algo-
rithm will also encourage end users to adopt the SOA (Service-Oriented
Architecture) by combining Web services with simple interfaces in the
distributed environment.

1 Introduction

Service-Oriented Architecture (SOA) is an emerging methodology to construct
enterprise systems [1], as well as to integrate the existing systems into a larger
system. Web services now play an important role in SOA because most SOA
systems will be constructed by combining Web services.

Furthermore, many Web services that are open to the public can be accessed
via the Internet [4]. They are quite useful for skilled developer who can imple-
ment the interfaces for Web services with stub code because these Web services
prevent them from “reinventing the wheel”. Likewise, the public Web services
can be accessed by end users who have neither programming skills nor deep un-
derstanding of their specifications through the interfaces generated from WSDL

2 Takayuki Yamaizumi, Takashi Sakairi, Masaki Wakao, Hideaki Shinomi

(Web Services Definition Language) files [5, 8]. However, since some of the Web
services require a specifying a complicated data structure for the input data,
users must have a deep understanding about the specifications of the Web ser-
vices if they want to handle complicated data, and this should not be required
of end users. In such cases, if there is an other public Web service that offers
the same functionality and needs a simpler data structure as an input, the users
would be helped if they had a way to evaluate the simplicity of the Web ser-
vice, so that they could use the Web services with simpler interfaces. For this
reason, some sort of evaluation of Web services for end users is needed, although
at the present time of writing, there is no system associated with Web services
which have the functionalities to evaluate Web services. The similar evaluation
functionalities are also needed for expert users, because when the private UDDI
(Universal Description, Discovery, and Integration) [22] registry is merged into
an other UDDI registry, then an administrator wants to select the one of the Web
services if both of the registries have a Web service that can operate similarly
to those in the other Web service.

In this paper, we describe an algorithm based on GOMS (goals, operations,
methods and selection rules) task model analysis [12] to evaluate the usability
of Web services by evaluating the complexity of the data structures which are
used as the input of the Web service methods. We have also used the proposed
evaluation algorithm on 101 popular Web services that can be accessed through
the Internet. The evaluation results of the proposed algorithm are discussed
from some perspectives such as the number of methods, the average complexity
of each Web service, and the complexity comparison between the Web services
that have the similar functionality.

The paper is organized as follows: In Section 2, related work is discussed.
The Web service interface evaluation algorithm is proposed in Section 3, with a
definition of an end user operation model. The results of the evaluations with
the proposed algorithm are described in Section 4. Section 5 discusses the results
of the evaluations, and Section 6 gives the overall conclusions of this paper.

2 Related Work

To develop the enterprise system, business process behavior based on Web ser-
vices can be defined in the Business Process Execution Language for Web Ser-
vices (BPEL4WS[2], WS-BPEL[3]). BPEL4WS (WS-BPEL) is one of the core
technologies to realize SOA [2, 3]. It is possible to use this to define an executable
business process which determines the nature and sequence of Web service in-
teractions. Tool support has been provided to make the definition in BPEL4WS
easier. However, these tools are not usable by end users, and a developer must
have a deep understanding and do the analysis of the business processes them-
selves and of the interaction of the Web services which the developer wants to
define in the BPEL file.

In contrast, the most primitive approach to work with Web services is to
implement an application to send SOAP messages between Web services [6].

Complexity Evaluation of Web Service Interfaces for End Users 3

Most of the work, especially the implementation for communication, is eased by
a tool which can generate stub code by parsing a WSDL file. However, a user
still must have some programming skills to work with Web service because the
user must code some user interfaces.

The WSDL file which defines the interface of a Web service includes the XML
schema [7] in which the data structure for the Web service are defined. Hence,
a Web interface can be generated by reading the data structure definitions by
reading a WSDL file on the Web service provider [8] and users can confirm and
test the functionality of the methods in the Web services. However, from the
end users’ point of view, if a method in a Web service requires complicated or
very large amounts of data, that method is too difficult to be used by end users,
because the end users must have a deep understanding about the data structures
of the Web services.

Web Services can be discovered from some UDDI registries, but it is difficult
to find which Web service is the best for what user needs. One of the approaches
to find the most suitable Web services is to find a similar Web service based
on the semantics of the identifiers of the WSDL file and the structure of their
operations [9].

