
November 21, 2005
RT0633
Network 13 pages

Research Report
Recursive Peer-to-Group Routing on a Network Hierarchy for
Stable Overlay Multicast

Shu Shimizu, Taiga Nakamura, Ryo Sugihara, Ken
Masumitsu
IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It
has been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or
copies of the article legally obtained (for example, by payment of royalities).

Recursive Peer-to-Group Routing on a Network
Hierarchy for Stable Overlay Multicast

Shuichi Shimizu, Taiga Nakamura, Ryo Sugihara, Ken Masumitsu
IBM Japan, Tokyo Research Laboratory

1623-14 Shimotsuruma, Yamato-shi, Kanagawa 242-8502 Japan
Email: {shue,taiga,sugiryo,masu}@jp.ibm.com

Abstract— This paper presents a new application-layer multi-
cast technique,recursive peer-to-group routing, in which data de-
livery paths are not fixed but change dynamically and frequently
even when no failures occur at receiver hosts. The advantages
of our technique include (1) well-distributed and well-balanced
network-relaying traffic for all hosts over the delivery system,(2)
automatic and rapid adaptation of delivery routes to the non-
uniformity and temporary fluctuations in host performance, and
(3) stability of the whole system even with frequent joins and
departures of receiver hosts. We exploit a network hierarchy
for system scalability just as in the conventional fixed path
approaches, but we also introduce layered destinations without
assigning any fixed hierarchical roles to the host nodes. In
addition, the determination of the multicast paths is decentralized
and distributed to the end nodes. Link stresses for uplinks and
downlinks are almost the same as for the original data rate at any
hierarchical level, which localizes and reduces network traffic.
We give an analysis of latency and loss rates with concatenated
queuing systems and show how to control the final loss rate
by determining such system parameters as data rate, network
performance, and recovery rate of erasure code words. We also
present and discuss some simulation results with a blocking
system, in which the data rate is maximized at the point of
the highest system utilization.

I. I NTRODUCTION

Multicast is an efficient infrastructure for push-style data de-
livery such as streaming of digital media and bulk data transfer
to a large number of receivers. It shares network resources to
avoid duplicating the same data on delivery paths to multiple
receivers. Network-layer multicast or IP Multicast [11], which
mainly reduces router usage, was proposed more than fifteen
years ago, but it has not been widely deployed yet due to
such issues as scalability, network management, and higher
layer support of error and congestion controls [10].

To address this situation, several application-layer multicast
protocols have been proposed as new architectural alternatives
to network-layer multicast. They don’t depend on network
devices such as routers but rely on end hosts that may also
be receivers of the transmitted data. For example, Scribe [18]
is a publish-subscribe application built on top of Pastry [17],
which builds a multicast tree using some of the underlying
hosts, each of which has a unique ID and remains active
during the broadcast service. Bayuex [21] is built on top of
Tapestry [20], in which the hosts that forward data to the others
are not necessarily receivers, similar to Pastry. They mainly
focus on location mapping to find destinations based on a
distributed hash table (DHT) that maps names to addresses.

According to Castro et al. [8], tree building approach (Pastry-
style) outperforms flooding approach (CAN-style [16]) in
terms of several criteria including delivery delay and link
stress. Yoid [12] defines a protocol for building a multicast
tree by distributed end hosts. ALMI [15] uses a centralized
algorithm to build a minimum spanning tree. Narada [10]
builds a mesh connecting end hosts and then constructs a
shortest path spanning tree on it. These protocols mainly focus
on building “good” trees in terms of decreasing the latency
from a root to the end hosts, but they may frequently stop
for a highly dynamic population of receiver hosts, since they
rely on a single path (astability issue). In Overcast [13],
data distribution trees adapt to changing network conditions
by tracking the global status of the trees. Yang [19] proposes
a proactive approach to pre-compute alternative paths as a
recovery plan. PRM [4] discusses a multicast data recovery
scheme that has both a proactive and reactive component.

Some protocols use multiple paths to address the stability
issue. Splitstream [7] stripes data across a “forest,” in which
the forwarding load is distributed among all hosts. Bullet
[14] proposes overlay “mesh” rather than a tree for higher
bandwidth and reliability. NICE [3] exploits the network
hierarchy so that it scales better than the flat mesh-based
approaches (ascalability issue), but it still takes a long time
to repair paths, on the order of 30 seconds, mainly because
it depends on probing hosts over the network, which is time-
consuming. CoopNet [9] combines multiple paths and source
coding technique to make “live” streaming applications robust
against node failures.

We propose a new routing approach for multicast on an
overlay network, in which (1) multicast paths are not fixed
to a single or few trees but change frequently to avoid
reconstruction overhead as membership dynamically changes;
(2) delivery paths are automatically determined so that poorly
performing hosts are unlikely to appear in the middle of paths
resulting in more reliable delivery; (3) path determination
is not centralized at a root but distributed to the end hosts
for scalable operations; and (4) network traffic is localized
recursively in a network hierarchy to avoid duplicating the
same data for scalable delivery. We also analyze the latency
and packet loss rate of our approach.

The body of this paper is organized as follows. In Section II,
we present an overview ofrecursive peer-to-group routingand
its important characteristics. Then, in Section III, we present

formal protocols and procedures with pseudocode that imple-
ments our approach. In Section IV, we present a performance
analysis of latency and error rates. Then, we summarize and
compare important characteristics with a simple tree-based
approach, followed by consideration of some open issues in
Section V, and finally conclude in Section VI.

II. OVERVIEW OF RECURSIVEPEER-TO-GROUPROUTING

In this paper, we assume that the network consists of a single
distribution server (or root) and multiple receiver nodes.The
overlay multicast system conveys data packets from the root
to the receivers with no dedicated help from the routers for
relaying. Receivers can join or leave the system at any time,
and they contribute to the system only when they also want
to receive the packets.

Root

(S0)

(S1)

(S2)

(S3)

(S4)

16 receivers with 4-bit IDs

0000

1000

0100 1100

0010 0100 1010 1110

0001 0011 0101 0111 1001 0011 1101 1111

0000

Fig. 1. Scalable overlay multicast by introducing hierarchyof node IDs.
Data propagation is divided and depicted for each stage,S0, S1, ..., or S4.

Figure 1 shows a simple and scalable overlay multicast
system with 16 receiver nodes, each of which is assigned a
unique 4-bit ID (0000, 0001, ..., and 1111). In this example,
a root sends a data packet to the node with ID 0000 at the
stageS0, and the node 0000 forwards the packet to the node
1000 at the stageS1. The packet is further forwarded from
0000 and 1000 to 0100 and 1100, respectively, at the stage
S2. The forwarding operations continue in a recursive way,
and eventually all nodes receive the packet by stageS4 with
no duplicates. Note that the forwarding operations are not
necessarily synchronized at each stage. Seen from nodes, the
node 0000 relays to four nodes, while half of the nodes such
as 0001 and 0011 do not relay but only receive, which is a
typical tree-based approach.

