
January 31, 2006
RT0641
Computer Science 10 pages

Research Report

Problem Determination for a Java JIT Compiler using Replay
Compilation

Kazunori Ogata, Tamiya Onodera, Kiyokuni Kawachiya, Hideaki
Komatsu, Toshio Nakatani

IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Problem Determination for a Java JIT Compiler
using Replay Compilation

Kazunori Ogata, Tamiya Onodera, Kiyokuni Kawachiya,
Hideaki Komatsu, Toshio Nakatani

IBM Tokyo Research Laboratory
1623-14 Shimotsuruma, Yamato-shi, Kanagawa 242-8502, Japan

ogatak@jp.ibm.com

ABSTRACT
The performance of Java has been tremendously improved by the
advance of the compilation technology. However, debugging a
dynamic compiler is much harder than a static compiler.
Recompiling the problematic method again to produce a
diagnostic output does not necessarily work because the
compilation of a method depends on the runtime information at
the time of compilation.
In this paper, we propose a new approach, called replay JIT
compilation, to reproduce the same compilation process remotely
using two compilers: the state-saving compiler saves all the input
to the JIT compiler in the production environment, and the
replaying compiler reproduces the same compilation process later.
We reduced the overhead to save the input by using the system
dump and categorizing the input based on the constancy. In our
preliminary experiment, the overhead of running the state-saving
compiler was negligible, and the size of the additional memory
area needed for saving input was only 10% of the compiler-
generated code.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging –
debugging aids; D.3.4 [Programming Languages]: Processors –
compilers, debuggers.

General Terms
Reliability.

Keywords
Replay compilation, deterministic replay, problem determination,
Java, JIT compiler, dynamic optimization, serviceability.

1. INTRODUCTION
Over the decade, the performance of Java has been tremendously
improved. Undoubtedly, the advance of the compilation

technology has significantly contributed to this improvement. The
Java JIT compiler performs increasingly more advanced [5,11,13],
thus complicated, optimizations, and can generate more efficient
code than a static compiler by taking advantage of runtime profiles.
However, debugging a dynamic compiler is much harder than a
static compiler. Assume that an application crashed in a
production environment, and that we identified through analysis
that the code generated for a certain method may cause the crash.
What will then be the next step? If the application was developed
with a static compiler, we can simply recompile the method with
an option to produce diagnostic output. The diagnostic output
contains all the details of what the compiler does, including what
optimizations are applied and how each optimization transforms
the code. This greatly helps a compiler writer analyze a bug in the
compiler.
We could do the same when the application is written in Java.
Precisely, we could have the problematic method recompiled
again by rerunning the application with an option specified to
produce a diagnostic output. However, this does not necessarily
work because the method may not be compiled in exactly the same
way. The reason is that the compilation of a method depends on
not only the bytecode but also on the runtime information at the
time of compilation, such as the resolution status of classes
referenced in the method, the class hierarchy, and the execution
profile. This runtime information is not necessarily the same from
run to run because the Java application is multi-threaded, and non-
determinism in execution is unavoidable. We actually observed
that the combination of the applied optimizations had changed at
least one out of ten executions for each of the Java programs we
evaluated because of changes in the execution order of threads and
the results of the built-in profiler.
A straightforward solution would be to run an application with the
diagnostic option specified even in a production environment.
However, this significantly increases the compilation time, and
thus the execution time of the application. Furthermore, forcing
the compiler to always generate the diagnostic output would
require a prohibitively large amount of the disk space since the
diagnostic output for a single execution of a SPECjvm98
benchmark can be more than hundreds of megabytes.
In this paper, we propose a new approach, called replay JIT
compilation, which allows methods to be recompiled exactly the
same way as in a production environment. For the problem
determination based on the system dump, our approach uses two
compilers, the state-saving compiler and the replaying compiler.
The state-saving compiler is run in a production environment, and,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

while compiling a method, records into a repository all of the
runtime information referenced during the compilation. The
repository is in the main memory, and automatically included in
the system dump when the application crashes. We then run the
replaying compiler with the system dump, to recompile any target
method with the options for diagnostic output.
It is worth noting that using a system dump to reproduce a
problem that crashed a mission-critical application is much
preferable to trying to reproduce the problem by recreating the
environment in which the application crashed at a remote site.
Such an application tends to be very complicated to install,
configure, and deploy, and may demand substantial hardware
resources. Thus, it would be very hard to set up the same
environment at a remote site to reproduce the observed problem.
In addition, it may be impossible to obtain the data to run the
application if the data includes highly confidential or sensitive
information such as credit card numbers.
We implemented our prototype based on the J9 Java VM [3] and
the TR JIT compiler for AIX and successfully recreated the same
compilation processes with the replaying compiler. Our
preliminary experiment showed that the overhead of running the
state-saving compiler is negligible, and the total size of the
additional memory area required for saving the states is only 10%
of that of the compiled code. This is three orders of magnitude
smaller than the original diagnostic output file. To our knowledge,
this is the first report describing how to successfully replay the JIT
compilation process offline.
The rest of this paper is organized as follows. Section 2
summarizes related work. Section 3 discusses our approach to
replaying the JIT compilation using a system dump. Section 4
describes the implementation of our prototype of the replay JIT
compiler. Section 5 shows how small the overhead of the replay
JIT compilation is in terms of the size of the saved input and the
time to save the input. Section 6 offers concluding remarks.

