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Abstract 
Modern processors support hardware-assist instructions (such as 
TRT and TROT instructions on IBM zSeries) to accelerate certain 
functions such as delimiter search and character conversion. Such 
special instructions have often been used in high performance 
libraries, but they have not been exploited well in optimizing 
compilers except for some limited cases. We propose a new idiom 
recognition technique derived from a topological embedding 
algorithm [4] to detect idiom patterns in the input program more 
aggressively than in previous approaches. Our approach can detect 
a pattern even if the code segment does not exactly match the 
idiom.  For example, we can detect a code segment that includes 
additional code within the idiom pattern. We implemented our 
new idiom recognition approach based on the Java Just-In-Time 
(JIT) compiler that is part of the J9 Java Virtual Machine, and we 
supported several important idioms for special hardware-assist 
instructions on the IBM zSeries and on some models of the IBM 
pSeries. To demonstrate the effectiveness of our technique, we 
performed two experiments. The first one is to see how many 
more patterns we can detect compared to the previous approach. 
The second one is to see how much performance improvement we 
can achieve over the previous approach. For the first experiment, 
we used the Java Compatibility Kit (JCK) API tests. For the 
second one we used IBM XML parser, SPECjvm98, and 
SPCjbb2000. In summary, relative to a baseline implementation 
using exact pattern matching, our algorithm converted 75% more 
loops in JCK tests. We also observed significant performance 
improvement of the XML parser by 64%, of SPECjvm98 by 1%, 
and of SPECjbb2000 by 2% on average on a z990. Finally, we 
observed the JIT compilation time increases by only 0.32% to 
0.44%. 

Categories and Subject Descriptors   D.3.4 [Programming Lan-
guages]: Processors – compilers, optimization. 

General Terms   Algorithms, Performance, Design, Experimenta-
tion 

Keywords   idiom recognition, hardware-assist instructions, VMX, 
topological embedding, Java, JIT 

1. Introduction 
Idiom recognition is an application of pattern matching to compil-
ers, and it has been used to search for specific patterns in code 

sequences and to replace them with faster code [22][23][24]. It is 
also useful for exploiting hardware-assist instructions, which are 
becoming important as the rate of increase of processor frequen-
cies is declining due to power and cooling limitations. 

Traditional approaches for idiom recognition compare the target 
pattern against the idiom pattern for an exact match [22][23][24]. 
They fail to recognize it when the idiom pattern does not appear 
exactly as expected in the target pattern. Figure 1 shows some 
drawbacks of previous approaches in more detail. In Figure 1 (a), 
the idiom cannot be recognized because it has the additional node 
‘X’. In Figure 1 (b), the idiom cannot be recognized because the 
order of the nodes is different. 

To overcome such limitations, we propose a new idiom recogni-
tion technique. Our new approach consists of two phases. For the 
first phase, using a variant of a topological embedding algorithm 
[4], we find all of the code segments that contain one of the idiom 
graphs in a program. We can find candidates even if the code 
segment does not exactly match the idiom as shown in Figure 1. 
For the second phase, we attempt to transform the candidate 
graphs to the idiom graphs using various graph transformation 
techniques. If we succeed, we convert the modified graph into 
faster code by generating a hardware-assist instruction. If we fail, 
we tell the Java programmers or compiler developers about all of 
the potentially idiomatic candidates for suggesting further per-
formance improvements. 

Unlike previous approaches, we can detect all of the graphs in 
Figure 1 and potentially transform them to the idiom graphs auto-
matically. For example, we can move the node ‘X’ out of the loop 
if ‘X’ has no dependence on the other nodes in the same loop in 
Figure 1 (a) and replicate the node ‘c’ outside of the loop to align 
the loop entry in Figure 1 (b). In addition, our approach can trans-
form them even if ‘X’ has a dependence on the other nodes. We 
will explain these transformations in Section 3.4. As a result, our 
algorithm can convert many more candidates to faster code for the 
maximum use of hardware-assist instructions than previous ap-
proaches. 
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a) Additional Node b) Different Order

Previous approaches cannot detect these patterns.  
Figure 1. Drawbacks of previous approaches 
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We implemented our new idiom recognition algorithm based on 
the Java Just-In-Time (JIT) compiler that is part of the J9 Java 
Virtual Machine. For IBM zSeries [6][26], we supported several 
important idiom patterns: searching for delimiters, converting 
character codes, copying memory, filling memory, comparing 
memory, and converting integers (32-bit and 64-bit) to strings. To 
demonstrate the effectiveness of our technique, we performed two 
experiments. The first one examines how many additional patterns 
we can detect beyond the previous approach. The second one 
studies the performance improvements we can achieve over the 
previous approach. For the first experiment, we used the JCK [12] 
API tests. For the second one, we used IBM XML parser, 
SPECjvm98, and SPCjbb2000. In summary, relative to a baseline 
implementation using exact pattern matching, our algorithm con-
verted 75% more loops in the JCK tests. We also observed signifi-
cant performance improvement of the XML parser by 64%, of 
SPECjvm98 by 1%, and of SPECjbb2000 by 2% on average on a 
z990 [6]. Finally, we observed the JIT compilation time increases 
by only 0.32% to 0.44%. 

We also supported the same idioms on IBM pSeries. In the Ap-
pendix, we explain how we implemented delimiter searches using 
vector instructions. We also show some experiments on IBM 
pSeries. 

1.1 Our Contributions 
 A New Idiom Recognition Approach: Our two-phase 

idiom recognition algorithm can find variations of idiom 
patterns in the input program more aggressively than previ-
ously known algorithms and automatically transform them 
into the idiom. As a result, it can take full advantage of 
hardware-assist instructions. 

 Exploitation of special hardware-assist instructions: We 
demonstrate how these instructions can be exploited in 
commercial applications. 

The rest of the paper is organized as follows. Section 2 describes 
previous work. Section 3 describes our approach. Section 4 covers 
the performance results obtained in our experiments. Section 5 
offers some concluding remarks. 