Our idea comes from this naive propagation method based
on the hierarchy of node IDs, but it aims at stable multicasting
under dynamic membership changes, with decentralized and
scalable operations and well-balanced network traffic. In the

following sections, we present our approach and its character-
istics.

A. Path-varying Approach for Stable Multicast

When propagation is fixed on a single path and one or more
upstream nodes leave the multicast system, some downstream
nodes will fail to receive the following packets, and thus path
recovery is required to continue the multicast. Reactive path
recovery calculates the next available path after detecting the
failures, and proactive path recovery prepares the alternative
paths before failure [4], [19]. Unlike the conventional methods,
our approach ispath-varying propagation, which is neither
reactive nor proactive. Due to the frequent path changes,
our path-varying propagationquickly works around fault
situations, which turns out an implicit error recovery.

Root

(S0)

(S1)

(S2)

(S3)

(S4)

{0***} {1***}

{00**} {01**} {10**} {11**}

A B C D

{011*}{010*}

{****}

{1111}

Fig. 2. Path-varying propagation, in which any relaying node (in dark
squares) chooses a next destination out of its adjacent group in each layer.

Before discussing the path-varying propagation, we first
definelayered groups, which are essential for complete propa-
gation with no loops nor duplicates. In the example (Figure 2),
the largest node group contains all of the IDs, and is denotedas
{**** }. The second largest groups are denoted as{0*** } and
{1*** }, which comprise the IDs that begin with prefix 0 and
1, respectively. These two groups are strict subsets of the first
group {**** }. Smaller groups,{00**}, {01**}, and so on,
are defined similarly, up to{1111}, which contains only the
ID 1111. We call these segmentations the layered groups. Each
receiver node belongs to multiple groups: exactly one group
in each layer. For example, the node with an ID 0100 belongs
to the layered groups{0100}, {010*}, {01**}, {0*** } and
{**** }.

The path-varying propagation works for each data packet as
follows. First, at the stageS0, the root chooses a node from
the group{**** } (i.e., the group including the entire node
sets) and sends it a data packet. In the example of Figure 2,
the node ‘B’ (ID:0100) received the packet. Then, ‘B’ chose

the next node ‘D’ out of its adjacent group{1*** } to forward
the packet. Next, ‘B’ and ‘D’ forwarded the packet to their
adjacent groups,{00**} and{10**}, respectively at the stage
S2. Those forwarding operations continue in a recursive way
using smaller groups, until the packet finally propagates toall
receivers at the stageS4. There are no loops of propagation
nor duplicate arrivals of packets. Each relaying node routes
data packets not to a fixed node but to one of the nodes in
the group. Since it can be seen as a unicast from a peer node
to the entire group, we call thispeer-to-group routing. The
path-varying propagation is thus composed of recursive peer-
to-group routings.

Each time a sender chooses the next node from theavailable
and active candidate nodes.available nodes are the ones
currently in the service, andactive nodes are the ones which
are not busy and ready to receive the next packet. To do this,
senders only send the next packet to those who have returned
acknowledgmentsfor the previously sent packets. This makes
the entire multicast system stable, because upstream paths
favor the active (or high performance) hosts while inactive(or
lower performance) hosts automatically wind up to the final
end of paths.

For the next packet in the example, the root may choose ‘D’
as the first node and ‘D’ forwards the packet to its adjacent
segment{0*** }. From the viewpoint of propagation paths, the
node ‘B’ is upstream relative to the node ‘D’ in propagating
the first packet, but it is downstream relative to ‘D’ for the
next packet. This indicates that the path-varying propagation
is constructed by therole-varyingbehavior in each node. We
discuss more about the advantages of the role changes in the
following sections. It should be noted that path/role-varying
propagation obviously inherits the important characteristics of
the fixed path approaches — scalability and complete delivery
with no loops nor duplicates — as mentioned above.

B. Decentralized Path Determination

In the path-varying propagation, the root does not determine
the entire path but only chooses the first node. The rest of
the paths are determined at each relaying node and eventually
they are fully constructed for each packet. The behavior of the
relaying nodes varies according to both their node IDs and the
stages in which they receive data packets.

A

B

L1L2L3L4

{1***}{01**}{001*}

C{0***} {11**}{100*}

L1L2 L3L4

{1***}{00**} {011*}

L1 L2L3 L4

Fig. 3. The forward-to groups: layered groups for the forwarding operations
from a node.

Figure 3 shows the layered groups for the forwarding
operations from the node ‘A’, ‘B’ and ‘C’. When ‘A’ receives
a data packet from the root, it then forwards the packet to the
layered groups,{1*** }, {01**}, {001*} and {0001}, while
‘C’ forwards to {0*** }, {11**}, {100*} and {1011} in the
same situation. We call these layered groups for each nodethe
forward-to groupsand also refer these asL1, L2, and so on
from the largest group, respectively. When a node receives a
data packet at the stageSk (k ≥ 0), then it is responsible for
relaying the packet to its forward-to groups ofLk+1, Lk+2,
..., and Ln, where n is the maximum level of stages (or
the number of the forward-to groups), andn is linear to the
logarithm of the total number of receiver nodes. These context-
based forwarding operations assure our multicast system has
no propagation loops and no duplicate packet arrivals.

The stage level in which a node has received a data packet
from a source nodeis determined as follows. The node
compares its own ID with the ID of the source node beginning
from the highest bit and finds the first bit that doesn’t match.
The mismatched bit position indicates that they belong to the
different groups from that point. For example, when the node
‘A’ (ID:0000) receives a packet from the node ‘B’ (ID:0100),
their IDs mismatch at the second bit, and thus we find the
stage isS2 and ‘A’ is responsible for forwarding the packet
to its L3, L4, ..., andLn in turn. Thus, each packet does not
have to contain any information about the stages.

C. Distributed Network Traffic

As any receiver node always receives data packets with no
duplicates, the incoming data rate at the receiver’s downlink,
the downlink stress, is the same as the original data rate. This
is also true for any level of the layered groups, as shown in
Figure 2, and thus the downlink stress at any layered group is
the same as the original data rate. For example, when a layered
group topologically corresponds to such a network segment
that a router manages, it receives no more or less than a single
set of data packets even when the segment actually includes a
number of active end hosts.

On the other hand, the outgoing data rate at the node’s
uplink, the uplink stress, ranges from zero ton times the
original data rate in the fixed path approaches. For example,
the node 0000 in Figure 1 always forwards data packets to
four peer nodes, which requires four times more bandwidth
than in its downlink, while half of the nodes just receive
but never forward any packets, that is, their uplink stress is
zero. This unbalanced situation in uplinks would not meet the
requirements of asynchronous channels such as DSL.

In the role-varying propagation, one of its advantages is
to average the uplink stress. The dark squares in Figure 2
indicates the nodes that forward a data packet at their uplinks.
Their roles will change for the consecutive packets. When
all nodes (i.e., all IDs) are available and they have the same
activities, then their uplink stress approaches(1− 1/2n)λ as
the time range increases, whereλ is the original data rate and
n is the number of the forward-to groups. Thus, each node
hasλ-in and almost the same value ofλ-out.

cn = |Gn|
c1 = |G1|

c0 = |G0|

L1L2L3L4

Fig. 4. The situation when receiver nodes are not fully available in each
group. The dark square node belongs to the layered groups,Gn, ..., andG0,
and the numbers of nodes in each group arecn, ..., andc0, respectively.