2. RELATED WORK
Trace-and-replay is a common technique for cyclic debugging of
multi-threaded programs. There are two approaches for trace-and-
replay, ordering-based and content-based [12] approaches.
The ordering-based approach is to record and replay the order of
synchronization events [7], such as locking and message passing.
For this approach, many techniques [1,2,7,9] have been developed
and discussed to trace and replay the program execution with a
little overhead. For a Java JIT compiler, the compiler itself is a
single-threaded program and it operates deterministically. The
reason for the non-deterministic operation of the JIT compiler is
that the input from the Java VM changes non-deterministically
during the execution of the Java program. The input to the JIT
compiler is the runtime data of the Java VM. Since they are
changed by many of the typical Java operations, such as object
allocation, the access to a field variable, or the method invocations,
it is impractical to use the ordering-based approach for a Java VM
to replay the input to the JIT compiler by recording the order of
those operations
The content-based approach is to save and restore the values of the
input. Recap [10] records the input for a program. However, the
size of the trace became large even on a slow VAX-11/780
machine, and a faster machine will produce an unacceptably huge

trace. The jRapture system [15] records the parameters and the
results of a Java API that interacts with the underlying system.
Their prototype was three to ten times slower than the normal
execution. However, the only problem of the content-based
approach is the high overhead. Thus, we adopted this approach
and made it practical for JIT compilers by minimizing the input
that the JIT compiler must save.
Dynamic deoptmimization [4] is a technique to debug a program
compiled by a JIT compiler. Tikir [16] also addressed problem
determination with a JIT compiler. These techniques compile the
target method again and generate new compiled code that is good
for debugging. Because their objective is to debug Java
applications by assuming that the JIT compiler itself is bug-free, it
is not applicable to debugging the JIT compiler itself.

3. OUR APPROACH
The replay JIT compilation technique uses two compilers: the
state-saving compiler saves all of the input for the JIT compiler
into a special data area, and the replaying compiler reproduces the
compilation process in the state-saving compiler using the saved
input. In the typical usage of these compilers, the state-saving
compiler runs in a production environment that executes the user
application, and the replaying compiler runs in the environment of
the service people who fix problems that occur in the production
environment. Developers of JIT compiler can also benefit from
our technique. In this usage, the state-saving compiler runs test
cases and the replaying compiler reproduces the operation of the
failed tests. Developers do not need to run a test case repeatedly
to reproduce the error even though it is hard-to-reproduce problem.
The data area, called a repository, is allocated in the memory area
of the process for the runtime environment, so that it is
automatically saved into the system dump when the process
crashes. Thus, the support people can analyze the compiled code
using only a system dump from a customer. By using a system
dump, we can avoid the overhead of explicitly writing the
repository to disk during the execution of the user application. At
the same time, the size of repository must be kept small because
the repositories and the data of the user applications must co-exist
in the address space of the process. We reduced the size of the
repository by only storing the input for the compiler whose value
may change after a compilation, because the constant values are
already going to be stored in the system dump. We refer to those
inputs that may change after a compilation as the variable inputs,
and all other inputs as the fixed inputs.
The replaying compiler retrieves the original values of the variable
input from the repository saved in the system dump. Figure 1
shows the architecture of the replay JIT compilation.

3.1 The Input for the JIT Compiler
The Java JIT compiler uses the contents of Java class files, such as
the Java bytecode and string constants, and the runtime data of the
Java VM as its input. Since the bytecode and the string constants
are fixed during the execution of a program, they are automatically
going to be saved into a system dump if they stay in the memory
when the execution environment crashes. The state-saving
compiler only needs to save their addresses, instead of their values,
into the repository. The replaying compiler retrieves their values
from the system dump using the address saved in the repository.

The state-saving compiler always saves the values of the variable
input when it gets that input from the Java VM. It saves each of
the variable inputs in the smallest possible space in the repository.
Since the largest parts of the input for the Java JIT compiler are
the fixed input, such as the bytecode and the string constant, the
state-saving compiler only has to save a small part of the input
into the repository.

The factors affecting the variable input can be categorized into
four groups, as shown in Table 1. This table is a good summary of
what the JIT compiler uses as input. It enumerates all the factors
affecting the input to the JIT compiler, because the other causes of
non-determinism do not affect the JIT compiler. These irrelevant
factors include inter-process communication, interrupts from
devices, and operations depending on the current time. The first
two reasons in the table are due to the definition of the Java
language [8]. The other two reasons are due to the nature of the
dynamic optimizations.

