
January 11, 2006
RT0638
Computer Science; Human-Computer Interaction; Web Service 10 pages

Research Report
Easy SOA: Rapid Prototyping with Web Services for End
Users

Takayuki Yamaizumi, Takashi Sakairi, Masaki Wakao,
Hideaki Shinomi, Samuel Adams
IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It
has been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or
copies of the article legally obtained (for example, by payment of royalities).

Easy SOA: Rapid Prototyping with Web Services
for End Users∗

Takayuki Yamaizumi
Tokyo Research Laboratory,

IBM Japan
1623-14 Shimotsuruma,

Yamato,
Kanagawa, Japan

zumi@jp.ibm.com

Takashi Sakairi
Tokyo Research Laboratory,

IBM Japan
1623-14 Shimotsuruma,

Yamato,
Kanagawa, Japan

sakairi@jp.ibm.com

Masaki Wakao
Yamato Software Laboratory,

IBM Japan
1623-14 Shimotsuruma,

Yamato,
Kanagawa, Japan

wakao@jp.ibm.com

Hideaki Shinomi
Yamato Software Laboratory,

IBM Japan
1623-14 Shimotsuruma,

Yamato,
Kanagawa, Japan

shinomi@jp.ibm.com

Samuel Adams
IBM Research

4400 Silicon Drive
Durham, NC 27713

ssadams@us.ibm.com

ABSTRACT
Wiki and blog which enable end users to do their works
only with a Web browser, since those tools do not require
end users to learn some special skills about HTML. Some
of end users have also involved in “End-user programming”,
by writing some tools to change a behavior of an application
to make their personal works more effectively. However,
these tools are too difficult to be shared with other people
generally, because a flexible application tends to be difficult
to learn. Thus, an application development tool for end
users should be easy to learn. It should not require neither
to install more special additional softwares nor to add more
special configurations on their personal computers.

This paper describes a rapid prototype tools for SOA
based on Ad hoc Development and Integration Environment
for End Users (ADIEU). ADIEU is a development tool for
end users and works on a web browser by communicating
with ADIEU server without installing any special develop-
ment environment on a personal computer. With ADIEU,
end users can prototype their application rapidly by placing
some cards onto a development environment constructed on
a Web browser and adding some connections between the
cards. We also propose a prototype development model for
Service Oriented Architecture (SOA) as well as Web appli-
cations and Web Services with ADIEU. The proposed devel-
opment model consists of two parts: (i) End users import
WSDL files from Web Services to represent methods defined
in Web Services as cards on ADIEU environment. (ii) They
place some cards and define the relationship between them

∗(Produces the WWW2006-specific release, location and
copyright information). For use with www2006-
submission.cls V1.4. Supported by ACM.

Copyright is held by the author/owner(s).
WWW2006, May 22–26, 2006, Edinburgh, UK.
.

on a Web browser. Because this environment model is quite
simple and easy to be understood by end user, it will also
encourage end users to adopt the SOA (Service-Oriented Ar-
chitecture) by combining Web services with simple interfaces
in the distributed environment.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous; D.2 [Software]:
Software Engineering; D.2.8 [Software Engineering]: Met-
rics—complexity measures, performance measures

General Terms
Service Oriented Architecture, End-User Programming

Keywords
Web Services, Service Oriented Architecture, Development
Tool, End-User Programming

1. INTRODUCTION
Many end users edit and update their document with tools

such as wiki[5, 6] and blog[4]. They also use these tools to
communicate with each other only with a Web browser, since
those tools do not require end users to learn some special
skills such as HTML. Furthermore, they do not need to in-
stall any server application if they decided to use wiki and
blog applications provided by an Internet service provider.

Some of end users have also involved in “End-user pro-
gramming”, by writing some tools to make their personal
work more effective. These tools are written in Visual Ba-
sic, Excel Macro, and the other scripting languages. How-
ever, most of those tools are very difficult to be used and
to be maintained by other people, since most of the end
users write their applications without write their specifica-
tions and they often have to learn about applications on

which the tools would be run. Thus, the other users have
to examine how the application works by running it and by
observing how it works. Additionally, when end users ask
application developers to develop some applications for their
business with high quality and excellent user interfaces, end
users often feel difficulty to explain to application developers
what they want to direct a computer through the applica-
tion, because their specification has become too large and
too complex to understand for end users in general. This
communication gap becomes increasingly prominent in web
application development, because web application develop-
ment usually starts from ill-structured and vague require-
ments[2, 3]. This communication gap also may cause a delay
in development, which becomes unacceptable because devel-
opers are required to develop and to deliver applications in
short period of time. Consequently, a collaboration method
which involves end users in prototyping is needed to develop
applications which end users want faster.