2. PREVIOUS WORK 
First, we discuss two common approaches for exploiting hardware 
accelerators by using special hardware-assist instructions. One is 
by library calls (or intrinsic inlining), and the other is by idiom 
recognition. Second, we discuss several known techniques to 
improve the effectiveness of idiom recognition. 

Regarding library calls in Java, the IBM JIT compilers [5][29], for 
example, can generate optimized code for System.arraycopy(), 
which is one of the most frequently used intrinsics. They can also 
generate a special machine instruction corresponding to each 
method in the Math class library, such as Math.sin(). However, 
programmers have to explicitly call those libraries to use these 
instructions. 

Regarding idiom recognition, there are two families of techniques. 
The first family recognizes a specific instruction sequence from an 
acyclic region to convert it to faster code [21]. This technique is 
widely used in optimizing compilers. For example, the IBM JIT 
compiler provides a table of frequently used bytecode sequences 
as idioms to mitigate the inefficiency in code generation caused 

by stack semantics [27]. Clark et al. proposed an approach [2] that 
extracts a specific instruction sequence from several basic blocks, 
but it is still limited to an acyclic region. Superword-Level Paral-
lelism (SLP) is an approach to exploit SIMD instructions [16] for 
optimizing a loop body. It unrolls a loop beforehand, and then it 
recognizes vectorizable instructions from a basic block. Thus, it is 
designed for a loop whose body consists of a single basic block. 
Shin et al. extends SLP in the presence of control flow [25], but it 
is still limited to an acyclic region. 

The second family recognizes a specific instruction sequence 
including a cycle to parallelize numerical programs [22][23][24]. 
They compare the instruction sequence of the loop body with each 
pre-defined idiom. We call this an “exact match”. However, it 
often fails to catch idioms when programmers slightly change a 
program. For example, it cannot recognize the examples in Figure 
1. Metzger proposed a combination of idiom recognition and 
algorithm recognition [19]. This approach first replaces idioms in 
a graph with a single node that represents the idiom. Next, it 
parses the resulting graph according to algorithm plans. If a com-
plete match occurs, then the code can be replaced by alternate 
implementations. This approach also relies on an exact match, and 
thus it still misses many opportunities. 

For improving the effectiveness of idiom recognition, there has 
been a lot of research [21] into parallelizing or vectorizing loops 
for numerical programs by applying various loop optimizations, 
such as loop canonicalization, loop versioning, loop distribution, 
and loop fusion. For example, our baseline compiler performs 
loop canonicalization and loop versioning. They are effective to 
expose specific patterns for idiom recognition. For the case of 
Java, however, it is rare to find those loops which can be candi-
dates for loop distribution or loop fusion. One reason is that Java 
programmers tend to use many method calls, which make data 
dependence analysis difficult for loop transformations. Method 
inlining mitigates this problem, but we cannot necessarily inline 
all method calls because of the code expansion problem. Indeed, 
in our experiments we observed that graph transformations were 
not able to be performed because the target loops include one or 
more method calls. Another reason is that the multi-dimensional 
arrays of Java are allocated as arrays of arrays unlike the dense-
array of FORTRAN. Thus, we cannot assume that the length of 
each array of the first dimension is same. As a result, we can only 
eliminate exception checks from the innermost loop by applying 
loop versioning technique. This limits the cases to which loop 
optimizations can be applied. 

It is also known that abstract interpretation techniques [3][17] or 
symbolic analysis techniques [1] help improve the effectiveness of 
idiom recognition. Abstract interpretation techniques are fast 
enough for JIT compilers. For example, we applied an abstract 
interpretation technique [11] for software prefetching in our JIT 
compilers. On the other hand, the symbolic analysis techniques 
are powerful but more time consuming. Thus, our baseline com-
piler, for example, performs faster optimization techniques based 
on dataflow analysis, such as induction variable analysis, range 
analysis, alias analysis, and class/field/array privatization in ear-
lier phases. In addition, it also performs traditional optimizations 
in advance, such as inlining, copy propagation, dead code elimina-
tion, code specialization, exception check elimination, and partial 
redundancy elimination. These optimizations help find as many 
candidates as possible. 
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3. OUR APPROACH 
Our approach overcomes the problems of the previous approaches 
as described in Section 2 with a more flexible algorithm to search 
for code fragments of the patterns for partial graph matching. 
Figure 2 shows a comparison of our approach and previous ap-
proaches. Our new approach consists of two phases. In the first 
phase, we find all of the code segments in a program that contain 
one of the idiom graphs, even if the sequence of the code appears 
to be different from the idiom. In the second phase, we attempt to 
transform each code segment into one corresponding to the idiom 
graph using various code transformation techniques available in 
the compiler. In addition, we can provide hints if the graph trans-
formations fail. That is, the compiler can tell the Java program-
mers or compiler developers about all of the potentially idiomatic 
candidates in order to suggest further performance improvements. 
When successful, we first transform an input loop to a special 
node (e.g. memcpy, memset, memcmp) at the intermediate lan-
guage (IL) level, and then our system generates a code sequence 
corresponding to the node for each platform. 

Figure 3 shows a flow diagram of our algorithm. First, we trans-
form each loop to our graph representation. Next, we apply two 
pre-filters described in Section 3.2: (1) exclude those idioms 
which are unlikely to be matched and (2) exclude some rarely 
iterated loops based on the runtime profile information and de-
pending on the idiom. These reduce the number of candidate id-
iom graphs to search for with the topological embedding algo-
rithm. Next, we search for each idiom by applying our algorithm 
described in Section 3.3. Next, we attempt to match the idiom by 
applying the graph transformations described in Section 3.4. If the 
transformed graph matches the idiom, we can replace it with a 
special node corresponding to the idiom to generate a faster code 
sequence. For our algorithm, we can easily support a new idiom 
by adding an idiom graph and the corresponding code generation 
pattern without modifying the algorithm. 

Table 1 shows the supported idioms. These idioms are architec-
ture independent. We use special hardware instructions both on 
IBM zSeries and IBM pSeries. We will describe more details in 
Section 3.6 and the Appendix. 