In the more general case when some of the layered groups
contain noavailablenodes, then the averaged uplink stressU
at a certain node is calculated by

U = λ
n−1
∑

k=0

1

ck
, (1)

whereck is the number of available nodes in the layered group
Gk that is complementary toL1∪· · ·∪Lk, as shown in Figure
4, and thus1/ck indicates the probability that data packets are
relayed to the forward-to groupLk from a node inGk. The
uplink stress at the complementary groupGi (0 < i ≤ n) is
also calculated by

Ui = λ

i−1
∑

k=0

ci

ck
, (2)

which is the summation of the data rates emitted from all
of the nodes inGi to Li, ..., andL1. Note thatUn = U .
The uplink stressU andUi may exceedλ in such situations
when the nodes are not well distributed against the hierarchy
of node IDs, for example, ifck−1 = ck + 1, which indicates
that the population is mostly concentrated in small groups,not
uniformly distributed. However, when we have enough nodes
available, then we can expect well-distributed situations, and
thus we also expectλ-in and less thanλ-out traffic at all nodes
and layered groups. In such situations, when the hierarchy of
node IDs matches the actual network topology, network traffic
is well localized and decreases at the routers, as the downlink
and uplink stresses directly indicate the number of packetsat
the routers.

The peak uplink stress is stillnλ, which may be very
high and would lengthen the latency of packet arrivals at the
terminal hosts in the paths. However its probability is very
low and so it does not always impact the performance of
the delivery systems. We will discuss and analyze the latency
issues in Section IV.

D. Node Join

While the hierarchy of node IDs never changes during a
multicast service, the availability (joined or not) of nodes may
frequently change. This is an issue of system stability under
dynamic membership changes. Before discussing the stability
issue, we start by describing procedures required for the root
to accept a new receiver node. When a new receiver node
wants to join the multicast service, it sends a “JOIN” request

to the root and waits for initial information about peer nodes
for each of its forward-to groups. The procedures for accepting
each request at the root is as follows:

i. Get the ID of the new receiver node,
ii. Register the node,

iii. Calculate its forward-to groups according to the ID,
iv. Select destination candidate nodes for each group,
v. Inform the new node of the candidate nodes.

These steps are performed in a one-to-one way between the
root and the new node. Since the receiver nodes are maintained
in a hierarchical way, and a constant or limited number of
destination candidate nodesare randomly selected for each
of the forward-to groups, even when many more nodes are
available, the number of steps at the root for each request
is only O(log N), whereN is the total number of available
nodes. In order not to disrupt the forwarding operations, the
new receiver should not become a forwarding node until it
is ready to send, that is, until it gets a complete list of its
destination candidates. Otherwise, incomplete paths would be
built towards old nodes.

The steps at the new receiver side are as follows.

i. Send a “JOIN” request to the root,
ii. Wait for the initial information sent by the root,

iii. Set up the forward-to groups,
iv. Inform the root of the completion of setup, and
v. Announce itself to the other nodes.

New receiver nodes are not informed of all peer nodes but only
of the limited number of nodes for their destination candidates,
and so they maintain paths to those candidates in a scalable
and stable way. After informing the root of the completion of
setup, new nodes announce themselves to the other available
nodes by using the recursive peer-to-group routing as well
as for data packets, which is also scalable. The announcement
may cause updates of the destination candidates in the already
running nodes, as will be described in Section III-D.

E. Node Departure

Since node departure will break propagation paths in the
overlay network, it sometimes results in packet loss in the
conventional fixed path approaches. In contrast, in our path-
varying approach, simple cleanup procedures performed by
each departing node avoid the packet loss, without rebuilding
paths, as follows. When a node is leaving the multicast service,
(1) it should notify its source nodes of the disconnection so
that they can remove it from their destination candidates and
so they will send no more packets to the leaving node; (2) It
should also complete forwarding any unprocessed packets. We
call this situationgraceful departure, and there is no chance of
losing packets in the multicast system as long as nodes leave
gracefully.

When a running node stops unexpectedly due to unpre-
dictable problems such as a system crush, one or more packets
stored in the stopped node may be lost. To avoid this situation,
its source nodes can resend those packets to the other candidate
nodes when the disconnection of the stopped node is detected.

If no explicit sign is given of the disconnection, the sendercan
watch for a timeout of the receipt acknowledgments. We call
this local error recovery. However, this may not reduce the
loss rate to zero, and so we need loss recovery at the receiver
side, such as forward error correction (FEC) [5] or multiple
description coding (MDC) [9]. Note that we should not rely
on recovery requests sent to the root, because this may cause
scalability problems.

III. PROTOCOLS ANDPROCEDURES

Now, we define the recursive peer-to-group routing more
formally. The pseudocode of the peer-to-group routing so that
a data packetd is forwarded from a source nodep to a group
G is as follows:

P2G(p,G, d)

1. g ← CHOOSE(G),
2. Trigger FORWARD(p, g, d),

where the first step chooses an active node that is ready to
accept the next packet from the layered groupG and then
marks the chosen nodeg as inactive for the source node
p. The nodeg will become active again when the source
node p receives an acknowledgment fromg. The second
step sends the datad to g, and then it asynchronously starts
FORWARD(p, g, d) at the receiverg’s side and immediately
returns. The first step may block until one or more nodes
become active in the groupG. We call this ablockingversion
of peer-to-group routing. When the data rate is not fixed
beforehand, this version can maximize it according to the
minimum performance of all receiver nodes.

An alternative implementation of the peer-to-group routing
is a queuingversion, as follows.

P2G(p,G, d)

1. Q← QUEUEOF(G),
2. ENQUEUE([p, d], Q),

where the first step gets the queue that is bound to the forward-
to group G, and the second step puts a pair ofp and d
into the queueQ and immediately returns with no blocking.
The actual forwarding operations are performed in a separate
asynchronous process that is bound to the groupG in each
node, as follows.

SERVICE(G)

1. Q ← QUEUEOF(G),
2. [p, d] ← DEQUEUE(Q),
3. g ← CHOOSE(G),
4. Trigger FORWARD(p, g, d),
5. Go to the first step,

where the second step retrieves the pair ofp andd from the
queueQ bound to the groupG. The second and third steps may
block. Each node hasn SERVICE processes for its forward-to
groups, and they run concurrently and asynchronously.

A. Packet Propagation

The root r maintains a setS of available (i.e., currently
running) receiver nodes. The pseudocode for the root to deliver
a data packetd is as follows.

ROOTDELIVER(d)

1. P2G(r, S, d).

The pseudocode for the nodeg to forward the data packet
d is recursively defined as follows.