First, this paper describes Ad hoc Development and In-
tegration Environment for End Users (ADIEU)[1]. ADIEU
is a development tool for end users and works on a web
browser by communicating with ADIEU server without in-
stalling any special development environment on a personal
computer. as shown in Figure 1 With ADIEU, end users can

Figure 1: Sample snapshot of ADIEU

prototype their application rapidly by placing some cards
into a sheet which is displayed in a web browser and rep-
resents an application. Each card has some input fields,
so that relationships between the cards can be also defined
through the fields. ADIEU also has a functionality to import
external Web Services to create more cards to represent the
imported Web services to enrich its assortment. Since Web
service method can be imported by reading WSDL (Web
Services Definition Language) files [19] and their interface is
automatically generated on a card, connections between a
generated card and the other cards are defined.

Second, we also propose Easy SOA, which is a prototype
development model for Service Oriented Architecture (SOA)
as well as Web applications and Web Services with ADIEU.
SOA is an emerging methodology and a framework to con-
struct an enterprise system mainly with Web services, but

it can hardly understand and confirm for end users how it
works. The proposed development model consists of two
parts as follows:

• End users import some WSDL files from Web Services
to represent Web Services methods as cards on ADIEU
environment.

• They place some cards and connects between them on
a Web browser.

Because this environment model is quite simple and easy to
be understood by end user, it will also encourage end users
to adopt the SOA by combining Web services with simple
interfaces in the distributed environment.

The rest of this paper is organized as follows: Section 2
describes the motivations for this paper. ADIEU is intro-
duced in Section 3, followed by an explanation how ADIEU
imports external Web service in Section 4. Section 5 illus-
trates our “Easy SOA” architecture and a development sce-
nario based on SOA, followed by a “Historical Stock Quote
in any currency units” development example. Finally, in
Section 6, we discuss about our work and related works.
The conclusion and future works are summarized in Section
7.

2. MOTIVATIONS
Many end users write some tools to make their personal

work more effectively. However, most of those tools are very
difficult to be maintained by other people, since an useful
application tends to be difficult to learn and they cannot
be expected to tolerate[10]. Additionally, when end users
ask application developers to develop some applications for
their business, such as a system to handle transactions, end
users often feel many difficulties to explain to application de-
velopers what they want to direct a computer through the
application, because their specifications are too large and
too complex to understand for end users. As a result, de-
velopers illustrate a different specification as end users want
to use. This communication gap and misunderstanding of-
ten mislead application developers to construct a different
system from what end users had asked them to construct.
The developer would try to modify the system to conform
with end users’ specification in some times. This iteration
may also cause a delay in development, which becomes unac-
ceptable since developers are asked to develop and to deliver
more complex applications than those of previous version in
a shorter period of time. For this reason, some prototyping
tools are needed to encourage end users to participate in a
system design.

Therefore, many software tools have developed for end
user to design and to develop applications [31] by selecting
items from graphical menu, placing text fields on a win-
dow, and by doing the other various graphical operations.
However, to use these applications, end users have to install
these applications on their personal computer and to learn
how to use them. Some of them feel difficulies about the
installation and usage. If an end user ever learns how to
use them successfully, it is more difficult to find an usable
component or user interface because those components or
user interface must be developed by an user who has more
skill, so that an end user must find such users, that is al-
most impossible. Therefore these tools cannot be adopted
as development tools for end users. Consequently, there is

still some technical challenges in delivering a graphical de-
velopment environment for end users and non-professional
programmers. The card-based programming model is one
of the solution, because it breaks down a traditional pro-
cedural programming language typically rendered and lines
of text into separate interfaces for each effective function or
”line of code”. These separate interfaces become a kind of
Integrated Development Environment (IDE) for each state-
ment in a program, which provide a number of advantages
in providing statement-specific guidance, help, and features
such as activity logging and control flow-based execution
tracing. Since each card represents a statement in the pro-
gramming language of ADIEU, new cards, whether devel-
oped in ADIEU itself or in JavaTM,1, effectively provide the
ability to extend and reshape the programming language to
better fit the problem domain which users concern.