For usability evaluation automation, Ivory et al. describe a taxonomy of
usability evaluation automation [10]. They surveyed 132 usability evaluation
methods. They classified the GOMS family of analysis methods into analytical
modeling methods. They note that GOMS analysis can only be applied to an
user model for an expert user. However, if there are few differences between an
expert user model and a novice user model, then this approach is very useful.
John et al. compare members of the GOMS family of analysis methods [13].

Fischer et al. discussed which domain should be selected for end-user devel-
opment in [14]. They concluded that it is safe to adapt end-user developments to
less complex domains. Thus, the end-user development approach can be adapted
to Web services which are open to the public, although management and secu-
rity issues still remain to be solved. End-user programming is recognized as an
important issue because an interface should be customized to the need of par-
ticular users, although there are likely to be generic structures, e.g., in an email
filtering system [11] which could be provided as a Web service, because it can
be shared.

3 Web Service Complexity Evaluation

Web service complexity is calculated by evaluating the structures of the input
data for a Web service with the algorithm which is described in this section. The
evaluation consists of the following:

– The operation model of end users who cannot understand about either the
data structure nor the structure of the Web service itself. This operation
model is derived from GOMS analysis.

– The evaluation algorithm to calculate the complexity score by applying the
operation model to the structure of the input data.

4 Takayuki Yamaizumi, Takashi Sakairi, Masaki Wakao, Hideaki Shinomi

In the reminder of this section, the details of the Web services evaluation method
is described.

3.1 The Operation Model for End Users

GOMS analysis [12] facilitates the quantitative evaluation of user interfaces and
prediction of a task model. These evaluations and predictions are limited to error-
free expert performance in many cases. Thus, these evaluations and predictions
cannot be used in a straightforward way to any type of user interfaces because
a user has to work with various types of interfaces even if the user sets data
values such as name, address, account number, and so on, and the optimization
methods may differ between those used by expert users and by end users.

We focus on the interfaces for the input data structures for Web services
which can be generated from the definitions which are declared in a WSDL file.
The data structures for input are represented as “tree-view like” interfaces such
as shown in Fig. 1.

UserInfo

Password

userId

accountInfoList

accountInfo[0]

accountInfo[1]

userName

accountId

accountName

amount

unitName

(a)

(b)

(c)

Fig. 1. “Tree-view like” interface sample for a Web service. (a) is a node handler button
to expand (or collapse) the node for complex type, (b) is a button to add (or delete)
an element of an array, and (c) is text field to set data.

This view only includes three types of interfaces (buttons, text fields, and a
node handler) for an input which can intuitively be understood by end users. If
an end user is asked to work with this display without any informations about
the data structure of the input to the Web service or if an end user lacks the
ability to understand their specifications, the following operations are available
for a end user:

– Click a node handler button ((a) in Fig. 1) to expand (or collapse) to check
the data that are included in the complex type data, which is defined with

Complexity Evaluation of Web Service Interfaces for End Users 5

a complexType tag in a WSDL file [7]. The sample definitions of data struc-
tures with a complexType tag are shown in Fig. 2. This operation is expressed
as a task Tn. An end user may check the type name of complex type data.
However, this is omitted from the task Tn because it is difficult to understand
the meanings of the type names for an end user.

– Click a button ((b) in Fig. 1) to add (or delete) an element in an array. This
operation is expressed as a task Ta.

– Type input data into the text field ((c) in Fig. 1). This operation is expressed
as a task Tt. An end user may check the field name. However, this is omitted
from the task Tt because it is difficult to understand the meanings of the
type names for an end user as well.

Thus, an operation model of an interface for end users is defined as the
sequence of Tis which are one of Ta, Tn, and Tt:

M = {T1, T2, T3, · · · , Tm} (1)

where:

– Ti ∈ {Ta, Tn, Tt},
– 1 ≤ i ≤ m,
– and M represents the sequence of operations.

In the initial setting for the most of the toolkits [15, 16], all nodes in a tree
view are collapsed. In addition, the elements of arrays are represented by child
nodes of an array node. Thus, all nodes have to be expanded and at least one
element has to be added to each array if a user wants to check the entire data
structure for the inputs.