FORWARD(p, g, d)

1. If p is the rootr, thenk ← 0,
Elsek ← (mismatched bit position between the

IDs of p andg),
2. For i = k to n− 1, do P2G(g, Li+1, d),
3. UPDATE(g, d) if d is a node info,
4. PROCESS(g, d) if d is a data packet,
5. ACKNOWLEDGE(p, g),

wheren is the number of forward-to groups for the nodeg, the
mismatched bit position ranges from one ton, andLi is the
i-th forward-to group fromg. Whend is a node notification,
then the third step updates the destination candidates ofg, if
necessary, which will be described later. Whend is a data
packet, then the fourth step processes it in the receiver node
g. For example, error recovery operations may be applied in
a buffer of codewords prior to sending it to outer application
systems such as a media player for streaming data. As the data
packets do not necessarily arrive in the original sequence,the
buffer is also used for sorting them. Finally, the fifth step sends
an acknowledgment fromg to the source nodep so thatp can
chooseg again as an active node.

B. Join

When a new receiver node joins the multicast service, it
first sends a “JOIN” request to the root, and gets the initial
information about its destination candidates and builds the
forward-to groups, as follows.

NODEJOIN

1. For i = 1 to n, do:
Li ← (candidates for thei-th group),

2. Reply to the root,
3. ANNOUNCE itself,

where ANNOUNCE uses the recursive peer-to-group routing as
well as data packets, as described in Section III-D.

When the root receives a “JOIN” request from the new
receiver nodep, the root inserts it into the setS; calculates
the destination candidates forp; and finally sends it the list of
candidates, as follows.

ROOTACCEPTJOIN(p)

1. S ← {p} ∪ S,
2. For i = 1 to n, do:

Li ← (up to m candidates forp’s i-th
forward-to group),

3. Notify p of [L1, ..., Ln],

where m is the predefined number to limit the size of the
forward-to groups in each receiver node, so that receiver nodes
can maintain a scalable number of peer nodes. The candidate
nodes are chosen at random in the second step in order to
increase the number of potential propagation paths.

C. Leave

Receiver nodes should leave the multicast service in a
graceful way, as follows.

NODELEAVE

1. Notify the source nodes of disconnection, and
2. Flush the unprocessed data packets or time out.

If receiver nodes unexpectedly stop without any notification of
disconnection, their source nodes may send some consecutive
packets that will be lost. Even in such a case, since the source
nodes receive no more acknowledgments, the stopped nodes
will not be chosen as active ones after that. The timeout in the
second step is for the case when the destination nodes don’t
respond.

When the root detects the disconnection of the nodep,
it removes p from the setS and sends a notification for
replacement using a node which is located nearp so that the
running nodes can replenish their destination candidates,as
follows.

ROOTDETECTLEAVE(p)

1. S ← S − {p}, and
2. q ← (choose a node hierarchically near top),
3. Tell q to ANNOUNCE itself.

Receiver nodes have two or more destination candidates for
each of their forward-to groups, but the number of candidates
are limited up tom for scalable operations. If all candidate
nodes bound to a certain forward-to group that potentially
include other available nodes leave the system and no new
nodes join to take their places, then potential paths will becut
off. The above announcement step is to avoid this situation by
providing possible candidates.

Each receiver node removes the nodep from its forward-
to group, if included, when detectingp’s disconnection, as
follows.

NODEDETECTLEAVE(p)

1. For i = 1 to n, do Li ← Li − {p}.

Note that the removal ofp from Li succeeds no more than
once out ofi = 1, ..., n, because the forward-to groups are
exclusive of each other for all nodes.

D. Announce and Update

The announcement also exploits the recursive peer-to-group
routing, as follows.

ANNOUNCE(p)

1. For i = 1 to n, do P2G(p, Li, p),

where the operations are performed in thep’s process.
Each receiver node updates its forward-to groups when it is

notified of a new peer nodec by an announcement, as follows.

UPDATE(p, c)

1. For i = 1 to n, do:
If c is potentially inLi of the nodep and

c /∈ Li and |Li| < m, do Li ← {c} ∪ Li.

When the nodep already maintains the announced nodec
or has enough destination candidates for the corresponding
forward-to group, it ignores the announcement, so that each
forward-to group holds up tom destination candidate nodes.

E. Implementation Notes

1) Explicit Hierarchy: Since IPv6 addresses except for the
lower 64 bits (used for storing the interface ID) indicate the
hierarchy of the networks [1], which is one of the main
objectives of the design of IPv6, the hierarchical and recursive
peer-to-group routing should work especially well for IPv6
networks, by making use of the IPv6 addresses as the IDs. The
higher bits in IPv4 addresses may also indicate the hierarchy
of well designed networks, but the lower bits will not in most
cases. For example, the subnet 10.1.2.0/24 may not be close
to the subnet 10.1.1.0/24, although they are very close to each
other in their network addresses, as shown in Figure 5.

SiSi SiSi

10.1.1.0/24 10.1.3.0/24 10.1.5.0/24 10.1.2.0/24

A B

3F 4F 5F

Site-1

6F
10.1.7.0/24

Fig. 5. Hierarchy example of IPv4 networks with two buildingsand seven
subnets. The IPv4 addresses do not necessarily represent the hierarchy of
networks.

In order to reduce the network traffic over routers by local-
izing the traffic of relayed packets within each subarea, it is
better for the forward-to groups in each node to correspond to
the actual hierarchical structures. Figure 5 shows an example
of such explicit hierarchical groupings, in which hierarchical
groups do not correspond to network addresses with prefixes
but do represent physical subareas such as the 4th floor and
Building “B”. This may no longer be a binary tree, but the
relaying operations are almost the same as in binary trees.
When the node of 10.1.1.23 in the 3rd floor receives a data
packet as a representative of its site, then it relays the packet

to one of the destination candidates for Building “B”, one for
the 4th floor, one for the 5th floor, one for 6th floor, and so
on.

L1L2

{5F} {B}{4F} {6F}
10.1.1.23

Fig. 6. Non-binary forward-to groups. The number of destinations is one or
more in each group.

Because the higher bits in the IP addresses of the nodes
include no actual hierarchical structure in this case, the boot-
strap (join) and announcement operations should be slightly
modified. At bootstrap time, each new node must be explicitly
informed of the hierarchical line to which it belongs (e.g.,the
lowest 8 bits of the IP address, “3F”, “A” and “Site-1”), the
forward-to groups for each level of the line (e.g.,{B} for “Site-
1”, {4F}, {5F} and{6F} for “A”), and the initial destination
candidate nodes for each group. Next, the new node sends
its hierarchical line information to its destination candidate
nodes so that they can determine the levels of the new source
node, as seen from their location. For example, suppose that
a destination node belongs to the line of “Site-1”, “A” and
“4F”, which is different from the line for the node 10.1.1.23,
then the both lines do match up to “A”, but do not match at
the next level “3F” and “4F”. Therefore the destination node
determines that the new source comes from the level of “4F”
and all packets received from the node should be relayed only
within “4F”.