On the other hand, some Web services are available to
public through the Internet[12, 18, 13], although the num-
ber of public Web services has not increased dramatically.
They are quite useful for skilled developers who can im-
plement the interfaces for Web services with stub code be-
cause these Web services prevent them from “reinventing the
wheel”. Likewise, the public Web services can be accessed
by end users who have neither any programming skill nor
deep understanding of their specifications through the in-
terfaces generated from WSDL files [19, 22]. However, since
some of the Web services require a specifying a complicated
data structure for the input data, users must have a deep
understanding about the specifications of the Web services
if they want to handle complicated data, and this should
not be required to end users. Web services have become the
open standard and can be used widely. Once a development
tool which can import a WSDL file and utilize Web service
methods described in the WSDL file, an user can develop
an application with less cost and time to learn. ADIEU can
provide simpler interfaces for Web services by representing
a Web service method as a card and its data structure is
displayed as a tree view.

Another motivation comes from SOA. SOA is a frame-
work and an emerging methodology to construct enterprise
systems [8], as well as to integrate the existing systems into
a larger system. Web services now play an important role
in SOA because most SOA systems will be constructed by
combining Web services. However, since current tools to
construct SOA needs huge resources to a personal computer
and lacks a functionality to examine how a model defined
on a tool actually works. Thus, rapid prototyping tool for
SOA, i.e. Easy SOA will become important to construct
an IT infrastructure. Users can define the relationships be-
tween any points in data structures which are used as inputs
and outputs of a Web service even if their data structures
are very complicated, as shown in Section 5.2.

3. AD HOC DEVELOPMENT AND INTE-
GRATION ENVIRONMENT
FOR END USERS (ADIEU)

In this section, we will show the overview of ADIEU. Then
we introduce a typical scenario to develop a Web application
and a Web Service with ADIEU.

1Java and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or
both.

Figure 2: ADIEU architecture

3.1 ADIEU Overview
ADIEU is the programming environment which operates

within the Internet Explorer Web browser. Its screenshot
example is shown in Figure 1. ADIEU can be installed on
WebSphere Application Server or Apache Tomcat. Users
can develop and deploy Web applications and Web services
without installing any software onto their personal com-
puters. By using this tool, end users can develop Web
services and Web applications without any programming
knowledge, although this environment is written in Java,
JSP, and JavaScript[15]. An application on ADIEU en-
vironment consists of two parts: sheet and card. These
parts correspond to an application and a logic, respectively.
Users can develop these applications by using collections of
cards, each of which acts like single-function applications in
a form-based, desktop-like environment. The data fields in
cards can be used like cells in a spreadsheet and can con-
tain either data or an expression that determines the data
at run time. Cards can also run other cards; this capability
provides the basic flow control necessary for programming
concepts such as decision branching, sequences, and loops.
With this capability, ADIEU can be regarded as a prototyp-
ing tool, because an user can examine how their application
logic actually works on a Web browser.

Figure 2 shows the architecture of ADIEU. We developed
user interfaces including cards, sheets, and the other com-
ponents in Dynamic HTML(DHTML), JavaScript, JSP and
Java. We also developed a persistent socket-based communi-
cations channel between the client interface and the ADIEU
server. When users launch the ADIEU environment, an ap-
plet which creates this communication channel between a
Web browser and the ADIEU server is download from the
Web server to client automatically, so that an user do not
need to take an extra work for that. This implementation
provided a high degree of interactive response for the in-
terface without requiring full redisplay of the programming
environment. It also allows the user to interactively and in
parallel execute multiple card actions.

Users can access their applications as Web applications
by clicking the link on Web Page Card. With Web Ser-
vice Card, users can also their applications as Web services
without any special operations to deployment. Because all
of informations about ADIEU environment stored in a Web
application server, Users can develop Web application and
Web services from any modern personal computers with a

Web browser.

3.2 Development Scenario Example
Suppose we asks end users to develop a Web application

and a Web Service which calculates a summation of two
numbers. End users can develop their application with adieu
by following steps.

1. Users specify the URL which points the ADIEU envi-
ronment.

2. Users creates a sheet for this application and give it a
name.

3. Users open the sheet and place two Variable Cards.
The ADIEU environment assigns their card IDs, such
as A and B. End users can create Variable Card by
selecting from menu. Variable Card has only one field
(variable1) when the card has just been placed on
the sheet.

4. Users place Web Page Card on the sheet and type a
HTML snippet as shown in Figure 3. The ADIEU en-

<h1>Very Simple Calculator</h1>
<hr>
[=A.variable1] plus [=B.variable1] equals to
[=A.variable1+B.variable1].