Section 3.1 describes the advantages of a topological embedding 
algorithm and our modifications to the original algorithm. Section 

3.2 describes the pre-filters, which reduce the number of candidate 
idiom graphs. Section 3.3 describes the first phase of our algo-
rithm, which finds all of the code segments that contain one of the 
idiom graphs in a program. Section 3.4 describes the second phase 
of our algorithm, which attempts to transform the candidate 
graphs into the idiom graph. Section 3.5 describes an analysis 
required for generating the code pattern. Section 3.6 describes 
generated code for the IBM zSeries. 

Table 1. Supported Idioms 

Idiom Name Description 

findbytes searching for delimiters 

arraytranslate converting character codes 

intToString converting integers to strings 

memcpy copying memory 

memset filling memory 

memcmp comparing memory 

3.1 Advantages of Topological Embedding 
In this section, we briefly describe the advantages of the topologi-
cal embedding (TE) algorithm [4]. We consider ordered labeled 
directed graph pattern matching and topological embedding prob-
lems, where an ordered labeled directed graph is a directed graph 
in which every node is associated with a label, and the left-to-right 
order of siblings is significant. For exact pattern matching, a di-
rected graph P matches a directed graph T if there is a mapping f 
from the nodes in P to the nodes in T such that f preserves label, 
degree for internal nodes in P, and the parent relationship. TE 
relaxes the restriction on preserving the parent relationship by 
requiring f to preserve the ancestor relationship, i.e., for each node 
α in P, the ith child of α from the left can be mapped to either the 

a) Previous Approaches
Generated

Code

Input
Graph

Exactly
Matched

Idiom and
Intermediate

code
Hardware

assist
Instructions
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Match

code
generation

Fail

Input
Graph

Exactly
MatchedEmbedded
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Transformation

Notify Programmer
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Figure 2. Comparisons of previous approaches and ours 
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ith child c of f(α) or a descendant of c. The computational order of 
the TE algorithm is O(|VP| |ET| + |EP|) [4]. Here, V and E are nodes 
and edges, respectively. 

Figure 4 shows two advantages of the TE algorithm compared to 
exact matching. One is that it allows any nodes to be included 
between any two nodes of the idiom graph as shown in Figure 4(a). 
The other is that it allows a different order of nodes in a cycle. In 
a strongly connected component (SCC), for every pair of nodes u 
and v, there is a path from u to v and a path from v to u. In Figure 
4(b), the idiom is a loop whose body consists of nodes “abc”. 
When an input program is “acb”, unfolded infinite tree is 
“acbacb…” As you can see, there is a path from a to b, b to c, and 
c to a. As a result, we can recognize this input program as a can-
didate. 

3.1.1 Our modifications to the TE algorithm 
We modified the original TE algorithm as follows: 

 As we mentioned, the original TE assumes that the left-to-
right order of siblings is significant. However, this limits the 
ability to detect commutative operations. We check all of the 
operand patterns for commutative operations, such as addi-
tions, multiplications, and so on. 

 We use a wild-card node, which matches several opcodes 
(labels) in a target graph. We use it to find multiple if state-
ments and variables. 

3.2 Pre-filters 
There are two reasons to perform pre-filtering. Controlling compi-
lation time increases is a very critical problem for JIT compilers. 
In addition, using a special hardware-assist instruction has one 
disadvantage. While it can greatly improve performance for a 
sufficiently long input sequence, it could degrade performance for 
a very short input sequence because of the startup costs. 

In Figure 3, there are two pre-filters before our TE algorithm. The 
first pre-filter checks that all nodes in the idiom appear in the 
target graph. For each idiom and the graph, we create a bit-vector 
whose bits represent the opcodes. For example, if the graph in-
cludes a byte array load (baload), then the corresponding bit of the 

bit-vector is on. We compare the bit-vector of each idiom graph 
with that of the target graph to exclude those idioms which cannot 
be matched. 

The second pre-filter excludes rarely iterated loops if the hard-
ware-assist instruction corresponding to the idiom has a large 
startup cost. For the TRT instruction, we cannot estimate the ac-
tual search length, because it depends on the content of each input 
array. For predicting the search length, we use runtime profile 
information. We compute the ratio of the frequency of the inside 
block over that of the outside block for each loop and exclude the 
rarely iterated loops from the candidates. 

Note that the startup costs for each special hardware-assist instruc-
tion varies on the processor. The use of profiling in a JIT envi-
ronment allows our algorithm to be tuned to the platforms and 
specific processor models on which the application is running. 

3.3 Finding the Candidate Graphs 
In this section, we describe how we find the candidate graphs by 
using our topological embedding algorithm. There are five steps in 
our algorithm: 
1. Translate input intermediate language (IL) code into our 

graph representation, which consists of: 
 Nodes: IL nodes (or wildcard nodes for idiom graphs) 
 Type 1 Edges: Operand edges 
 Type 2 Edges: Control flow edges 

2. Find candidates among the leaf nodes in the abstract syntax 
trees [21] (Type 1 Edges) created in Step 1 

3. Use the TE algorithm to walk through Type 1 Edges from 
every leaf to the root and find the candidate nodes. In this 
step, we appropriately check commutative operands. 

4. Use the TE algorithm to walk through Type 2 Edges from 
the exit to the entry while checking the relationships be-
tween all the ancestors and descendants for each node found 
in Step 3 

5. Extract the smallest sub-graph that includes all of the nodes 
in the current idiom candidate 

Idiom
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c

b

a) TE allows any nodes to be included between any two nodes
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b c

Idiom
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b
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b) TE allows a different order of nodes in a cycle
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a
c
b
a
c
b
:
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pair of nodes u
and v, there is a
path from u to v.