Also, when a new node is announced, its hierarchical line
information must be carried with its IP address so that already
running nodes can determine which group it should belong to
as a destination candidate. For example, when a new node with
the line of “Site-1”, “B” and “1F” is announced, the node of
10.1.1.23 in Figure 6 may update the destination group “B” to
insert it with or without removing an old one. Thus, the amount
of information increases for the bootstraps and announcements
in handling an explicit hierarchy, but the data packets still
do not need to contain any hierarchical information in their
control channel such as in the packet headers.

2) Shared LAN:Micro-segmentation at the end switches
makes possible good performance of the peer-to-group routing,
since it builds exclusive paths between any pair of end nodes
and there is no interference occurring with any pairs, as long
as the total number of packets does not exceed the capacity
of the switch. On the other hand, for a shared LAN, such as
a legacy 10BASE-T network with repeater hubs, the network
traffic may explode because of the exchange of data packets
and may reach the maximum capacity of the network, because
it is not localized but linear to the square of the number of
end nodes. In order to avoid this situation, the recursive peer-
to-group routing should stop when data packets arrive at any

nodes in the shared LAN, and there the packets should be
shared by using local multicast systems such as the link-layer
multicast of Ethernet.

IV. PERFORMANCEANALYSIS

In this section, we analyze and simulate packet loss rate and
latency in the multicast system based on the recursive peer-to-
group routing, and we show how to design a reliable and stable
multicast system by determining several system parameters,
such as the number of candidates and the recovery rate of
erasure codes.

A. Latency in the Queuing Version of P2G

The propagation paths, especially their length, may vary for
each data packet in the recursive peer-to-group routing, and so
the fluctuation of data arrival time is larger, but the mean of
the path length is shorter than for the conventional fixed-path
multicast systems.

1) G/M/m Queuing Model for P2G:We assume that we
have the full number of2n available nodes in ann-stage
recursive peer-to-group routing system, as shown in Figure2,
to simplify the following discussion, which leads to the worst
case analysis. When the number of total nodes is less than
2n, the propagation paths become shorter, which reduces the
propagation time and the total system time from the root to
receiver nodes. When a node directly receives data packets
from a root, it is at the0-th stage and this happens once out
of 2n times on average. When a node receives packets at thek-
th stage (1 ≤ k ≤ n), then the arrival rate isλ/2n−k+1, where
λ is the data rate that the root produces. For the forwarding
operations, each node is responsible for relaying a data packet
to (n− k) destination nodes with a probability of1/2n−k+1.

Each forwarding operation corresponds to the SERVICE

procedure mentioned in Section III. The destination nodes in
the groupG become active after they receive the data and
complete their own PROCESS in the FORWARD procedures.
Since the sending operations in the fourth step of SERVICE

are performed under(n − k) overlaps with a probability
of 1/2n−k+1, the time distribution for when the destination
nodes receive the data shows exponential characteristics.We
assume that the time required for the PROCESSing of the
data is negligibly small in comparison with the time for
transferring the data, and thus we model each peer-to-group
routing by using aG/M/m queuing system, in which we
also assume that the inter-arrival times are i.i.d. (independently
and identically distributed) with general distribution; that there
arem parallel servers that relay data to next nodes; and that
their service times are i.i.d. with an exponential distribution
and any data transmission takes exponential time with rateµ.
Each stage has different arrival rates, but we suppose a unique
arrival rateλ with the same process, P[X ≤ t] = FX(t) for
the inter-arrival timeX, at each stage in order to simplify the
discussion.

2) K-Step Propagation Paths:The number of relaying
nodes or steps in the propagation paths ranges from one to
n, except for the step from the root to the first node. Note that

the steps indicate the relaying nodes, while the stages indicate
the levels of the forwarding operations. Thek-step propagation
paths are followed with a probability of

(

n
k

)

/2n for each data
packet. The number of stepsk ranges from zero ton, and the
zero step indicates no waiting, since the waiting time from
the root to the first node is negligibly small when the root has
a number of candidates for choosing from as the first node.
Thus, the total waiting time distribution when a data packet
waits for more thant time units in then-stage recursive peer-
to-group routing system is calculated by weighing thek-step
G/M/m queuing system with

(

n
k

)

/2n, as follows:

F c
W (t) = P[W > t] =

1

2n

n
∑

k=1

(

n

k

)

F c
Wk

(t), (3)

where F c
Wk

(t) is the total waiting time distribution for the
concatenation ofk queuing systems waiting for more thant
time units. This is calculated as

F c
Wk

(t) =

k
∑

i=1

(

k

i

)

(

1− F c
W1

(0)
)k−i

F c
W1

(0)i

×Q(i− 1;mµ(1− β)t), (4)

where β is the characteristic root with regard to the inter-
arrival process1, Q(k; t) is the cumulative Poisson distribu-
tion2, and F c

W1
(0) is the probability that an arriving packet

waits for more than zero time units in a single queuing
system3. It should be noted again that the above calculation
defines an upper bound to the actual waiting time due to the
assumption that the system is full of available nodes, and that
the inter-arrival rateλ is higher than the actual rates.

The total service time follows thehyper n-step Erlangian
distribution, in which(k+1)-step paths are weighed by

(

n
k

)

/2n

for 0 ≤ k ≤ n. The probability distribution that a data packet
stays more thant time units in the system is calculated by

F c
S(t) = P[S > t] =

1

2n

n
∑

k=0

(

n

k

)

Q(k;µt). (5)

1The characteristic rootβ satisfiesβ = f∗

X
(mµ(1− β)), wheref∗

X
(s) is

the Laplace-Stieltjes transform ofFX(t).
2The cumulative Poisson distribution is

Q(k; t) =

k
∑

i=0

ti

i!
e−t

3It is calculated by
F c

W1
(0) =

am

1 − β
.

wheream is the probability that each arrival seesm packets in a stage. It is
calculated by

am =

[

1

1 − β
+

m
∑

j=1

(m

j

) 1

(1 − γj)Cj

m(1 − γj) − j

m(1 − β) − j

]

−1

,

where

γj = f∗

X(jµ) and Cj =

j
∏

i=1

γj

1 − γj

.

The mean service time isS = (n + 2)/(2µ), which is half of
the simple(n + 2)-step Erlangian distributions.

 0

 2

 4

 6

 8

 10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

95
-t

h
pe

rc
en

til
e

sy
st

em
 ti

m
e

utilization factor per server

the number of servers (or candidates): 1
2
4
8

Fig. 7. The 95th-percentile system time of the 8-stage recursive peer-to-
group routing system. TheM/M/m queuing system is assumed for each
P2G routing. The vertical scale is normalized by(n + 2)/µ.

3) System Time Distribution of the Queuing P2G:The
latency of data packet arrivals is characterized by the system
time distribution, which is calculated by the convolution of the
waiting time and service time, as follows.

F c
T (t) =

∫

∞

0

F c
W (t− x)fS(x)dx, (6)

where fS(t) is the PDF of the service time. Figure 7 plots
the 95th-percentile system time against the utilization factor
per server, where we assume Poisson arrivals for an 8-stage
recursive peer-to-group routing system and use numerical inte-
gration. It shows cases for 1, 2, 4, and 8 servers, respectively,
where the vertical scale is normalized by(n + 2)/µ. For
example,(n+2)/µ time units allow us to receive 95% of the
packets under utilization 0.5, when each peer-to-group routing
has eight servers (i.e., candidates). Even for a single server,
2(n + 2)/µ time units cover 95% of the packets, which is
scalable with the total number of nodes asn = log N .