Figure 3: A HTML snippet example for Web Page
Card

vironment assigns C as its card ID. To refer a value
which is held by a field in the other card, User insert
a special anchor to point the field on the card in the
following format (1):

<card id>.<field name> (1)

For end users’ convenience, this anchor can be inserted
by clicking the “insert variable” button at the right
side of a text area (Figure 4), and the field name can
be selected directly from the menu list. In the example
shown in Figure 4, A.variable is inserted into the html
field.

Figure 4: “Insert variable” button and a menu to
select field

5. Users may confirm here how this application works by
typing some variables in variable1 fields on Variable
Cards. The variables in HTML on Web Page Card are
changed, accordingly.

6. Users click the form button to insert a form into html
field and to create variable1 and variable2 input
fields. This operation may be quite easy for end users,
while expert users may type the same form manually.

7. Users set the values in variable1 field on Variable
Card A and B to =C.variable1 and =C.variable2

respectively. and type A,B to the cardsToRun field on
Web Page Card C. At this step, user can finished the
development of a calculator Web application.

8. To test this application, users simply click the hyper-
link in address field on Web Page Card C to start a
Web browser shown in Figure 5. Users can calculate

Figure 5: Running a Web application developed on
ADIEU environment

with two numbers through this web page.

From this Web application, a Web service can also be
developed by adding Web Service Card on this sheet, and
by adding some fields and configurations as follows:

• Users add Web Service Card, which ADIEU assigns
card ID D.

• Add variable1 and variable2 fields which can store
one integer value for each field by clicking the “Add
field” button at the top of the “Input” fieldset view.

• Add answer field which can store an integer value by
clicking the “Add field” button at the top of the “Out-
put” fieldset view.

• Replace the values in variable1 field on Variable Card
A and B with =D.variable1 and =D.variable2, re-
spectively.

• Type A, B to the cardsToRun field on the Web Service
Card D.

In general, Web service developers confirm the behavior of
this Web application by creating stub application for it, by
generating a Rapid Application Development (RAD) tool to
generate HTML test files. Instead of those methods, ADIEU

users can confirm the behavior of this Web service by itself.
Users can import the WSDL file which defines the Web ser-
vice by selecting “Import New Web Service” menu and by
typing the URL of the Web service, which is displayed in the
wsdl field on Web Service Card, as shown in Figure 6. This
Web service can be tested with the generated card (card E

in Figure 6) by the import. This functionality can be also

Figure 6: Specifying the URL of WSDL in the
ADIEU environment itself

used to import external Web Service. We will discuss it in
the next section.

4. IMPORTING WEB SERVICES INTO
ADIEU

The cards which are available on an ADIEU environment
can be divided into two types. The first one is the type of
the original built-in cards, such as Variable Card, Web Page
Card, Web Service Card and the others. These cards have
one Java class for each card to handle events and data re-
lated to them. However, it is very hard to develop this type
of cards even for a developer. It will only be able to represent
very limited logic, even if these kind of card can be devel-
oped. The second one is the type of the cards whose specifi-
cations are determined when an ADIEU environment reads
WSDL files on remove Web application servers. Users can
use these card to compensate for the gap between the orig-
inal functionality and users’ typical requirements for their
tools. User can import external a Web service through an
ADIEU environment by specifying an URL of WSDL file, as
shown in Figure 6. In this section, we discuss these gener-
ated cards with a sample Web service. This Web service has
BankInfo, UserInfo and AccountInfo classes and BankInfo
class has five methods which are exported as Web service
methods, as illustrated in Figure 7.

4.1 Card Generation Example
ADIEU generate one card for each Web service method.

In the Web service example as illustrated in Figure 7, five
cards are generated, such as addAccountInfo card, addUser-
Info card, getUserInfo card, getUserInfoList card and se-
tUserInfo card. These generated cards completely can be
used in the same way as the original cards. For example,
users can refer some fields in these generated cards from the

Figure 7: Class diagram of a Web service sample
(internal operations are omitted)

other card, and vice versa. After ADIEU imports a WSDL
file which includes the definition of Web service methods, it
parses the WSDL file to extract the data structure, and fi-
nally generates the generic treeview-like interfaces as shown
in Figure 8.

Each cards have treeview-like interfaces with input fields
to help the understanding of an end user about the data
structure, because Web service methods generally handle
complexType data as their inputs and outputs. The number
of fields on the card can be changed if the data include more
than one array of complexType data by clicking the “Add
element” button or “Delete element” button on the card. As
a result, users can easily integrate external Web services and
integrate them into their application. Users can also avoid
additional and hard works which often result in reinventing
the wheel.