 
Figure 4. Advantages of topological embedding algorithm 

a) Example
 while(true) {
      b = bytes[index];
      if (b == 0x00 || b == 0x0A || b == 0x0D) break;
      index++;
 }

b) Using the TRT instruction (Simplified)
 R3 = FunctionTable; // This table can be prepared

    at compile time
 R1 = bytes + index;
 TRT  0(256, R1), 0(R3) // Scans for 0x00, 0x0A, and

:    0x0D for 256 bytes.
256-byte Function Table for TRT

0 1 2 3 4 5 6 7 8 9 A B C D E F
01 0 0 0 0 0 0 0 0 1 0 0 1 0 0

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
:

0x00

0xF0
:Performance can be

improved 10-fold

Result is in R1

I h a v e a p e . 0d 0an

Figure 5. An example of exploiting the TRT instruction 
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3.3.1 Example: TRT instruction 
We clarify our algorithm for finding the candidate graphs using 
examples. The TRANSLATE AND TEST (TRT) instruction [10] 
on IBM zSeries can be used to search for characters with special 
meanings in a byte-array. To indicate which characters have a 
special meaning, we need to prepare a function table as a 256-byte 
array. In the table, non-zero values signify special characters. In 
this paper, we call them “delimiters”. 

Figure 5 shows an example of exploiting the TRT instruction. 
The example in Figure 5(a) searches for 0x00, 0x0A, and 0x0D in 
a byte array. In this example, the result address must point to 
0x0D (carriage return). We can convert this example code to 
faster code using the TRT instruction as shown in Figure 5(b). We 

need to prepare the function table by setting non-zero values for 
the table entries of the delimiters. By using this conversion, per-
formance can be improved 10-fold, depending on the search 
length. Such loops are often found in text processing programs 
such as XML parsers. In actual programs, these if-conditions can 
vary according to what characters are assumed to act as delimiters, 
and thus an exact match is difficult to find using such loops. 

Figure 6(a) shows an idiom graph for the TRT instruction. It 
consists of nodes and two kinds of edges. Here, “baload” means 
“load byte from array” [18]. In the graph, there are two kinds of 
wildcard nodes, variables and the special node “booltable”. Vari-
able nodes in the idiom match all variables in the target graph. 
The node booltable matches all comparisons of the child and any 
constants. We used the node booltable not only for the TRT in-
struction but also for other idioms, such as character conversions. 
We can also use the simplified graph representation as shown in 
Figure 6(b) for later explanations. Figure 6(c) shows the pseudo-
code corresponding to the idiom. 

Figure 7 shows a motivating example of an input program. Step 1 
of the algorithm described in Section 3.3 translates the input pro-
gram (a) to the graph representation (b). In Step 2, we find candi-
date leaf nodes by analyzing their ancestors. For example, since 
the parents of the variable ‘v1’ in Figure 6(a) are ‘baload’, ‘iadd’, 
and ‘istore’, the variable ‘i’ in Figure 7(b) becomes a candidate for 
‘v1’. 

In this example, there are three difficulties for previous ap-
proaches trying to detect a candidate: (1) The order of the nodes in 
the loop body is different from that of the idiom. (2) There is an 
additional node “store into the variable ‘ch’”. (3) There are multi-
ple if statements. As we mentioned in Figure 4, we solve the first 
and the second problems by using the topological embedding 
algorithm. In addition, we solve the third problem by using a 
wildcard node, which can match two if statements. After perform-
ing Steps 3 to 5 in Section 3.3, the result is the successful detec-
tion of an optimization candidate. 

3.4 Graph Transformations 
Because our first phase in Section 3.3 may find graphs whose 
program patterns are different from the idioms, we need to trans-
form the candidate graphs to the idiom graphs. Before graph trans-
formations, we create UD/DU chains to analyze data dependences 
of the variables. We have implemented three graph transforma-
tions: (1) partial peeling of a loop body, (2) replicating store nodes 
outside of loops, and (3) code motion. We prepared a list of trans-
formations for each idiom. This phase calls each transformation in 
the list and checks whether the modified target graph matches the 
idiom graph. 

In this phase, we do not directly modify the input intermediate 
language code yet because it is difficult to undo those transforma-
tions, and because unneeded transformations may degrade per-
formance. For example, if store nodes are replicated by the tech-
nique of Section 3.4.2 but the loop cannot be transformed, then it 
will degrade performance. Instead, we modify our internal graph 
and store some compensation code for the entry and each exit 
point. If the idiom recognition finally decides that the loop can be 
transformed, we will generate compensation code and the special 
IL node. 

baload
v1

v0

entry

booltable exit

iadd1

istore

edge of control
flow graph
edge of abstract
syntax trees

leaf nodes

gray denotes
wildcard nodes.

c) Corresponding pseudo-code:
while(true){
   if (booltable(v0[v1])) break;
   v1++;
}

Note: booltable matches all
comparisons to constants.

b) A simplified version of
the graph representation

a

b

c

load from array

check it with
constants

increment the index

a) A graph representation

Figure 6. Idiom graph of the TRT instruction 

a) Input program:
byte ch;
while(true){
   i++;
   ch = a[i];
   if (0x20 > ch || ch == '<') break;
}
// assuming the variable 'ch' is used after the loop.

baload a

i

entry

iadd 1

istore

istore ch

if_lt

if_eq
exit

0x20

0x3c

c

a

S

b1

b2

load from array

check it with
constant

increment the
index

check it with
constant

(additional node)

b) A graph representation c) A simplified version

Problems:
- different order
- additional node (S)
- multiple nodes (b1, b2)

Figure 7. Motivating example of an input program 
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3.4.1 Partial peeling of a loop body 
The purpose of this transformation is to align the loop entry. 
Figure 8 shows our algorithm. This transformation replicates the 
region from the loop entry to the ideal loop entry outside of the 
loop, and then it modifies the entry point to match the ideal one. 

Figure 9 shows the transformation result of Figure 7. In the ex-
ample of Figure 7(c), the loop entry is the node ‘c’, but it should 
be the node ‘a’. Thus, this transformation replicates the node ‘c’ 
outside of the loop and changes the loop entry to the node ‘a’. 