B. Loss and Recovery

Packets that do not arrive in time should be handled as
lost packets. In this section, we refer to loss recovery at the
client sides when using FEC and present how to control the
unrecoverable loss rate. The mean of data packet loss for the
interval of [T0, T0 + L] is calculated by

l =

∫ T0+L

T0

F c
T (t)dt. (7)

Denoting the number of packets in a code block asB and
redundant packets asR, the code rate isλ′ = λB/(B − R).
Each receiver client can recover up toR lost packets in a FEC
block. Suppose there is a buffer to handle an FEC block (L =
B/λ′) and to hold some extra packets (T0), then the mean
l is calculated for lost packets in the FEC block. Assuming

that packet loss process is completely random and it follows
a Poisson distribution,P (i;T) = T i/(i!)e−T , then the final
loss rate or unrecoverable loss rate is calculated by

ǫ =

∞
∑

R<i

P (i; l). (8)

as the sum of the possibilities of unrecoverable packets.

TABLE I

THE LOSS RATES AFTERFEC IS APPLIED.

(B, R) T0 = 0 T0 = 8/λ′ T0 = 16/λ′ T0 = 32/λ′

(8, 1) 7.7 × 10−1 6.1 × 10−1 2.6 × 10−1 3.0 × 10−3

(16, 2) 8.7 × 10−1 5.9 × 10−1 1.4 × 10−1 1.3 × 10−4

(32, 4) 7.4 × 10−1 2.7 × 10−1 1.4 × 10−2 7.3 × 10−8

(64, 8) 1.9 × 10−1 1.0 × 10−2 1.8 × 10−5 2.6 × 10−15

Table I shows the loss rates after FEC is used for an 8-stage
and 4-server recursive peer-to-group routing system, supposing
that the utilization factor per server is 0.6, which means a
relatively high load. For example, the unrecoverable loss rate
can be less than10−7 (i.e., the column of7.3 × 10−8) by
introducing a lookahead buffer in which the system holds a
32-packet FEC block with four redundant packets and another
32 recent packets before processing them. Suppose that the
original data rate isλ = 16 [packets/sec], then the latency
is 64/λ′ = 3.5 [sec], which may be acceptable for one-way
broadcast applications.

It should be noted that the loss rate becomes higher when
the packet loss occurs not at random but in a burst, and/or
when the forwarding processes do not follow the exponential
distribution.

C. Latency in the Blocking Version of P2G

One of the alternative implementations is a blocking system
which does not queue, but blocks data packets until the
downstream nodes are ready to accept them. This is espe-
cially desirable when the data rate should be automatically
determined by the service rate in the system. In other words,
when the data rate should be at the maximum rate that the
system offers.

p1

p2

p3

T1

T2

T3

T4

T5

Fig. 8. The forwarding operations synchronized in layers not only for each
data packet but also between data packets.

Figure 8 shows a possible situation when thei-th forwarding
operations are synchronized in thei-th stages for each data
packet and also the stages are synchronized between the data
packets with one stage shifted. In each time slot (e.g.,T3),
no i-th forwarding operations conflict with each other, and so
there should be no large network delays due to congestion in
the recursive peer-to-group routing. The nodes send or receive
n data packets at maximum, and one packet on the average.
The number of stages that each data packet takes ranges from
one ton + 1, and its mean isn + 1/2n, since it takesk +
1 stages with the probability of1/2n−k+1 for 0 < k ≤ n,
and one stage with1/2n. In the blocking version, the shift
against the previous data packet dominates the data rate, and
it is automatically determined by the activities of the receiver
nodes.

The simulation results of the blocking version of recursive
peer-to-group routing systems are shown in Figure 9. This
shows the three cases of 4, 6, and 8 stages with four servers
(or destination candidates). The vertical scale indicatesthe
mean system time until the nodes receive the data packets after
the root transmits them, and it is normalized by(n + 2)/µ,
where1/µ is the mean time for data transfer between nodes.
We assume that it follows the exponential distribution. The
horizontal scale indicates the data rate at which the root
transmits data packets, and it is normalized by1/µ. For the
lower data rate, the mean system time is around 0.5, as well
as in the queuing version. This gradually increases around the
data rate 1.0, and finally it reaches the exponential value for n,
that is, it becomes linear to the total number of nodesN , at the
maximum data rate that the system offers. This is because the
entire system buffers a number of data packets that is linearto
N when the data rate is high, and thus the time difference from
when the root transmits data packets until the nodes receive
them becomes linear toN . The fluctuation of data arrivals
is also linear toN . However, this is not a problem for the
applications that do not require real-time packet by packet
connections, such as file transfers, because they eventually
receive all of the data and finish. In addition, when the total
number of data packets is less thanN , the system time does
not exponentially increases but it is scalable against the large
N .

The existence of single points of failure remains as a
serious drawback. The whole system may stop due to one or
more nodes having unexpected problems. The use of multiple
candidates does not work well because one or more nodes
will be stuck in the final stages and the undesirable situation
propagates towards the earlier stages. One of the possible
solutions is to remove the troubled groups from the routing
when all of the candidate nodes belonging to them have been
busy for more than a predefined timeout period. When one
or more of the nodes become available again, the groups can
be reactivated. The system time or latency may increase when
timeout occurs, but this may be acceptable for applications
that have no predefined data rates but which need the highest
throughput possible, such as file transfers.

TABLE II

COMPARISON TO THE FIXED-PATH APPROACH

simple fixed tree P2G

forward traffic nλ, (n − 1)λ, ..., λ, 0 < λ

latency 1, 2, ..., n + 1 1 + n/2

stability - single point of failures - alternative destinations
- static tree optimization - dynamic tree optimization

scalability control centralized at a root node control decentralized to receiver nodes
- global error recovery (receiver-based ARQ) - local error recovery (sender-based re-route)

throughput up to bandwidth ∝ m/RTT

 0

 2

 4

 6

 8

 10

 0 0.5 1 1.5 2

m
ea

n
sy

st
em

 ti
m

e

data rate

8-stage system
6-stage system
4-stage system

Fig. 9. Simulation results of the blocking version of recursive peer-to-group
routing systems. The vertical and horizontal scales are normalized by (n +
2)/µ and1/µ, respectively.

V. NOTABLE CHARACTERISTICS ANDDISCUSSIONS

In this section, we summarize and discuss more about the
scalability and stability issues and other important charac-
teristics followed by open technical issues. Table II shows
the summary of the discussions below. An implementation of
the P2G for streaming can be found at the IBM alphaWorks
site [2].

A. Stability

As long as each node correctly maintains one or more
active destination nodes in all of the forward-to groups, the
propagation paths always exist and the delivery succeeds
in a stable way. When there are no available nodes under
some forward-to groups, they obviously need no destination
nodes. The announcement of new receiver nodes and the re-
announcement for replenishment of the departed nodes will
provide new destination candidates at each node, as described
in Section III. Thus, the multiple candidates and announcement
have an important role for keeping the propagation stable
under dynamic membership changes.