Figure 8: A screenshot example of generated cards

4.2 Support for complexType Data
In general, Web service methods are invoked with input

data which are too complex for users to handle[28, 29, 30],
because they must build SOAP [20] messages in the format
which it is acceptable for a Web service. Output data from a
Web service method, written in the SOAP format, are also
too complex for an user to handle, while raw SOAP mes-
sages are useful for developers and programmers, because
they can analyze to debug their software with that message.
Accordingly, users need some tools which can support to
handle both inputs and outputs data.

4.2.1 SimpleType and complexType
The format of a SOAP message is defined in a WSDL file

in the XML schema format[21]. Developers must classify the
data into two types; complex type and simple type which
are called complexType and simpleType in the specification
of XML schema, respectively. ComplexType data include
another complexType data or simpleType data, while sim-
pleType data include neither complexType data nor another
simpleType data. If a data structure defined in a WSDL file
is represented as a tree graph, this tree graph satisfies the
following theorems[27].

Theorem 1. Data in a stem node must be complexType
data.

Theorem 2. Data in a leaf node must be simpleType data
or complexType data which have no child node, i.e. complex-
Type data including no child data.

For this reason, we propose to display the data structure as
tree view, because users can easily distinguish stem nodes
which hold complexType data. Additionally, we define that
an array of complex type consists of two types of stem node;
one is an “element node” which is a stem node representing
an element of an array and included by a “parent node”, the
other is a “parent node” which represents an array of com-
plexType itself. Despite this definition, the above theorems
still hold true if these nodes for an complexType array are
regarded as complexType data. By this definition, an user
can know a data type which is represented as a node.

4.2.2 Serialization and deserializaion model
Because there are some differences between the data mod-

els of all types of SOAP messages, which are RPC/encoding,
RPC/literal and document/literal, although the tree view
model we have proposed is easy for an user to handle, We
have implemented a serializer and a deserializer to fill these
gaps on the top of Apache Axis version 1.1 implementa-
tion[24]. The comparison between ADIEU’s serialization
and deserialization model and Apache Axis’ original serial-
ization and deserialization model is illustrated in Figure 9.
An ADIEU environment handles data with two pairs of seri-
alize and deserializer. The one is the pair which handles any
complexType data, the other is the pais which handles any
arrays of complexType data. This model is different from
Apache Axis’ serialization and deserialization model, sincee
Apache Axis expects a developer to implement and to assign
Java classes to serialize and to deserialize XML type data
and store the relationship between Java classes and an XML
type, and Apache Axis version 1.1 cannot handle relation-
ships if more than one XML type share the generic serial-
izer and deserializer for complexType data. For this reason,

XML Type

Java Class

ComplexType

Serializer

Deserializer

One-on-one mapping
between XML Type
and Java Class

(a) The model in Axis

XML Type

Java Class

ComplexType

Serializer Deserializer

Mapping between
Java class
and XML Type.

ComplexType
array

Serializer/
Deserializer for
ComplexType

Serializer/
Deserializer for
ComplexType array

(b) The model in ADIEU

Figure 9: The comparison of serialization and dese-
rialization model between Apache Axis and ADIEU

ADIEU’s serializer for an complexType array overrides Ar-
raySerializer’s serialize() method in Apache Axis version 1.1
to work an array of complexType data.

4.2.3 Data identification in XPath representation
Once a data structure is represented as a tree graph, users

can point any data included in complexType data uniquely
in XPath format, as shown in Figure 10[14]. To preserve

ComplexType

ComplexType
array

SimpleType

/userInfo

/userInfo/password

/userInfo/accountInfoList

/userInfo/accountInfoList[1]

/userInfo/accountInfoList[2]

/userInfo/accountInfoList[2]/amount

Data representation in XPathData representation in tree graph

Figure 10: The XPath representation of a data
structure in ADIEU

the uniqueness of names between the fields, when there are
more than one card on a sheet and they have the same com-
plexType data structure, users spetify a data node in com-
plexType data in the following format (2):

#{<card ID>.<data name in XPath format>} (2)

Data name in XPath format follows a card ID which in-
cludes the data and the concatenated string is embraced by
curly brackets to coexists with the other expression such as a
mathematical expression by escaping slash characters which
are used the sign of division in a mathematical expression.
Since format (2) may be long in some cases, these data name
in format (2) can be automatically put by clicking “Insert
variable” button to select a suitable field in a menu as shown
in Figure 4.