3.2 Scope of Replay Compilation
The size of the repository depends on how the input is received by
the JIT compiler. For the fixed input, the state-saving compiler
only saves its address in the repository, and the replaying compiler
retrieves the value of the input from the system dump using the
address of the fixed input. However, if the state-saving compiler
does not know a persistent address for some fixed input, then the
state-saving compiler needs to save the value of the input into
repository as if it were a variable input. For example, if the JIT
compiler gets bytecode using a function call, the state-saving
compiler needs to save the value of the bytecode because the
return value of a function call does not have a persistent address.

For this reason, the size of the repository can depend on the point
in the code where the input is saved. Thus, the selections of those
points in the code where the input are saved are important.
The JIT compiler works with the other components of the runtime
environment from which the compiler obtains input. In general, a
component reproduces the same sequence of outputs to the
compiler by saving and restoring the input to the component if and
only if it is deterministic.
If the input to the compiler from a component is large and the
input to the component is small, we can reduce the size of the
repository by saving only the input to the component. In this case,
we must replay the group of such components together with the
JIT compiler, instead of replaying only the JIT compiler. We call
this group a replay scope.
Figure 2 shows an example of the replay scopes when a JIT
compiler obtains all of the input from a component of a Java VM
by using function calls. There are two possible replay scopes:
RS1 and RS2. For this example, replaying RS1 saves the
bytecode in the repository, as well as the runtime data, because
using function calls to get the bytecode forces the compiler to save
it in the repository. Thus, we can reduce the size of the repository
by choosing RS2.
In general, setting the boundary of the replay scope at the point
where it captures the function calls tends to create a large
repository because it may save the runtime constants in the
repository as if they were variable data. However, there is a trade-
off between the size of the repository and the workload to
implement the state-saving and replaying compilers, because
expanding the replay scope increases the number of changes in the
source code to implement the state-saving and replaying compilers.

3.3 Replaying the Compilation
The replaying compiler retrieves the values of the input from the
repository and the data area of the Java VM that were saved in the
system dump. Then it reproduces the compilation process by
using that input and generates the diagnostic output.

3.3.1 Invocation of the Replaying Compiler
The replaying compiler is invoked in a bootstrapping process that
executes in the environment of the support staff. The

A component
of Java VM

Variable
input

JIT

Component in the JIT or Java VM
Data structure in the Java VM

Replay scopesThe replay scope for
the smaller repository

Fixed
input

RS1
RS2

The data obtained by using a function call
The data obtained by directly accessing
data structures in memory

Figure 2. An example of the replay scopes

The data area
of the process

Fixed input

Compiled
code

State-saving
compiler

(a) At the time of saving (b) At the time of replaying

Replaying
compiler

repository

Diagnostic
output

The data area
of the process

Fixed input

Compiled
code

repository

Diagnostic
output

System
dump

System
dump

Sent from a
customer

Variable input Variable input

All runtime data are saved
into a system dump when

the process crashes

A new process restores the source
program and the repository from

the system dump

Save only the
variable inputs

Figure 1. Replay JIT compilation

bootstrapping program can be the same Java VM as that was
executed in the production environment. In this case, the
replaying compiler never needs to use the runtime data of the
bootstrapping Java VM, even though it is a Java VM.
The bootstrapping program can be any other program if it provides
interfaces for the replaying compiler to retrieve the input from the
system dump. In this case, it is possible to replay the compilation
of the JIT for one operating system in another operating system if
these compilers apply the same optimizations for both of the
operating systems.
The bootstrapping process is invoked by specifying the name of a
system dump file. The method to replay can be provided either by
command line options or by reading it from console interactively.
There is no restriction on the order of the methods to replay. For
example, we can replay the compilation of all of the compiled
methods in the reverse order of when they were compiled by the
state-saving compiler.

3.3.2 Accessing the Input Saved in a System Dump
The replaying compiler reproduces the compilation process for the
specified method. The function to obtain the input in the state-
saving compiler must be modified for the replaying compiler to
search for the results corresponding to the given parameters from
the restored repository, instead of executing the function again.
Any code reading directly from memory must be modified to
obtain the values from the repository or from the data area of the
Java VM that was saved in the system dump.
The versions of the source code for the state-saving and the
replaying compilers must be synchronized, because this technique
requires both of them to apply the same optimizations for the same
inputs. This requirement does not cause a problem for version
control because the state-saving and the replaying compilers can
be implemented by modifying the same base JIT compiler. All of
the source codes that obtain the inputs in the base compiler are
modified to save and restore, respectively, the inputs. Using
conditional compilation (i.e., #ifdef), both compilers can be built
from a single source code.

Table 1. The variable input used by the Java JIT compiler and the reasons why its values may change
Factor The reason for changing the input The variable input for the JIT compiler Possible optimizations the JIT compiler can apply
Built-in multi-threading of Java language
 A class is initialized when it is used for

the first time in the Java VM.
The JIT compiler typically first compiles
the method that has been executed most
frequently.

• The set of initialized classes
• The address of the compiled code
• The saved results of the JIT

optimizations (such as the results
of an inter-procedural analysis)

• When the class has already been initialized, the
JIT compiler can skip generating the code to
initialize the class.

• The JIT compiler can generate the code that
directly calls the compiled code of the callee
method if it is already compiled.