3.4.2 Replicating store nodes 
The example in Figure 7 includes an additional node, a store to the 
variable ‘ch’. As we mentioned in Figure 7, we are assuming that 
the variable ‘ch’ will be used after the loop. In this case, we can-
not ignore the store node. Previous approaches give up on this 
case because the expression “ch = a[i]” has data dependences for 
the succeeding if-statement. 

This transformation replicates the store node outside of the loop. 
By using this transformation, all uses of the original stores are 
enclosed within the loop. In other words, the variable ‘ch’ in the 
loop is now used only to pass the array value to some nodes in the 

loop. Therefore, we can ignore the original stores for idiom recog-
nition. 

This transformation is similar to partial dead code elimination 
(PDE) [14]. Unlike the PDE technique, it moves store nodes be-
yond their uses. We assure that neither the variable of the store 
node nor the right-hand-side (RHS) expression is changed be-
tween the original point and the loop exit point. For moving mem-
ory access expressions in Java, Kawahito et al. discussed possible 
barriers and alias analysis in [13]. 

Figure 10 shows the transformation result of Figure 9. In this 
example, because neither the variable ‘ch’ nor the RHS expression 
‘a[i]’ is changed between these two positions, we can replicate it 
outside of the loop. Through this replication, we can transform the 
loop to faster code using the TRT instruction. As you can see in 
Figure 10, the store replication itself worsens the performance of 
the program. Thus, we need to cancel such a transformation if the 
loop cannot be transformed to the faster code. 

3.4.3 Code motion 
This transformation is similar to the previous transformation “rep-
licating store nodes”, but the purpose of this transformation is to 
reorder the nodes to match the idiom graph. To date, we imple-
mented only forward code motion, because the partial peeling 

Modified program:
byte ch;
i++; // This expression is replicated.
while(true){
   ch = a[i]; // Change the loop entry
   if (0x20 > ch || ch == '<') break;
   i++;
}

c

a

S

b1

b2

c

a

S

b1

b2

Replicate the
node 'c' and
change the
loop entry

c

 
Figure 9. After performing partial peeling 

Modified program:
byte ch;
i++; // This expression is replicated.
while(true){
   ch = a[i]; // Change the loop entry
   if (0x20 > ch || ch == '<') break;
   i++;
}
ch = a[i]; // This expression is replicated.

Replicate
the store
instruction

a

S

Uses of the
original
store are
enclosed in
the loop

c

a

S

b1

b2

c
c

a

S

b1
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Figure 10. After performing store replication 

a

c

b

b) Modified program:
while(true){
   if (a[i] == 0x20) break;
   i++;
}
i++;

a

b

c

a) Original program:
while(true){
   if (a[i++] == 0x20) break;
}

cThe node 'c' is
moved forward

 
Figure 11. Example of code motion 

P: Pattern graph, T: Target graph 

pTop = the next node of the entry of P; 
for (each t from the entry to the exit in T){ 
    if (t corresponds to pTop) return;  // already aligned 
    if (t is in a cycle) break; 
} 
lastNode = firstNode = t; 
for (each t from firstNode to the exit in T){ 

   if (t corresponds to pTop) break; 
   lastNode = t; 

} 
idealLoopEntry = t; 
regionR = from firstNode to lastNode in T; 
for (each t in regionR) 
    if (there is a parent of t outside of regionR) return; 
Add every node in regionR to the compensation block of the loop entry; 
Modify the loop entry to idealLoopEntry; 

Figure 8. Algorithm of partial peeling 
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covers some of the transformations required for backward code 
motion. 

In Figure 11, we see that the node ‘c’ is not placed at the ideal 
location but is between the nodes ‘a’ and ‘b’. Note that there is 
control dependence between nodes ‘c’ and ‘b’. We use a form of 
the busy code motion algorithm [15] in the opposite direction, 
which moves an instruction if its execution count is not increased. 
We add a barrier immediately before the ideal position in order to 
correctly stop the movement of the node. As a result, the node ‘c’ 
is moved after the node ‘b’ and outside of the loop, as shown in 
(b), and we can now convert the loop to the TRT instruction. 

3.5 Analysis when generating the code pattern 
So far we have discussed how we recognized and transformed 
target graphs into which the idiom graph can be topologically 

embedded. In this section, we describe an analysis required for 
generating the code pattern of a few idioms using booltable. 

Figure 12 shows the transitions of the input program in Figure 7. 
Finally, we obtained the optimized program in Figure 12(c) by 
converting the code sequence enclosed in the dashed-box in 
Figure 12(b) to TRT(), which is a faster code sequence including 
the TRT instruction. Because we introduced wildcard nodes into 
the topological embedding algorithm (which allows any node to 
be included), we can find multiple if statements corresponding to 
the special node booltable. 

Multiple if statements are sometimes very complex as in Figure 
13. In this example, we note here that the node “load from array” 
is separated into nodes inside and outside of the loop. Our ap-
proach can successfully recognize it as a candidate with the idiom 
in Figure 6(a). 
Here, we need to create a function table for the TRT instruction. 
We perform a forward dataflow analysis to compute the exit con-
ditions as shown in Figure 14, which is a kind of a value range 
analysis similar to the one by the approach of Uh et al. [30]. 
In the example of Figure 13(a), GEN will be “-128 to 127” at “t = 
a[i]”, because it is a byte array. After performing the dataflow 
analysis, we will obtain the exit conditions at the block “exit” 
point in Figure 13(b). Finally, we need to convert the signed value 
range (-128 to 127) to the unsigned value range (0 to 255). As a 
result, we can compute the function table for the TRT instruction 
as shown in Figure 13(c). 

3.6 Generated code on IBM zSeries 
In this section, we describe the generated code on IBM zSeries for 
the idioms in Table 1. As shown in Figure 2, our approach first 
transforms an input loop into a special node (e.g. memcpy, mem-
set, memcmp) at the IL level, and then generates a code sequence 
corresponding to the node on each platform. We have already 
explained the first idiom in Table 1 on IBM zSeries, searching for 
delimiters1. The following sections describe the generated code 
for the second to sixth idioms in Table 1. 