Figure 11 shows a prototyping example to work with a
Web Service. This application gets the list of users from a
Web service through card A and copy a data node in the
data structure by pointing
/getUserInfoListReturn/UserInfo[1]/accountInfoList

node on the card A in the format (2) from card B. After
an ADIEU environment copies the nodes on card A to card
B, fields on card B to which the data are copied are not
allowed user to modify the data.

Figure 11: Working with an external Web Service
through a generated card

ADIEU can parse SOAP headers and can generate generic
interfaces for an ADIEU user, because some Web services
authenticate users with data in SOAP header and send a
client the result of authentication[12]. SOAP headers can
be handled by the same way as SOAP message bodies can
be handled.

5. PROTOTYPING ON EASY SOA
Users can build an application in a very primitive style

of Service Oriented Architecture, because Web services can
be connected in ADIEU on a Web browser, as we discussed
in the previous section. We now propose to name this Easy
SOA.

5.1 Infrastructure in detail
This architecture is quite simple, as illustrated in Fig-

ure 12. Basically, ADIEU itself is not changed as a sys-

Figure 12: Easy SOA environment

tem, whereas there is a big change in a development sce-
nario. Users import some Web services which provide what
they want to integrate their system. They orchestrate the
Web service methods by defining some relationships between
them with simple sets of mouse operations. Built-in cards
which are supplied with an original ADIEU environment
mainly help the orchestration of the generated cards. For
example, Database Select Card selects some data from a
database by keywords which are served by an external Web
service and passes them to another Web service.

5.2 Development example on Easy SOA: His-
torical Stock Quotes in Any Currency Units

For example, suppose we have decided to construct His-
torical Stock Quotes Web application as shown in Figure 13,
which can serve a stock price on any past days. This Web
application also displays the result in Japanese Yen (JPY)
by calling a Web service which can convert the currency
unit at the rate on the past day to check the benefit which
we gain from our stock. We can construct the service by
following steps:

1. Users import a Web service and generate a card which
can convert a currency unit on any past day[23], and
put a card which represents a suitable method2. ADIEU
environment assigns A as the card ID.

2. Users place Web Page Card (card B) onto the sheet
and create a date field, symbol field and a HTML snip-
pet to display the result on the html field.

3. Users place Assignment Card (card C) to concatenate
Month, Day, Year into one string to fit with the input
field on card A.

4. Users place Variable Card (card D) which multiplies a
foreign exchange rate between U.S. dollar (USD) and
JPY by a stock price

5. Users import another Web service and generate a card
(card E) which can serve a stock price on any past
day[12], and put a card which represents a suitable
method.

2At the time of writing this paper, because there is a limit
in size of string which can hold in a text field on an ADIEU
card, We implement Web service to convert data which are
a part of XML document string to complexType data

6. Users define the relationships between the cards by
typing a sequence of evaluation such as C,A,E.

We can examine how it works at each step in development,
so that we can easily test the application. Figure 13 shows
a typical screenshot after users have been finished the above
steps. There are five cards placed in a Web browser.

By clicking the link on a Web Page Card, Historical Stock
Quotes application has started, as shown in Figure 14.

Figure 13: Screenshot of“Historical Stock Quote”
Web application

Since the foreign exchange Web service provides many ex-
change rates at noon on the specified date and the Historical
Stock Quote Web service provides a stock price at the end
on the specified date, this Historical Stock Quote Web appli-
cation provides a value in rough figure as a result. However,
this value may be still important for end users, because they
sometimes want to check whether their stocks are profitable,
especially if they hold foreign companies’ stocks.

6. RELATED WORK
To develop the enterprise system based on SOA, devel-

opers can define Web services’ behaviors in business pro-
cess with the Business Process Execution Language for Web
Services (BPEL4WS[16], WS-BPEL[17]). BPEL4WS (WS-
BPEL) is one of the core technologies to realize SOA [16,
17]. It is possible to use this to define an executable busi-
ness process which determines the nature and sequence of
Web service interactions. Tool support has been provided
to make the definitions in BPEL4WS easier. However, these
tools are not usable by end users, and developers must have
deep understandings and analyze their business processes
and the interaction of the Web services which the developer
wants to define in the BPEL file. It is also difficult for de-
velopers to examine how it works before the actual system
has been constructed. End users can illustrate what they

want with ADIEU and can share them with developers in
the prototyping and designing phase in development.