• The JIT can reuse the saved result of inter-
procedural analysis if it is stored in persistent
memory.

Dynamic linking of Java classes
 A class is loaded when it is accessed for

the first time in the Java VM.
An external reference is resolved when it
is accessed for the first time in the class.

• The class hierarchy of the loaded
classes

• The resolution status of the
external references at the time of
the compilation

• The JIT compiler can use the class hierarchy
analysis to devirtualize the method invocation
of virtual and interface methods.

• For each resolved reference, the JIT compiler
can skip generating the code that checks if the
reference is resolved.

• The JIT compiler may be able to inline the
callee method when the reference to it has been
resolved.

On-line profiler
 The on-line profiler continuously updates

the results.
• The results of the profiler
• The optimization level is decided

based on the results of the profiler

• The JIT compiler will apply more aggressive
optimizations to the frequently executed path, or
can generate the code that is specialized for the
frequently appearing values.

• The JIT compiler selects the set of optimizations
to apply based on the optimization level.

The configuration of the execution environment
 The configuration of the execution

environment, including both hardware and
software information, is set at the time of
the invocation of the Java VM.

• The processor specification (such
as the model and the number of
processors in the machine, and the
cache size)

• The type and version of the
operating system

• The command line options and the
environment variables

• The JIT compiler can generate code that can run
faster in a specific environment than generic
code.

One problem when modifying the code accessing the input
directly is any memory dereference through a pointer restored
from the system dump. Such a pointer points to an address in the
address space of the process that executed the state-saving
compiler. Therefore, accessing this address in the replaying
compiler may access an unexpected address, which might be
invalid, because the memory layout of the replaying process is not
necessarily the same. Thus, the replaying compiler needs to adjust
the values of all of these pointers to the corresponding addresses
in the replaying process.
This adjustment can be avoided by restoring the data area of the
Java VM and the repository into the same address in the replaying
process. Since the inputs to the compiler are stored in the process
heap and the mapped memory region, and not stored in the stack,
the bootstrapping process needs to restore only the heap and the
mapped memory regions. The bootstrapping process should be
able to restore these areas if it restores them at the beginning of its
initialization. The disadvantage of this approach is that the
feasibility very much depends on the target operating system. It
also prevents replaying a compilation that took place in a different
operating system.

3.4 Discussion
The Java VM may also unload a class and delete the contents of
the class from the memory if the class is no longer used by any
class in the Java VM. The class unloading is becoming a common
event in modern Java applications, especially for those that use
generated bytecode or adopt a plug-in based componentized
model, such as Eclipse. Since our technique uses the system
dump to save the fixed input, such as Java bytecode and the string
constants, the replaying compiler cannot restore the fixed input for
the unloaded classes, and it fails to replay such a compilation.

However, the unloaded classes are usually unnecessary for the
problem determination. A Java VM can unload a class only when
all of the classes that can access the class to be unloaded can also
be unloaded [8]. In other words, the classes of live objects and
methods referenced from stack frames are never unloaded. When
a Java VM crashes because of an error in a JIT-compiled method,
the problematic method usually has a stack frame, and thus its
class should not have been unloaded.

It is also possible to implement state-saving and replaying
compilers that could replay the compilation of an unloaded
method. To do this, the state-saving compiler could save the
contents of the unloaded class to a disk when it is unloaded. The
state-saving compiler would also record the timestamps when each
class was unloaded and when each method was compiled. The
replaying compiler would recreate the process memory image
when the target method was compiled by using the system dump
and the file to save the contents of the unloaded classes. The
replaying compiler would use the timestamps to find the memory
image each of the compilations.

Since the unloaded class would have been saved in the middle of
the execution of a user application, this would cause additional
overhead for the replay JIT compilation. This overhead for saving
to a disk could be reduced by saving several unloaded classes at
the same time, but not by a large amount, because the access to a
disk for a single chunk of unloaded classes is usually faster than
several separated accesses for the unloaded classes in small sizes.
The repositories for the unloaded, but not yet saved to a disk,

classes are saved into the system dump when the Java VM crashes
before saving those classes to a disk, because they stay in memory
until they are saved to a disk, though they are made invisible in the
class hierarchy.

Because of this additional overhead, whether or not to support
replaying the unloaded methods is an option for the compiler
writer, calling for balancing between the lower execution overhead
and the higher reliability for reproducing the compilation process.

4. IMPLEMENTATION
This section describes our prototypes of a state-saving compiler
and a replaying compiler, which we have implemented based on
the J9 Java VM [3] and the TR JIT compiler for AIX.

4.1 State-Saving Compiler
The state-saving compiler saves the appropriate values for each of
the input types shown in Table 1 into the repository. Table 2
shows examples of the values that are saved into the repository for
each of the input types. Our state-saving compiler allocates a
memory area as the repository for each compilation of the methods.
The repository works as if it were a cache, so that the compiler can
avoid saving duplicated input that happened to be constant during
the compilation.
If the JIT compiler implements recompilation that compiles a hot
method more than once to optimize it more aggressively, the state-
saving compiler needs to manage the repository by associating it
with the address of the compiled code rather then the address of
the method. Then, it is possible to identify the repository for a
particular compilation of a method at a given optimization level
based on the address of the compiled code.