                                                                 
1 In the Appendix, we describe how we perform delimiter searches 

by using VMX instructions on pSeries. 

b) Modified program:
byte ch;
i++; // This expression is replicated.
while(true){
   ch = a[i]; // Change the loop entry
   if (0x20 > ch || ch == '<') break;
   i++;
}
ch = a[i]; // This expression is replicated.

a) Input program:
byte ch;
while(true){
   i++;
   ch = a[i];
   if (0x20 > ch || ch == '<') break;
}
// assuming the variable 'ch' is used after the loop.

c) After Optimization
byte ch;
i++; // This expression is replicated.
i = TRT(a, i, FunctionTable);
ch = a[i]; // This expression is replicated.  

Figure 12. Transitions of the input program in Figure 7 

a) Input program
t = a[i];
while (true) {
   if ((0x20 <= t && t != 0x26 && t != 0x3C && t != 0x5D)
       || t == 0x09 || t == 0x0A || t == 0x0D)
       i++;
   else
       break;
   t = a[i];
}
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00 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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c) Function Table for TRT (256 bytes)

t = a[i]

t < 0x20

t == 0x26

t == 0x3c

t != 0x5d

t == 0x09

t == 0x0a

t != 0x0d

i++
t = a[i]

entry

exit

n

n

n

n

n

n

n

y

y

y

y

y

y

y

b) Graph representation

('1' means exit conditions)

Figure 13. Complex if-statements 

Assumption 1: We already know the target graph matches the idiom 
graph. 

Assumption 2: We already know the local variable T that is used for both 
the array loads and the comparisons. 

 
In(n) = (   U   edge(n, m, In(m)) ) U GEN(n) 
                    m ∈ Pred(n) 

GEN(n): set of possible values of the array, if there is assignment from 
the array to the variable T in n. Otherwise, the empty set Φ. 

 
edge(n, m, In){ 
   if (m’s last instruction is an if statement that compares  

the variable T and a constant){ 
      taken = set of values of the variable T when the condition is met 
      not_taken = ~taken; 
      return ((the condition is met along the edge from m to n) ? 

 taken : not_taken) ∩ In; 
   } else   return In; 
} 

Figure 14. Algorithm for computing the exit conditions 
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3.6.1 Converting character codes 
The IBM zSeries has the following four instructions for simple 
character conversions [10]: 

 TROO: A one-byte array to a one-byte array (byte to byte) 

 TROT: A one-byte array to a two-byte array (byte to char) 

 TRTO: A two-byte array to a one-byte array (char to byte) 

 TRTT: A two-byte array to a two-byte array (char to char) 
We are finding many opportunities to use the TROT and TRTO 
instructions in XML parsers, such as conversions from UTF-8 to 
Unicode and vice versa. These instructions also have a function 
table, which provides a conversion table and an exit condition. 

Figure 15 shows an example of exploiting the TROT instruction, 
which converts a byte array to a double-byte array. We can con-
vert the input program in (a) to faster code using the TROT in-
struction. Figure 15(b) shows the function table. In this example, 
we assume that 0x80 signifies the exit condition. We choose an 
exit value in the range where the loop exits. We also use the wild-
card node booltable to handle flexible if-statements, such as the 
example of the TRT instruction as shown in Figure 13. 

3.6.2 Converting integers to strings 
For converting integers to strings, we found the following hot 
loops: 

 Count the digits of the integer using “divide by 10” 
 Extract each digit by using “divide by 10” and store it into a 

double-byte array 

Our JIT compiler already improved these loops by replacing the 
divisions with multiplications, but we can improve them further. 
For counting the number of digits of an integer value, we replace 
it with a binary search as shown in Figure 16(a). We actually 
generate bigger trees for counting the digits of 32-bit and 64-bit 
integer values. This is an example of converting a slower algo-
rithm to a faster algorithm. Therefore, it means that we can use 
idiom recognition not only for hardware-assist instructions but 
also for other improvements, such as algorithm conversions. Be-
cause we did not use special instructions for this transformation, 
we can use it for all architectures. 

For extracting each digit of an integer value, we replace the 
original code with a code sequence using two special instructions 
on IBM zSeries. We use the CONVERT TO DECIMAL (CVD) 
and the UNPACK UNICODE (UNPKU) instructions [10] as 
shown in Figure 16(b). Note that the CVDG instruction can handle 
a 64-bit integer. The CVD instruction converts an integer to 
packed decimal data. The UNPKU instruction converts the packed 
decimal data to a double-byte array. 

3.6.3 The other idioms 
We can convert loops for copying memory, for filling memory, 
and for comparing memory into special instructions on IBM 
zSeries. A loop copying memory can be converted to the MOVE 
(MVC) instruction [10]. A loop filling memory can be converted 
to the EXCLUSIVE OR (XC) or the MVC instructions. For filling 
with zero, we can use the XC instruction. For filling with another 
value, we can use the MVC instruction with a 1-byte destructive 
overlap [10]. A loop for comparing memory can be converted to 
the COMPARE LOGICAL (CLC) or the COMPARE LOGICAL 
CHARACTER LONG (CLCL) instructions [10]. 

4. EXPERIMENTS 
We measured two metrics in our experiments: (1) how many loops 
we converted and (2) performance improvements. We used the 
Java Compatibility Kit (JCK) [12] to see how effective our new 
algorithm is in finding idioms in comparison to the existing one. 
For JCK, we used the highest optimization level in compiling 
every method to find the maximum coverage of our algorithm in 
finding the idioms we supported. Other than that, we did not set 
any special JIT compiler options for running the JCK. 

To evaluate the performance improvements, we used micro-
benchmarks for J2SE class files, IBM XML parser, SPECjvm98, 
and SPECjbb2000. For the XML parser, we measured three dif-
ferent XML documents: small (567 bytes), medium (52,845 bytes), 
and large (787,487 bytes). We used the default JIT settings for 
these measurements. That is, the execution frequency of each 
method decides the execution mode (in the interpreter or in the 
JIT compiler) and the optimization level. We did not set any spe-
cial JIT compiler options for measuring performance. For the 
SPECjvm98 and SPECjbb2000, we also used the default JIT set-
tings. 