In contrast, the most primitive approach to work with
Web services are to implement an application to send SOAP
messages between Web services [20]. Most of the work, es-
pecially the implementations for communication, are eased
by a tool which can generate stub code by parsing a WSDL
file[11]. However, users still must have some programming
skills to work with Web service because the user must code
some user interfaces. Users can develop Web service on
ADIEU environment without writing any codes.

The WSDL file which defines the interface of a Web service
includes an XML schema [21] in which the data structure
for Web service is defined. Hence, a Web interface can be
generated by reading the data structure definitions by read-
ing a WSDL file on the Web service provider [22] and users
can confirm and test the functionality of the methods in the
Web services. However, this test service [22] lacks the func-
tionality to develop an application by defining a relationship
between Web service method.

Fischer et al. discussed which domain should be selected
for end-user development in [26]. They concluded that it
is safe to adapt end-user developments to less complex do-
mains. Thus, the end-user development approach can be
adapted to Web services which are open to the public, al-
though management and security issues still remain to be
solved. End-user programming is recognized as an impor-
tant issue because an interface should be customized to
the need of particular users, although there are likely to
be generic structures, e.g., in an email filtering system [25]
which could be provided as a Web service, because it can be
shared.

Kelleher et al. describe their intensive survey on a Pro-
gramming Environments and Languages for Novice Program-
mers[31]. They mentioned that if the population of people
creating software is more closely match to the population
using software, the software designed and released will bet-
ter match users needs. However, they also proposed that
the people who is familiar with computer science should
encourage novice users to program by breaking mechani-
cal barriers and sociological barriers. We can avoid such
a time-consuming approach with ADIEU, bacause users do
not need any programmings on ADIEU environment.

7. CONCLUSIONS AND FUTURE WORKS
In this paper, we have described ADIEU first, which en-

ables end users to develop Web services and Web applica-
tions with a minimal effort to installation, study and de-
velopment by placing cards on the sheet which is displayed
in a Web browser, as well as by defining relationships be-
tween cards with minimal mouse operations and keyboard
typings. For this reason, we conclude that this tool can be
used most effectively in a prototyping phase of development,
because end users can participate in the design process of
an application development and communicate with develop-
ers about their application with their artifacts on ADIEU
environment. Collaborative development may contribute a
great deal to shorten the development period for application
and to result in great satisfaction for end users. Unlike the
other development tools for end users, ADIEU can import
an external Web service and can generate some cards which
enable end users to integrate them into their own application
on ADIEU environment. Thus, end users can concentrate

Figure 14: “Historical Stock Quote” Web application

on their own works without reinventing the wheel. Because
many Web services can handle a complexType data, gener-
ated cards on ADIEU also can handle them, although we
have defined two pairs of generic user interfaces, serializer
and deserializer for complexType data and an array of com-
plexType data. This approach with generic implementations
is completely different from the other existing approaches
and liberates end users from the maintenance work of Web
client codes for their business.

Second, we also proposed the concept of Easy SOA by con-
necting the interface between cards which represents Web
service methods on a Web browser with simple operations.
XPath representation style for complexType data structure
will provide a starting point to enhance this representation
to a simpler format even if another representation is required
for end users.

We have demonstrated two developed scenario, one is the
very simple calculator Web application and the other is the
Historical Stock Quotes service by orchestrating two Web
services which are deployed by the different organizations.
This indicates that ADIEU environment can be realize SOA
in the primitive manner.

On the other hand, some technical challenges which are
likely to be future works still remain. In this paper, we do
not discuss about the user interface of ADIEU card, espe-
cially whether a tree view is the best interface for complex
type data, because a tree view is used to select a few items
from the huge number of candidates, although most of Web
services may not work if an user gives input data to most
of data nodes. We have solved this problem partially by
adding a functionality to copy a node between the differ-
ent complex type data with simple mouse operation. XPath
presentation of node is a convenient method for a computer,
while it is not for an end user. YAML[32] or another simpli-

fied representation may be a solution, however, the investi-
gation will be one of the important future works. Currently,
ADIEU cannot deploy a Web application and Web Services.
If ADIEU can deploy or export Web application and Web
Services, end users and developer will be able to work closer
in an application development.

8. ACKNOWLEDGEMENT
Dr. Yuichi Nakamura in Tokyo Research Laboratory, IBM

Japan kindly suggested us to write this paper. Dr. Tsutomu
Kamimura in Yamato Software Laboratory also carefully re-
viewed our implementation and suggested us to improve it.
We would like to express our deep thanks to both of them.