Let a, n, and t be a number of Ta, Tn, and Tt operations that are included
in M . If a user wants to check the entire data structure for inputs, a and t
can be regarded as constant values. Furthermore, if the user does not collapse
nodes which have been expanded by the user, then n has a minimum value nmin
because when the data structure is represented by a tree, all nodes and leaves
can be reached by following the connection between the nodes [17]. Thus, m has
an absolute minimum value which is mmin, represented by:

mmin = a+ nmin + t (2)

3.2 Web Service Complexity Evaluation Algorithm

Based on the discussion in the previous section and Equation (2), We propose to
define the “complexity index” c as follows, and then determine the coefficients
xn, xa, and xt:

c =

l∑

j=1

((xa)jaj + (xn)j(nj)min + (xt)jtj) (3)

6 Takayuki Yamaizumi, Takashi Sakairi, Masaki Wakao, Hideaki Shinomi

<schema targetNamespace="http://ws.bankdemo.act.ibm.com"
xmlns="http://www.w3.org/2001/XMLSchema">

<import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
<complexType name="AccountInfo">
<sequence>
<element name="accountId" type="xsd:int"/>
<element name="accountName" nillable="true" type="xsd:string"/>
<element name="amount" type="xsd:double"/>
<element name="unitName" nillable="true" type="xsd:string"/>

</sequence>
</complexType>
<element name="AccountInfo" nillable="true" type="impl:AccountInfo"/>
<complexType name="UserInfo">
<sequence>
<element name="accountInfoList" nillable="true" type="tns1:ArrayOfAccountInfo"/>
<element name="password" nillable="true" type="xsd:string"/>
<element name="userId" nillable="true" type="xsd:string"/>
<element name="userName" nillable="true" type="xsd:string"/>

</sequence>
</complexType>
<element name="UserInfo" nillable="true" type="impl:UserInfo"/>

</schema>
<schema targetNamespace="http://ws.bankdemo.act.ibm.com/UserInfo"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
<complexType name="ArrayOfAccountInfo">
<complexContent>
<restriction base="soapenc:Array">
<attribute ref="soapenc:arrayType" wsdl:arrayType="impl:AccountInfo[]"/>
</restriction>

</complexContent>
</complexType>

</schema>
<schema targetNamespace="http://ws.bankdemo.act.ibm.com/BankInfo"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
<element name="UserInfo" nillable="true" type="impl:UserInfo"/>
<complexType name="ArrayOfUserInfo">
<complexContent>
<restriction base="soapenc:Array">
<attribute ref="soapenc:arrayType" wsdl:arrayType="impl:UserInfo[]"/>
</restriction>

</complexContent>
</complexType>
<element name="ArrayOfUserInfo" nillable="true" type="tns2:ArrayOfUserInfo"/>

</schema>

Fig. 2. Data structures as defined in a WSDL file

Complexity Evaluation of Web Service Interfaces for End Users 7

where the input of the Web service method consists of the data structures
d1, d2, · · · dl.

These three coefficients can be determined from the numbers of operations.
As discussed in the previous section, they can be expressed as the numbers of
operations which can be easily understood by an end user. Hence, xa, xn, and
xt can be determined for all j which satisfies 1 ≤ j ≤ l as follows:

((xa)j , (xn)j , (xt)j) = (1, 1, 1) (4)

The value in the left-hand side of Equation (4) can be assigned to the right-
hand side of Equation (3), yielding Equation (5) as follows:

c =

l∑

j=1

(aj + (nj)min + tj) (5)

The value of c can be calculated with the following algorithm:

1. Read the data structures in a WSDL file as described in Fig. 2 from a Web
service provider to construct the data tree (Vj) for each argument as shown
in Fig. 3.

2. Count the number of nodes which are represented by circle in Fig 3.
3. Repeat from the first step for all the other arguments, if any.

[ArrayNode] UserInfo

password

userId

userName

[ArrayNode] accountInfo
accountId

accountName

amount

unitName

Fig. 3. Data tree Vj generated from the definitions in WSDL file in Fig. 2.

If a data structure is defined recursively as shown in Fig. 4, it is evaluated by
one of the following rules, when the evaluation algorithm reaches to count the
node (a):

– Children of the node (a) are not counted.
– The complexity value of this method is define as infinity (∞).

8 Takayuki Yamaizumi, Takashi Sakairi, Masaki Wakao, Hideaki Shinomi

StoreCustomCategoryType

CategoryID

Name

Order

[ArrayNode]
StoreCustomCategoryType

(a)

Fig. 4. Data tree which is defined recursively [20].