Table 2. An example of the values to be saved in a repository
The input to a JIT compiler The value to be saved into a repository

The bytecode The address of the compiling method.
The string constant The address of the string constant.
The status of class
initialization

A flag for each class indicating if the class
has been initialized.

The address of the JIT
compiled code

The list of the addresses of the compiled
code blocks invoked from the compiling
method.

The saved results of inter-
procedural analysis

The list of the pointers of the classes that
holds the result of the escape analysis.

The resolution status of
external references

A bitmap indicating which of the external
references have been resolved.

The class hierarchy The parameters and the result of each
function call that checks if there is only a
single implementation of a virtual method.
It returns the address if a single
implementation exists.

The results of an on-line
profiler

The result and the parameters to read the
result from the data structure of the on-line
profiler.

The level of the optimization The value of the optimization level.
The configuration of the
execution environment

The number and the specification of the
processor in the system, and the type and
version of the operating system.

The command line options
and the environment variables

The address of the data structure that holds
the parsed command line options and the
environment variables.

Since the class unloading did not occur in our measurement
environment, this prototype does not save the repositories for the
unloaded classes in the middle of the execution.

4.2 Reducing the Size of the Repository
This section describes the techniques applied to reduce the total
size of repository in a Java VM.

4.2.1 Choosing the Replay Scope
In this section, we will discuss the process to find the replay scope
that minimizes the size of the repository in our JIT compiler. This
consists of four major components as shown in Figure 3. Table 3
describes each component briefly. The main component of the
compiler, COMP, obtains the input from CLSMGT and CHA by
using function calls and from PROF by accessing memory directly.
COMP uses five kinds of input: fixed input such as bytecode and
string constants, the statuses of the classes, the class hierarchy

information, the profiler results, and information about the
execution environment. There are eight points that can be the
boundaries of a replay scope (Bv1, Bv2, Bv3, Bh1, Bh2, Bp1,
BP2, and Be1).
As a first step, we defined a replay scope RS1 that only contains
COMP, and compared the repository size against that of another
replay scope RS2 that contains COMP and CLSMGT. For RS1,
the compiler needs to save the values of the fixed input from
CLSMGT at Bv1 because COMP gets them using function calls.
For RS2, the compiler saves the values of the variable input at
Bv2 and the addresses of the fixed input at Bv3, but it does not
save the values of the fixed input because they will be
automatically saved into the system dump. As a result, the size of
the repository for RS1 was approximately 1.8 times larger then the
size of the JIT-compiled code, but that for RS2 was approximately
24%.
Then we compared the size of the repository for RS2 against that
of other replay scopes to find the replay scope with the smallest
repository. There are two more replay scopes: RS2+CHA that
added CHA into RS2, and RS2+PROF that added PROF into RS2.
The difference of the size of the repositories between RS2 and
RS2+CHA is the difference of the size of the input to be saved at
Bh1 and Bh2, respectively. The compiler calls the functions of
CHA to check if a method can be devirtualized. For RS2, the
compiler needs to save the parameters and the return values of the
function calls.
For RS2+CHA, the compiler needs to save the parameters and the
time stamp of the function calls, and it also saves the time stamps
of each class loading event to record the order of the class loading
and the function calls. Thus, the size of the repository for
RS2+CHA is larger than that of RS2 by at least the size of the
time stamps of the class loading events, because the size of the
time stamp of function calls is equal to or larger than the size of
the return value for the function calls. Another drawback of
RS2+CHA is that we cannot discard the time stamps of class
loading even if they get old, as described in the next section,
because all of the records are necessary to rebuild the class
hierarchy for an error.
The size difference for the repositories between RS2 and
RS2+PROF is the difference of the size of the input values saved
at Bp1 and Bp2, respectively. Since there are usually a few
methods that use the profiler results for their compilations, COMP
needs the profile result at Bp1 only when it recompiles a very
frequently executed method with more aggressive optimizations.
In comparison, since PROF updates the profile data at short
intervals, such as 10 ms, the size of the input at Bp2 is too large to
save. Thus, the size of the repository for RS2 must be smaller.
As discussed above, RS2 is the replay scope for the smallest
repository for the JIT compiler of Figure 3. On the other hand,
implementing the state-saving compiler for RS2 requires more
workload than that for RS1 because it needs to modify CLSMGT
in addition to COMP.

4.2.2 Filtering Trustworthy Methods
We can reduce or limit the total size of the repository in a Java
VM by considering how probable it is that a particular JIT-
compiled method has an error and by assuming that those methods
that are unlikely to have any error are unnecessary to replay for the
problem determination.