The activities of destination nodes are measured by using
acknowledgments that they have returned soon or not. The
nodes which take a longer time to return acknowledgments

are implicitly treated as lower performers, and they are chosen
as the destinations less times. This optimizes the propagation
trees in that lower performers do not appear upstream often but
stay downstream in the trees most of time. Thisdynamic tree
optimizationalso works when a receiver node’s performance
temporarily changes, which is very likely to occur because the
nodes are not dedicated to relaying data but they have other
processes such as reading e-mail.

B. Scalability

Each receiver node maintainsO(log N) peer nodes, where
N is the total number of the running receiver nodes, since each
of the forward-to groups maintains a constant number of peer
nodes and the number of groups for each node to maintain
is O(log N). Each node receives data packets at the original
data rate and forwards some of them at almost the same rate.
Thus, receiver nodes work in a scalable manner relative to the
total number of available nodes.

The announcement operations are also scalable as new
receiver nodes initialize them in a decentralized way and the
announcement is propagated by using the recursive peer-to-
group routing as well as data packets.

The root’s acceptance of a new receiver nodes takes
O(log N) time, as mentioned in Section II-D. Choosing a first
node is also done inO(log N). The root node is responsible
for maintaining all of the receiver nodes, but it may scale well
because node-related calculations are minimal. Even so, ifthe
join rate is very high, the root node may exhaust its computing
resources. To avoid this situation, the root node should limit
the number of acceptances in a unit time (a moderate join
rate). On the other hand, a node departure triggers the re-
announcement initialized by and centralized at the root, and
so if the node departure rate is very high, the re-announcement
may not be performed in time, and as a result, some paths are
temporarily broken and some packets will be lost. Assigning
multiple candidates in each forward-to group improves this
situation but still may not overcomecatastrophic node losses,
as when most of the receiver hosts leave at the same time.

Error recovery is initiated by the sender side to re-route
the sent packets for which no acknowledgments have been
returned. Thus, it is decentralized and locally handled in
each node, and so it scales very well in comparison with

receiver-based Auto Repeat Request (ARQ), which is a global
operation and does not scale well.

C. Throughput

The dynamic path determination is based on the acknowl-
edgments returned from the destination nodes, and so the
throughput is dominated not only by bandwidth and network
congestion but also by the round trip time (RTT). That is,
it depends on network distance in inverse proportion to the
RTT. However, since each node including the root transmits a
data packet to multiple destination nodes, the actual throughput
becomes much higher than for a single fixed destination. For
example, the root transmits data packets at the data rateλ to
N receiver nodes with no duplicates, and thus the throughput
required for each receiver isλ/N , which is much less than the
original data rate. This is the same for the relaying nodes. For
example, when many nodes belong to each of two segments
that are located far apart, data transmission is not performed
from a certain fixed node in one segment to another node in the
other, but it is performed between two or more nodes in each
segment with no data duplicates, and thus it may show higher
performance than the conventional fixed path approaches.

D. Other Technical Issues and Possible Solutions

1) IDs and Hierarchy: The recursive peer-to-group rout-
ing relies on the node IDs which represent the hierarchical
structure of receiver nodes in the network topology. IPv4/IPv6
addresses can be used as the IDs, but they do not necessarily
correspond to the whole network topology, especially in the
lower bits of addresses, as mentioned in Section III-E. The
P2G routing still works in such a case, but the traffic for
relaying will increase and may impact the network. The
explicit ID structuring by hand which represents the actual
network topology works well up to company scales, but not
for the Internet scale.

When a subnet is large and consists of several high-
performance bridges and potentially a large number of nodes
(e.g., 4,096), IP addresses will not work well as the IDs,
because they do not always represent the underlying topology.
In this case, we need another ID system, or must resort to link-
layer multicasts, after data packets arrive at any of the receiver
nodes in the huge subnet (the nodes which have received the
data packets become senders of the multicast).

When receiver nodes have multiple network interfaces (i.e.,
multi-homed), we may see ambiguity on IDs for a single node,
but this situation can be resolved by specifying the interface
explicitly.

2) Scalability and Availability of Root Node:From the
view point of data traffic, the root node scales very well
for a number of receiver nodes because of the peer-to-group
transmission with no duplicate data. Redundant data packets
for error correction and acknowledgments returned from the
receiver nodes are smaller than the original data, and so the
root’s workload scales also for handling them. On the other
hand, the root is a single special node (1) to accept new
receiver nodes, (2) to maintain a list of all receiver nodes,

and (3) to trigger re-announcement to compensate for the
departed nodes, as discussed in the previous sections. For
the first issue, limiting the number of acceptance in a unit
time helps the root avoid exhausting its computing resources.
The second issue depends on the size of memory resources
in a linear way, and so it may still scale up to thousands of
receiver nodes. For the third issue of re-announcement, since
the remaining receiver nodes are able to announce themselves,
it should be not necessary for the root to handle the departure
events of receivers except for keeping the list up-to-date,but
the self-announcement by receiver nodes might cause another
scalability issue in terms of traffic.

As the root node is also a single point to provide data
packets, if it fails, then the whole system stops. In order to
avoid this single point of failures, we can introduce two or
more root nodes, each of which separately and independently
maintains the whole list of receiver nodes, where asource
serverprovides data packets to the root nodes with no dupli-
cates. The source server is a single meta node but is stateless
and simple, and so this configuration would help the whole
system be more stable and robust to the failures in the root
nodes.

3) Inconsistent Overlay Network:In the recursive peer-to-
group routing, data flow is not one-way but uses bi-directional
propagation. For example, since firewalls usually inhibit out-
side nodes from accessing inside ones, no traffic comes from
the outside to the inside, which is an inconsistent situation
for overlay networks and causes packet losses for the inside
nodes. In order to avoid such inconsistent situations, we may
need to limit service areas by using explicit restrictions on the
hierarchy.

Once a node accidentally takes one or more peer nodes away
from its destination candidates, the destination peer nodes
may no longer receive data directly from the source node.
However, they still have chances to receive data from “near”
peer nodes, that is, via other paths. Even in such situations,
this may cause inconsistencies in the overlay networks. Re-
announcement of the destination nodes recovers to a consistent
network state, as long as the source node adds them again after
the second announcement. Note that all of the nodes are able
to announce themselves to the peer-to-group network, and this
is an decentralized operation. This would be an easy but final
resort to recover potential paths towards the nodes.

4) Complete Error Recovery:Any lost packets must be
recovered for any applications that need the complete set of
data packets to reproduce the original data. Any feedback
channels such as Auto Repeat Request (ARQ), in which a
number of end nodes ask a single root to resend various
lost packets, would break the scalability of the system. A
combination with erasure codes with high redundancy (R ≫
B − R), such as Tornado codes [6], will work well with
any multicast protocols and systems, while priority coding[9]
works well for applications that allow distortions up to some
extent.