4 Evaluations of Web Services with the Proposed
Algorithm

To evaluate the algorithm proposed in Section 3.2, we implemented the evalua-
tion tool using SWT [15], in order to read and to parse the WSDL files which
describe the specifications of Amazon E-Commerce Services [18], Google [19],
eBay [20] and those of the Web services which are collected by the Web Service
Club [23] as well as those collected by XMethod [4]. We have evaluated 101 Web
services, Most of the Web services are collected by XMethod.

4.1 Distribution of the Complexities

First of all, we focus on a minimum value of complexity for each Web service.
The distribution of the minimum values cmin, average values cavg, and maximum
values cmax are shown in Table 1, 2, and 3, respectively. In Table 2, “0-1” means
“0 or greater than 0 and less than 1”.

cmin 0 1 2 3 4 5+

Web Services 28 29 30 5 2 7

Table 1. The distribution of minimum values cmin

cavg 0-1 1-2 2-3 3-4 4-5 5-10 10-20 20+

Web Services 9 28 34 9 5 9 2 5

Table 2. The distribution of average values cavg

Complexity Evaluation of Web Service Interfaces for End Users 9

cmax 0 1 2 3 4 5 6-10 11-50 51+

Web Services 5 16 29 12 10 6 11 6 6

Table 3. The distribution of maximum values cmax

4.2 The Complexity Evaluation of the Popular Web Service

Next, The evaluation results of Amazon E-Commerce Services [18], Google [19]
and eBay [20] are shown in Table 4. Amazon and eBay Web services only have
methods with relatively complex interfaces, although Google Web services only
have simpler methods than the other two Web services.

Web Services Amazon [18] Google [19] eBay [20]

cmin 15 2 9

cavg 50.684 4.667 75.000

cmax 482 10 632

Table 4. The evaluation results of the popular Web services

Note that the values of eBay Web services are the tentative results, because
one of the methods uses the input data which includes a recursive data structure
shown in Fig. 4. In this evaluation, children of a node which is proved to be
defined recursively are not counted.

4.3 Relationship of the Number of Methods to the Average of
Complexities

We also focus on the relationship of the number of methods to the average of
complexities to confirm whether Web services can provide many methods which
are relatively easy for end users to work with. The result is shown in Fig. 5

4.4 The Comparison between the Similar Web Services

There are more than one Web service which provide the similar service to
users. Table 5 shows the evaluation results of the Web services which provide
stock prices. Notes that the QuoteOfTheDay (qotd) Web service simply has one
method which can be invoked without an input data.

5 Discussion

As shown in Section 4, it can be considered that most of the Web services have
at least one method whose input data can easily be set by end users, because

10 Takayuki Yamaizumi, Takashi Sakairi, Masaki Wakao, Hideaki Shinomi

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

T
he

 n
um

be
r

of
 m

et
ho

d

The average of complexity

Fig. 5. The relationship of the number of methods to the average of complexities

Web Services EODData PowerQuote XigniteFutures RealTimeMarketData

cmin 1 0 0 1

cavg 2.429 1.500 2.824 2.875

cmax 4 2 8 4

Web Services qotd RandomQuote XigniteQuotes

cmin 0 1 0

cavg 0.000 1.000 3.300

cmax 0 1 25

Table 5. The evaluation results of the Web services which provide stock prices

Complexity Evaluation of Web Service Interfaces for End Users 11

more then 90% of Web services which we evaluated have the methods whose
complexities are less than 5.

The relationship of the number of methods to the average of complexity can
be overviewed by Fig. 5. It is revealed from Fig. 5 that end users can work with
relatively large web services through simple methods, because the numbers of
methods in web services vary up to 20, although most of the web services have
less methods and less complexity.

The results in Table 4 indicates that the evaluated complexity values of
the Google Web service are much lower than the other two Web services. in
other words, the Google Web service is more useful than Amazon and eBay
Web services. In fact, another Web services which use some methods defined in
Google Web service have been registered on the XMethod.

Table 5 reveals that the similar Web services can be easily compared from the
end users’ point of view with the proposed algorithm. In this example, the end
users should use QuoteOfTheDay (qotd) service first. They can use PowerQuote
or RandomQuote after they have tried qotd.