We implemented our new idiom recognition approach by modify-
ing the Java JIT compiler. We measured the following variants: 

 Baseline: Perform an exact pattern matching loop recogni-
tion. This compares each IL node in a loop to a pre-defined 
template. If all of the IL nodes in the loop match the pre-
defined template, it will convert the loop to faster code. In 

a) Example: Byte to Char
while (srcOffset < limit) {
   int b0 = byteArray[srcOffset];
   if (b0 < 0 || b0 == 0x0D) break;
   charArray[dstOffset] = (char)b0;
   srcOffset++;
   dstOffset++;
}

b) Function Table for TROT (512 bytes)
0 1 2 3 4 5 6 7 8 9 A B C D E F
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(80: Exit
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Figure 15. Example of exploiting the TROT instruction 

Actual:
32-bit: 1-10
64-bit: 1-19

a) Count Digits: Use a binary search

b) Extract each Digit: Use CVD(G) and UNPKU instructions

100

1000 10

1234

Example: finding
1 to 4 digits

Integer CVD UNPKUPacked
decimal

2-byte
array

 
Figure 16. Optimizing converting integers to strings 
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order to find as many candidates as possible, we performed 
traditional optimizations beforehand, such as loop canonical-
ization, loop versioning, copy propagation, dead code elimi-
nation, range analysis, induction variable analysis, alias 
analysis, exception check elimination, partial redundancy 
elimination, class/field/array variable privatization, inlining, 
code specialization, and so on. For delimiter searches, it 
handles a single if-statement. 

 Ours: Used our algorithm described in this paper in addition 
to the baseline. We performed the pattern matching loop rec-
ognition in the baseline algorithm first and then applied our 
algorithm. 

 Disable all: Disable both the pattern matching loop recogni-
tion and our algorithm. 

All of the experiments were conducted on a zSeries 990 2084-316 
(sixteen 64-bit 1.2 GHz processors with 8 GB of RAM), and run-
ning z/Linux. 

4.1 Coverage in the JCK API tests 
Figure 17 shows how many loops we converted on IBM zSeries 
for the JCK API tests, which invokes many variants of methods in 
the J2SE class library. Because the class library is frequently used 
in Java programs, that coverage is very important. The JIT com-
piler tried to optimize all of the innermost loops (3,724,925). The 
topological embedding found 29.2% of them, and our algorithm 
finally converted 28.2% of them. In contrast, the baseline algo-
rithm using exact matching converted 16.1% of them successfully. 
Relative to a baseline implementation using exact pattern match-
ing, our algorithm succeeded in finding 81% more candidates 
(=(29.2/16.1)-1) and ultimately converted 75% more candidates 
(=(28.2/16.1)-1). 
We still have two areas for further improvements. We can create 
new idioms to convert some non-candidates (from the remaining 
70.8%). We can also create new graph transformations to convert 
some of current failures (1.0%). We are investigating several 
transformation failures, but we have not yet found examples trans-

formable by the compilers. Those loops include additional nodes 
that have data dependences upon values of an array. Thus, we 
cannot separate those nodes from the original loop by using loop 
distribution or code motion techniques. 

4.2 Performance Improvements 
Figure 18 shows the performance improvements of the micro 
benchmarks for the J2SE class library. We picked two frequently 
used methods, java/lang/String.compareTo and 
java/io/BufferedReader.readLine, where the code motion de-
scribed in Section 3.4.3 and the replication of store nodes de-
scribed in Section 3.4.2 are necessary, respectively. As can be 
seen, we obtained good performance improvements for those 
methods. 
Figure 19 shows the performance improvements for the XML 
parser over our baseline on IBM zSeries2. In this figure, the X-axis 
shows the XML documents. The labels refer to the file sizes. Our 
approach improves performance for all of the XML documents. 
We found that exploiting the TRT instruction is particularly effec-
tive. Regarding graph transformations, the partial peeling de-
scribed in Section 3.4.1 and replicating store nodes as described in 
Section 3.4.2 are particularly important. The baseline compiler 
using simple pattern matching also improves the performance, 
especially for the medium size XML document. In summary, our 
approach improves performance by 64% on average and by up to 
122% (2.22x). Since parsing XML documents is done very often 

                                                                 
2 The Appendix shows performance improvements on IBM pSer-

ies. 
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in Web applications, this result is very significant for the real 
world. 

Figure 20 shows the average search length of the delimiter search 
loops replaced by our approach. As we mentioned in Section 3.2, 
while a special hardware-assist instruction greatly improves per-
formance for long data blocks, it could degrade performance for 
very short data blocks because of its startup costs. Figure 20 can 
tell the reason for the performance differences in parsing the three 
XML files in Figure 19. 

Figure 21 and Figure 22 show performance improvements for 
SPECjvm98 and SPECjbb2000 on IBM zSeries, respectively. We 
did not find a significant improvement in comparison to the XML 
parser results. This is because many hardware-assist instructions 
in the IBM zSeries are targeted at text processing. There are fewer 
opportunities in these benchmarks than in the XML parser. 

4.3 Compilation Time 
We have two filters to reduce compilation time by excluding: 

 rarely executed methods 
 idioms unlikely to be matched 

Recent JIT compilers use multiple optimization levels [28], which 
are driven by the hotness of each method. Our idiom recognition 
algorithm is performed only at higher optimization levels. 

As we mentioned in Figure 3, we exclude those idioms which are 
unlikely to be matched against the target loop to limit the extra 
compilation time. We can consider the nodes of an idiom, and if a 
graph is missing any of those nodes, we already know no topo-

logical embedding exists. For each idiom and the graph, we create 
a bit-vector whose bits represent the opcodes. We compare the bit-
vector of every idiom graph with that of the target graph to ex-
clude those idioms which are unlikely to be matched. This mini-
mizes the number of candidate graphs passed to the topological 
embedding algorithm. In our experiment, we excluded 90% of 
idioms by this filter. If an idiom is more complex, this filter will 
more effectively exclude unmatchable idioms. This is because a 
complex idiom has many characteristics that we can use in this 
filter. Therefore, we think that the compilation time increase 
would not change much even if more idioms and more compli-
cated idioms were considered. 