CLSMGT

Status of
the classes

COMP

PROFProfiler
result

CHAClass
hierarchy

Bv3
Bv1

Bp2

Bp1
Bv2

Bh2

Java VM JIT compiler

RS1
RS2

Java bytecode,
String constant

Execution
environment

Bh1 Be1

Component in the JIT or Java VM
Data structure in the JIT or Java VM

Boundaries for the source program and their statuses
Boundaries for the classes hierarchy information
Boundaries for the profile data
Boundaries for the data of the execution environment

The data obtained by using a function call
The data obtained by directly accessing
data structures in memory

Program counter

Figure 3. The components of our JIT compiler

Table 3. Description of each component
Component Description

COMP The main component of our JIT compiler, which consists
of optimizers and a code generator.

CLSMGT The component to manage loaded classes and their status.
The status includes the resolution status of the external
references and the set of initialized classes.

PROF The on-line profiler component.
CHA The component to keep track of the current the hierarchy

of loaded classes. The data is used for class hierarchy
analysis so that the JIT can devirtualize virtual and
interface method invocations.

The level of trustworthiness is not uniform for all JIT-compiled
methods, but depends on various factors, such as the category of
the method to be compiled and the time after its compilation. We
call this metric the confidence. We can optionally adopt a filtering
technique to reduce or limit the total size of the repository by
discarding the repositories for those methods with high confidence.
We can use multiple factors to define the confidence of a method
and the order of discarding the repositories.

For example, one factor affecting the confidence is how long it has
been since the method was compiled. A fatal problem in a
compiled method is most likely to crash the process in the first few
executions after compilation. For another example, confidence
depends on the complexity of the method. Since the path length
in the compiler is usually longer to compile a complex method, it
is more likely to cause a problem for the compiler. We can use the
size of the intermediate representation for a method as it is being
compiled, the size of the compiled code, or the time taken to
compile the method as a metric of complexity.

Confidence also depends on the category of a method. The
methods that are commonly used in many programs can be
considered less likely to cause an error because they should be
well tested during the development of the JIT compiler. For
example, the methods of system classes, such as the java.lang
package, are used in many programs, and most of the paths in the
compiler used to compile these methods should have been
executed during development of the compiler. Therefore, we can
reasonably believe that those methods will not cause an error.

The drawback for using this filtering technique is the possible
difficulty in the problem determination if a needed repository was
discarded. For example, this could occur when the confidence is
defined based on the assumption that all paths in the JIT compiled
code were executed, but the problem exists only in a rarely
executed path, perhaps code used for exception handling. The
compiler designer can conserve repository memory, but such
filtering may decrease the reliability of the problem determination.

4.2.3 Compaction and Compression
The state-saving compiler can reduce the size of repository by
removing any runtime datum whose value is the same as a
predefined default for that input. Since the replaying compiler
uses the default value if it fails to find a value for an input in the
repository, it uses the same input as the state-saving compiler.
The default value is usually a conservative value subject to further
improvement of this technique. The replay compilation technique
may be able to narrow down the cause of a problem by changing
the parameters to control the optimizations that are used. In such
a case, the replaying compiler may need an input that was not
accessed by the state-saving compiler, and it uses the default value.
The conservative default value might disable an aggressive
optimization, which might prevent us from reproducing the
problem, or even cause a new problem.
The state-saving compiler can also compress a repository using a
well-known compression technique, such as zlib [18].

4.3 Replaying Compiler
For the case of our implementation, the bootstrapping Java VM
restores all of the repositories and the data area of the Java VM for
running the state-saving compiler from a system dump during its

initialization, and then invokes the replaying compiler. The
bootstrapping process needs to find a repository within a block of
binary data, because a system dump saves the contents of the data
area of the process memory space as a block of unstructured
binary data. Our state-saving compiler manages all repositories
using such a data structure that all of them are reachable from a
single pointer, such as a linked list. The single pointer is stored in
an anchor data structure that has signature words in its header and
trailer. The bootstrapping process scans the signature words in the
system dump to find the saved anchor structure. When it finds the
signature words, it verifies the size, finds the single starting
pointer, and then finds all of the saved repositories by walking
through the data structure.
The anchor structure has another pointer variable that holds the
address of the repository for the currently compiling method
(called the current repository). Since an incomplete repository
will crash the replaying compiler, the current repository should
not be accessible in the list of "complete" repositories. While the
JIT is compiling a method, the pointer holds the address of the
current repository, and clears it when the compilation has finished
successfully. Using this pointer variable, the replaying compiler
can tell if the system crashed during a JIT compilation.

5. EXPERIMENTAL RESULTS
We measured the memory and execution speed overhead for
saving the input into repositories. We used the prototypes of the
state-saving and the replaying compilers described in Section 4 for
these measurements. Table 4 describes the configurations of the
machines used for these measurements. Table 5 describes the
programs we used for the measurements.
Our prototype successfully reproduced the compilation processes
for all of these programs in each of the three tested machines by
executing the state-saving and the replaying compilers in the same
machine. This prototype always creates a system dump when it

Table 4. Configuration of the tested machines
 Machine-1 Machine-2 Machine-3

CPU POWER3,
single processor

POWER4,
4-way SMP

POWER3,
2-way SMP

RAM 768 Mbytes 8 Gbytes 768 Mbytes
OS AIX 5.2L AIX 5.2L AIX 4.3.3

Table 5. Evaluated programs
Program Description

mtrt, jess, compress, db,
mpegaudio, jack, javac

Each of the programs included in the
benchmarks suite SPECjvm98 [14].