We proposed two rules to evaluate a data node which is defined recursively in
Section 3.2. In the evaluation of eBay web service, children of a data node which
is proved to be recursive are not counted, because a user could find immediately
that a node is defined recursively when a node which has the same name as
the original node appears. However, if one of grand children (or descendants)
of a node has the same type as the node itself, it may be difficult for a user to
know their recursiveness, so it is better to regard the complexity of this node as
infinity. Thus, some additional rules may be needed to solve this issue.

6 Conclusion and future work

In this paper, we propose a metric for the complexity evaluation algorithm of
Web services for end users by evaluating the data structures of the input argu-
ments for each method. The proposed evaluation algorithm facilitates intuitive
complexity evaluation by end users, because the evaluation results are repre-
sented by scalar values (scores).

The evaluation results revealed that most of the Web services still have simple
interfaces. However, public Web services which have more complex data struc-
tures than Amazon has already appeared in the Internet. In addition, the Web
services that have almost the same functionalities has also appeared. Thus, it
is important to provide this type of evaluation to people who understand their
businesses deeply, because it is better for them to know which method in a Web
service should be used to integrate them into their own services.

As a result, the proposed evaluation algorithm will also encourage end users,
as well as skilled people, to adopt SOA (Service Oriented Architecture) by com-
bining the Web services with simple interfaces in the distributed environment.

In this paper, we only considered the data structures used for input. End users
may be interested in Web services which send lots of relevant information to the
user as a result of the input, so it may be worth working with the relationship

12 Takayuki Yamaizumi, Takashi Sakairi, Masaki Wakao, Hideaki Shinomi

between input, output, and end users. We are currently working with ad-hoc
Web service orchestration for end users [21]. This will be helpful for users who
has deep understandings their businesses, but does not have programming skills.

References

1. Service-Oriented Architecture,
http://www.ibm.com/software/info/openenvironment/soa

2. Business Process Execution Language for Web Services version 1.1,
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf

3. OASIS Web Services Business Process Execution Language (WSBPEL) TC,
http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel

4. XMethods web site, http://www.xmethods.net/
5. W3C, Web Services Description Language (WSDL) 1.1, W3C Note, 2001.
6. W3C, SOAP - Simple Object Access Protocol, http://www.w3.org/TR/SOAP
7. W3C, XML Schema, http://www.w3.org/XML/Schema
8. Mindreef: Comprehensive Web services diagnostics and testing,

http://www.mindreef.com/

9. Wang, Y. and Stroulia, E., Semantic Structure Matching for Assessing Web-Service
Similarity, ICSOC 2003, LNCS 2910, pp 194-207, 2003, Springer.

10. Ivory, M. Y. and Hearst, M. A., The State of the Art in Automating Usability
Evaluation of User Interfaces, ACM Computing Surveys, 33(4):470-516, December
2001.

11. Myers, B., Hudson, S. E. and Pausch, B., Past, Present, and Future of User Inter-
face Software Tools, ACM Transactions on Computer-Human Interfaces, 7(1):3-28,
March 2000.

12. Card, S. K., Morran, T. P. and Newell A., The Psychology of Human-Computer
Interaction, Lawrence Elrlbaum Associates, 1983.

13. John, B. E. and Kieras, D. E., The GOMS family of user interface analysis tech-
niques: Comparison and contrast, ACM Transactions on Computer-Human Inter-
action, 3(4):320-351, 1996.

14. Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A. G. and Mehandiev, N. META-
DESIGN: MANIFESTO FOR END-USER DEVELOPMENT, Commnunication
of ACM 47(9):33-37, September 2004.

15. Eclipse Projects, SWT: The Standard Widget Toolkit,
http://www.eclipse.org/swt/

16. The GIMP Toolkit, http://www.gtk.org/
17. Diestel, R., Graph Theory, Springer-Verlag New York, 1997.
18. Amazon Web Services, http://www.amazon.com/gp/browse.html/

002-0381178-1342459?%5Fencoding=UTF8&node=3435361

19. Google Web APIs, http://www.google.com/apis/index.html
20. eBay Developers Program, http://developer.ebay.com/soap/
21. IBM alphaWorks, Ad Hoc Development and Integration Tool for End Users

http://www.alphaworks.ibm.com/tech/adieu/, IBM, 2005.
22. OASIS, uddi.org, http://www.uddi.org/.
23. The Web Service Club, http://objectclub.esm.co.jp/webservice/home.html

(contents are described in Japanese)