We measured the breakdown of the JIT compilation times for the 
XML parser, SPECjvm98, and SPECjbb2000 on IBM zSeries, as 
shown in Table 2. As we mentioned, our approach performed the 
pattern matching loop recognition in the baseline algorithm first 
and then applied our algorithm. In summary, our algorithm in-
creases the total compilation time by only 0.32% to 0.44%, while 
it achieves significant performance improvements, as shown in 
Section 4.2. 

Table 2. Breakdown of JIT compilation times of our approach 

 XML 
parser SPECjvm98 SPECjbb2000 

Our algorithm 0.28% 0.37% 0.28% 

Pattern matching 
loop recognition 
(Baseline code) 

0.10% 0.07% 0.04% 

The rest 99.62% 99.56% 99.68% 

5. CONCLUSION 
We presented a new idiom recognition technique for dynamic 
compilers to detect code segments that contain one of the given 
idiom patterns and to generate faster code by exploiting the hard-
ware accelerators available on the target processors. We are ex-
ploiting several special hardware-assist instructions on IBM zSer-
ies and VMX instructions on some models of the IBM pSeries. 
Our new approach uses a topological embedding algorithm to 
detect an idiom pattern from the target program in a more flexible 
manner. Unlike previous approaches, we can detect an idiom 
pattern even if the code segment does not exactly match the pat-
tern. 

Our approach has three features. First, it can find more candidates 
by utilizing the topological embedding algorithm. Second, it auto-
matically transforms the candidates to idiom graphs to convert the 
modified graphs into faster code. Finally, even if the graph trans-
formations fail, we can tell the Java programmers or compiler 
developers about the potential candidates in order to suggest fur-
ther performance improvements. Our current implementation 
provides the location of the potential candidate in the Java source 
code and the pseudo-code corresponding to the idiom. 

We implemented our new idiom recognition approach based on 
the Java Just-In-Time (JIT) compiler that is part of the J9 Java 
Virtual Machine, and we supported several important idioms. To 
demonstrate the effectiveness of our technique, we performed two 
experiments. The first one is to see how many more patterns we 
can detect over the previous approach. The second one is to see 
how much more performance improvement we can achieve over 
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the previous approach. For the first experiment, we used the JCK 
API tests. For the second experiment, we used IBM XML parser 
with various XML files, SPECjvm98, and SPCjbb2000. In sum-
mary, relative to a baseline implementation using exact pattern 
matching, our algorithm converted 75% more loops in the JCK 
tests. We also observed significant performance improvement of 
the XML parser by 64%, of SPECjvm98 by 1%, and of 
SPECjbb2000 by 2% on average on a z990. Finally, we observed 
that the JIT compilation time increases by only 0.32% to 0.44%. 

For future work, we plan to support more idioms and graph trans-
formations. Because we want to minimize the increases in compi-
lation time, we did not create rich graph representations, such as a 
program dependence graph. We plan to investigate which graph 
representation is actually most effective. In addition, we plan to 
support some hardware-assist instructions on other architectures, 
such as IA-32 or the Cell Broadband Engine architecture. 
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APPENDIX 
Using the same idiom recognition framework, we also supported 
the same idioms described in Table 1 for IBM pSeries. As shown 
in Figure 2, our approach first transforms an input loop to a spe-
cial node (e.g. memcpy, memset, memcmp) in the IL level, and 
then it generates a code sequence corresponding to the node on 
each platform. Only the code generation is different from that of 
IBM zSeries. 
To begin with, we emulated those hardware-assist instructions of 
IBM zSeries, which are described earlier, by using the Vector 
Multimedia eXtension (VMX, also known as AltiVec or Velocity 
Engine) instructions [9][20] that are available on some models of 
the IBM PowerPC processors [7]. VMX provides 128-bit vector 
length that can be subdivided into sixteen 8-bit values, eight 16-bit 
values, or four 32-bit values. For the purpose of emulation, we use 
the instruction set for “sixteen 8-bit values”. 

As an example, we describe how we emulate delimiter searches 
by using VMX instructions in Figure 23. We convert a function 
table (which denotes delimiter characters) for the TRT instruction 
into a pair of 128-bit vector registers. Essentially, we look up the 
bit-vector in a 16-way parallel manner by using vector permute 
and vector shift operations. We assume that vtab0 and vtab1 are 
converted from the function table in Figure 13(c). This implemen-
tation effectively evaluates the following if statement for 16 char-
acters as one step. 

if ((BitVec[ch >> 3] << (ch & 7)) >= 0x80) break; 
To see the effectiveness of our approach on IBM pSeries, we 
measured performance improvements of the XML parser. All the 
experiments were conducted on a BladeCenter JS20 (PowerPC 
970FX 2.2GHz with 1 GB of RAM), and running Linux. Figure 
24 shows the performance improvements for the XML parser over 
our baseline on IBM pSeries. In summary, our approach improves 
performance by 17% on average and by up to 41%. 
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Figure 24. Performance improvements of XML parser using 
VMX instructions on IBM pSeries 

const v_0x03={3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3};
const v_0x80={0x80, 0x80, 0x80, ......., 0x80};
while (true) {
   vchars = vdata[offset]; // Load aligned 16 chars.
   vbyte_offs = vec_sr(vchars, v_0x03); // Make byte offsets by shift right by 3bits.
   vbytes = vec_perm(vtab0, vtab1, vbyte_offs); // select 1 byte out of 32 bytes.
   vbits = vec_sl(vbytes, vchars); // Move designated bit into MSB by shift left by (char & 7) bits.
   if (vec_any_ge(vbits, v_0x80) break; // If any byte has MSB set, we've got it.
   offset++;
}
// Gather MSBs into scalar register and use cntlzw to determine the position of the delimiter found.
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Figure 23. VMX instructions corresponding to the TRT instruction of zSeries 
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