SPECjbb The SPECjbb2000 [14] benchmark.
xml parser The operation to parse a sample XML file

using the XML parser for Java [17]. The
sample file is included in the package. The
execution performance was measured by the
elapsed time for parsing the sample file.

jigsaw The operation to start the Jigsaw HTTP
server release 2.2.5a [6], and load the
default top page using a Web browser. The
execution speed was not measured because
this is an I/O bound program.

terminates. In addition, the replaying compiler also successfully
reproduced the compilation processes by using the system dump
generated by a different machine. The replaying compiler
succeeded in replaying all six of possible combinations of the
machines to execute the state-saving compiler and the replaying
compiler.

5.1 The Size of Repository
Figure 4 shows how the total size of repositories changes for the
chosen replay scope. The size is relative to the total size of the
compiled code. We measured the total size of the repository when
we chose both of the replay scopes described in Section 4.2.1,
RS1 and RS2. We applied neither compression using the zlib
library nor any filtering for the methods of high confidence.
The total size of the repository for RS1 and RS2 was 180% and
24%, respectively, relative to the compiled code. (All percentages
are geometric means.) Since RS1 saves the fixed input into the
repository as well as the variable input, the size of the repository
was much larger than that of RS2. As shown by this result, it is

important to choose an appropriate replay scope that avoids saving
the return values from function calls.
Figure 5 shows how the total size of the repository changes due to
compression and filtering. The size is relative to the total size of
the compiled code. The replay scope for this experiment is RS2.
The left two bars for each program show the results when no
compression is used, and the right two bars show the results with
compression using the zlib library. The bars labeled "no filter"
(first and third) show the results when the compiler does not use
filtering and holds the repositories of all of the compiled methods.
The bars labeled "filter system classes" show the results when the
compiler uses filtering of the system classes (the classes in the
java.lang, java.util, java.math, and java.io packages). The
compiler does not discard any old repositories in these
measurements.
The reduction of the size of the repository by filtering the system
classes was 22.7% and 25.4% without and with compression using
the zlib library, respectively. The reduction of the number of the
saved repositories was 38% as shown in Table 6. This table
shows the number of repositories that were saved in a process
memory area and which were to be saved in a system dump when
filtering is and is not used. It also shows the ratios of reduction of
the number of methods by filtering and of the total size of
repositories when no compression is applied. We think the reason
the size reductions are relatively smaller than the reductions in the
number of repositories (due to filtering out the methods of the
system classes) is because many of the filtered methods are
smaller than average methods.
Compression reduced the total size of the repositories by
approximately half. Filtering reduced the total size of repositories
by 25.4% over the compressed repositories, and the reduction
made by the combination of compression and filtering was 62.9%.
As a result, the geometric mean of the sizes of the repositories was
reduced to less than 10% of the compiled code, which was our
initial target as being acceptable for many users.
The total size of the repository is less than 0.1% of the total
memory usage of the Java VM process because the size of the Java
heap is much larger. Thus, either of the replay scopes may be

m
trt

je
ss

co
m

pr
es

s

db

m
pe

ga
ud

io

ja
ck

ja
va

c

SP
EC

jb
b

xm
l p

ar
se

r

jig
sa

w

G
eo

M
ea

n

0%

10%

20%

30%

35%

Relative size to compiled code

No zlib, no f ilter
No zlib, f ilter system clas ses

zlib, no f ilter
zlib, f ilter system classes

Figure 5. The sizes of repositories with compression and
filtering

Table 6. The number of the saved repositories
Program No

filter
Filter system

classes
 Reduction of the size
by filtering (no zlib)

mtrt 153 113 (-26%) -16%
jess 153 104 (-32%) -12%

compress 39 22 (-44%) -25%
db 59 22 (-63%) -38%

mpegaudio 161 141 (-12%) -9%
jack 201 141 (-30%) -16%
javac 604 514 (-15%) -7%

SPECjbb 502 345 (-31%) -20%
xml parser 78 44 (-44%) -25%

jigsaw 160 64 (-60%) -49%

m
trt

je
ss

co
m

pr
es

s

db

m
pe

ga
ud

io

ja
ck

ja
va

c

SP
EC

jb
b

xm
l p

ar
se

r

jig
sa

w

G
eo

M
ea

n

0%

100%

200%

300%

20%

Relativ e size to compiled code RS1 RS2

Figure 4. The sizes of repositories for both replay scopes

suitable for some users. However, we think it is still meaningful
to keep the size of the repository much smaller than the size of the
JIT compiled code, because the compiled code is used to directly
benefit the user by improving the execution performance of the
programs, but the repository is used only for the problem
determination.