VI. CONCLUSIONS

This paper presented a new application-layer multicast tech-
nique, recursive peer-to-group routing, in which data delivery
paths are not fixed but change dynamically and frequently even
when no failures occur at receiver nodes. Since it assigns no
fixed roles to any nodes and makes them work on the basis of
equal responsibility, the whole system is robust to membership
changes while minimizing errors and avoiding single points
of failure. Determining multicast paths is decentralized and
distributed to end nodes. It also offers automatic and rapid
adaptation of delivery routes to the non-uniformity and tem-
porary fluctuations in host performance.

In order to address scalability issues for multicast, we ex-
ploit the network hierarchy and introduce hierarchical groups
as layered destinations in each node. The network hierarchy
and layered groups never change during a multicast service,
while membership may change in each layered group. Each
node independently handles the membership changes, and this
is scalable. However, a root is responsible for accepting and
maintaining new nodes when they join in the service, which
may not scale for a large number of receiver nodes.

Analysis of network traffic is discussed in terms of uplink
and downlink stresses at each node and at each hierarchical
segment in the network. The downlink stress is always the
same as the original data rate at any hierarchical levels and
the uplink stress is close to but less than the data rate when the
hierarchy is symmetric and balanced. This indicates that net-
work traffic is well localized when the hierarchy matches the
actual network topology. Another analysis on latency and loss
rate was discussed. This was based on concatenated queuing
systems with multiple servers (i.e., destination candidates), in
which exponential service time is assumed to model network
transmission. According to this analysis, we can control the
latency and final loss rate based on the offered load, the
number of destination candidates, the number of stages in the
concatenations, and the recovery rate of the erasure codes.We
also presented a blocking system that does not queue but waits
until destinations are ready, and our simulation shows thatit
allows the maximum throughput that the system offers while it
also works well for near-realtime applications with predefined
data rates, such as video and audio streaming systems.

REFERENCES

[1] RFC2460: Internet Protocol, version 6 (IPv6) specification, 1998.
[2] http://www.alphaworks.ibm.com/tech/p2g, 2005.
[3] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application

layer multicast. InProc. ACM SIGCOMM, Aug. 2002.
[4] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan. Resilient

multicast using overlays. InProc. ACM SIGMETRICS, June 2003.
[5] J. Blomer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and D. Zuck-

erman. An xor-based erasure-resilient coding scheme. Technical report,
International Computer Science Institute, Berkeley, California, 1995.

[6] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain
approach to reliable distribution of bulk data. InProc. ACM SIGCOMM,
Sept. 1998.

[7] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh. SplitStream: High-bandwidth content distribution in a coop-
erative environment. InProc. IPTPS, Feb. 2003.

[8] M. Castro, M. B. Jones, A.-M. Kermarrec, A. Rowstron, M. Theimer,
H. Wang, and A. Wolman. An evaluation of scalable application-level
multicast built using peer-to-peer overlay networks. InProc. IEEE
INFOCOM, Apr. 2003.

[9] P. Chou, V. Padmanabhan, and H. Wang. Resilient peer-to-peer
streaming. Technical Report UCB/CSD-01-1141, Microsoft Research,
Redmond, WA, Mar. 2003.

[10] Y.-H. Chu, S. G. Rao, and H. Zhang. A case for end system multicast.
In ACM SIGMETRICS, June 2000.

[11] S. Deering. Multicast routing in internetworks and extended lans. In
Proc. ACM SIGCOMM, Aug. 1988.

[12] P. Francis. Yoid: extending the multicast internet architecture. preprint
available from http://www.yallcast.com, Sept. 1999.

[13] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, and J. W.
O’Toole, Jr. Overcast: Reliable multicasting with an overlay network.
In Proc. OSDI, Oct. 2000.

[14] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: High
bandwidth data dissemination using an overlay mesh. InProc. ACM
SOSP, Oct. 2003.

[15] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI: An
application level multicast infrastructure. InProc. USITS, Mar. 2001.

[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
scalable content addressable network. InProc. ACM SIGCOMM, Aug.
2001.

[17] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. Lecture Notes
in Computer Science, 2218, 2001.

[18] A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel.
SCRIBE: The design of a large-scale event notification infrastructure.
In Networked Group Communication, 2001.

[19] M. Yang and Z. Fei. A proactive approach to reconstructing overlay
multicast trees. InIEEE INFOCOM, 2004.

[20] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location androuting. Technical
Report UCB/CSD-01-1141, UC Berkeley, Apr. 2001.

[21] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. Kubiatowicz.
Bayeux: An architecture for scalable and fault-tolerant wide area data
dissemination. InProc. NOSSDAV, June 2001.

APPENDIX

A. Derivation of Waiting Time Distribution

The PDF of the waiting time distribution of a single
G/M/m system is

fW (t) = (1− a)δ(t) + abe−bt, (9)

and its Laplace transformation is

f∗

W (s) = (1− a) +
ab

s + b
, (10)

where

a =
am

1− β
, (11)

b = mµ(1− β) (12)

If the number of stepsi ranges from zero tok and it is
weighted by

(

k
i

)

/2k, then the Laplace transform of thek-step
G/M/m system is:

f∗

Wk
(s) =

{

(1− a) +
ab

s + b

}k

, (13)

=

k
∑

i=0

(

k

i

)

(1− a)k−iai

(

b

a + b

)i

, (14)

and thus the waiting time of thek-stepG/M/m system is

FWk
(t) = 1−

k
∑

i=1

(

k

i

)

(1− a)k−iaiQ(i− 1; bt) (15)

Finally, the total waiting time distribution of the hyperk-step
G/M/m system is

f∗

W (s) =
n

∑

k=0

1

2n

(

n

k

) {

(1− a) +
ab

s + b

}k

, (16)

FW (t) = 1−
1

2n

n
∑

k=1

(

n

k

)

F c
Wk

(t) (17)

B. Derivation of Service Time Distribution

If the number of stepsi ranges from one to(n + 1) and is
weighed by

(

n
i

)

/2n, then the Laplace transform of the hyper
k-step Erlangian process is

f∗

S(s) =
1

2n

n
∑

i=0

(

n

i

) (

µ

s + µ

)i+1

, (18)

and the total system time is

FS(t) = 1−
1

2n

n
∑

i=0

(

n

i

)

Q(i;µt). (19)

The mean system time is then calculated as follows.

S =

∫

∞

0

F c
S(t)dt, (20)

=
1

2n

n
∑

k=0

(

n

k

)

k + 1

µ
, (21)

=
1

µ
+

n

2µ

n
∑

k=1

(

n− 1

k − 1

)/

2n−1, (22)

=
n + 2

2µ
. (23)

C. Mean Length of Stages in Recursive P2G Routing

The mean length of stages from a root in then-stage
recursive peer-to-group routing is

an = 1/2n +

n
∑

k=1

(k + 1)/2n−k+1, (24)

which is converted into

a0 = 1, (25)

an − an−1 = 1−
1

2n
, (26)

and thus the mean is simplified to

an = n +
1

2n
, (27)

which approachesn asn increases.