9. REFERENCES
[1] Ad Hoc Development and Integration Tool for End

Users (ADIEU),
http://www.alphaworks.ibm.com/tech/adieu

[2] J. Zhang, C. K. Chang, and J. Y. Chang,
“Mockup-driven Fast-Pprototyping Methodology for
Web Requirements Engineering”, Proceeding of the
27th Annual International Computer Software and
Applications Conference (COMPSAC’03), 2003.

[3] Y. Deshpande and S. Hansen, “Web Engineering:
Creating a Discipline among Disciplines”, IEEE
Multimedia, Apr-Jun. 2001, pp. 82-87.

[4] B. Nardi, D. Schiano, M. Gumbrecht, and L. Swartz;
“Why We Blog”, Commnunications of ACM,
December 2004, 47(12), pp.41-46.

[5] Wiki: “What Is Wiki”,
http://wiki.org/wiki.cgi?WhatIsWiki

[6] Wikipedia, http://www.wikipedia.org

[7] Endrei, M. et al, Patterns: Service-Oriented
Architecture and Web Services,
http://www.redbooks.ibm.com/redbooks/pdfs/

sg246303.pdf

[8] Service-Oriented Architecture,
http://www.ibm.com/software/info/

openenvironment/soa

[9] S. M. Kim and M. Rosu, “A Survey of Public Web
Services”, In Proceedings of the 13th Internaional
World Wide Web Conference 2004, pp.312-313, Chiba,
Japan, 2004.

[10] A. Sutcliffe and N. Mehandjiev, “END-USER
DEVELOPMENT”, Commnunication of ACM
47(9):31-32, September 2004.

[11] IBM Rational Applcation Developer for WebSphere
Software,
http://www-306.ibm.com/software/awdtools/

developer/application/index.html

[12] StrikeIron, Your Trusted Web Services Marketplace,
http://www.strikeiron.com/

[13] The Web Service Club,
http://objectclub.esm.co.jp/webservice/home.html

(contents are described in Japanese)

[14] W3C, XML Path Language (XPath) Version 1.0,
http://www.w3.org/TR/xpath

[15] ECMA International, Standard ECMA-262,
ECMAScript Language Specification, 3rd edition,
http://www.ecma-international.org/publications/

standards/Ecma-262.htm.

[16] Business Process Execution Language for Web
Services version 1.1,
ftp://www6.software.ibm.com/software/

developer/library/ws-bpel.pdf

[17] OASIS Web Services Business Process Execution
Language (WSBPEL) TC,
http://www.oasis-open.org/committees/

tc home.php?wg abbrev=wsbpel

[18] XMethods web site, http://www.xmethods.net/

[19] W3C, Web Services Description Language (WSDL)
1.1, W3C Note, 2001.

[20] W3C, SOAP - Simple Object Access Protocol,
http://www.w3.org/TR/SOAP

[21] W3C, XML Schema, http://www.w3.org/XML/Schema

[22] Mindreef: Comprehensive Web services diagnostics
and testing,
http://www.mindreef.com/

[23] Federal Reserve Bank of New York, Pilot Noon
Foreign Exchange Rates Web Service,
http://www.ny.frb.org/markets/pilotfx.html

[24] Web Services - Axis, http://ws.apache.org/axis/

[25] B. Myers, S. E. Hudson and B. Pausch, Past, Present,
and Future of User Interface Software Tools, ACM
Transactions on Computer-Human Interfaces,
7(1):3-28, March 2000.

[26] G. Fischer, E. Giaccardi, Y. Ye, A. G. Sutcliffe and N.
Mehandiev, META-DESIGN: MANIFESTO FOR
END-USER DEVELOPMENT, Commnunication of
ACM 47(9):33-37, September 2004.

[27] R. Diestel, Graph Theory, Springer-Verlag New York,
1997.

[28] Amazon Web Services,

http://www.amazon.com/gp/browse.html/

002-0381178-1342459?%5Fencoding=UTF8&node=3435361

[29] Google Web APIs,
http://www.google.com/apis/index.html

[30] eBay Developers Program,
http://developer.ebay.com/soap/

[31] C. Kelleher and R. Pausch, Lowering the Barriers to
Programming: A Taxonomy of Programming
Environments and Languages for Novice
Programmers, ACM Computing Surveys, Vol. 37, No.
2, June 2005, pp. 83-137.

[32] YAML Ain’t Markup Language (YAML) Version 1.1,
http://yaml.org/spec/current.html, 2004.