5.2 Compilation Time
Figure 6 shows the increases of compilation times in the state-
saving compiler over the times to compile the same methods using
the base compiler. The bars labeled "No zlib" show the
compilation times when no compression was used, and the bars
labeled "zlib" show those times with zlib compression. Filtering
was not applied for both cases in order to measure the upper
bound of the overhead when compressing all of the registries.
Since our JIT compiler implements profile-based recompilation,
the number of compiled methods may not always be the same.
Therefore, we compared the compilation times of the methods that
were compiled in both the base and the state-saving compiler.
The increase of compilation time was up to 2.0% for both cases.
The geometric mean of the increase was about 1.0% and 1.1% for
"No zlib" and "zlib", respectively. Thus, the increase of the
compilation time was very small, and the time to save the input to
the repositories was negligible.

5.3 Execution Speed
The additional overhead in the state-saving compiler against the
base compiler is used to save the input into repositories, because
the state-saving compiler uses the same inputs as the base
compiler and generates the same compiled code. There is no
additional overhead in the compiled code.
Since the increase of compilation time was small, the slowdown of
execution speed was also small. The geometric mean of the
slowdown was only 1%.

6. CONCLUSION
We have proposed a new approach, called replay JIT compilation,
to reproduce the same JIT compilation process offline and
remotely by using two compilers, the state-saving compiler and
the replaying compiler. The state-saving compiler is designed to
run in the production environment as part of the Java runtime and
save into the repository in the memory all of the inputs to the JIT

compiler that are necessary for the replaying compiler to
reproduce the same compilation process later. When the Java
application fails, the operating system will automatically generate
a system dump that includes the repository. We developed our
prototype based on the J9 Java VM and the TR JIT compiler for
AIX and showed that the prototype successfully reproduces the
same compilation processes done by the state-saving compiler.
We did a preliminary experiment, where the overhead of running
the state-saving compiler is negligible and the size of the
additional memory area required for state saving was only 10% of
the compiled code. This is three orders of magnitude smaller than
the size of the diagnostic output file. To our knowledge, this is
the first report of successfully replaying the JIT compilation
process offline.

7. ACKNOWLEDGMENTS
We would like to thank Akihiko Togami of IBM Japan and Trent
Gray-Donald of IBM Canada for helpful discussions on the initial
idea and implementation of the replay JIT compilation. We also
thank Toshimasa Shimizu of IBM Japan for pointing out the
difficulty of the problem determination of the JIT compiled code
in the mission-critical environment, by which we were motivated.
We also thank Derek Inglis of IBM Canada for pointing out the
possible problem on Java class unloading. We also thank the
members of the Systems Group in the IBM Tokyo Research
Laboratory for helpful discussions and comments on the earlier
version of this paper.

8. REFERENCES
[1] D. F. Bacon. Hardware-Assisted Replay of Multiprocessor

Programs. In Proceedings of 1991 ACM/ONR Workshop on
Parallel and Distributed Debugging (PADD). May, 1991.

[2] J. D. Choi and H. Srinivasan. Deterministic Replay of Java
Multithreaded Applications. In Proceedings of the
SIGMETRICS Symposium on Parallel and Distributed Tools
(SPDT), pp. 48-59. August, 1998.

[3] N. Grcevski, A. Kielstra, K. Stoodley, M. Stoodley, and V.
Sundaresan. Java Just-in-Time Compiler and Virtual
Machine Improvements for Server and Middleware
Applications. In Proceedings of the Third Virtual Machine
Research and Technology Symposium (VM '04), pp. 151-162.
May, 2004.

[4] U. Hölzle, C. Chambers, and D. Ungar. Debugging
Optimized Code with Dynamic Deoptimization. In
Proceedings of the ACM SIGPLAN 1992 Conference on
Programming Language Design and Implementation (PLDI),
pp. 32-43. June, 1992.

[5] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and T.
Nakatani. A Study of Devirtualization Techniques for a Java
Just-In-Time Compiler. In Proceedings of ACM SIGPLAN
Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA). pp. 294-310.
October, 2000.

[6] 'Jigsaw - W3C's Server'. Available at
'http://www.w3.org/Jigsaw/'

m
trt

je
ss

co
m

pr
es

s db

m
pe

ga
ud

io

ja
ck

ja
va

c

S
P

EC
jb

b

xm
l p

ar
se

r

jig
sa

w

G
eo

M
ea

n

0%

1%

2%

3%
Increase of compilation time over the base No zlib zlib

Figure 6. Compilation time increases when saving input

[7] T. J. LeBlanc, J. M. Mellor-Crummey. Debugging parallel
programs with Instant Replay. IEEE Transactions on
Computers, Vol. C-36(4), pp.471-482. April, 1987.

[8] T. Lindholm and F. Yellin. The Java Virtual Machine
Specification, available at '
http://java.sun.com/docs/books/vmspec/index.html'

[9] B. P. Miller and J. D. Choi. A Mechanism for Efficient
Debugging of Parallel Programs. In Proceedings of the ACM
SIGPLAN 1988 Conference on Programming Language
Design and Implementation (PLDI), pp. 135-144. June,
1988.

[10] D. Z. Pan and M. A. Linton. Supporting Reverse Execution
of Parallel Programs. In Proceedings of the 1988 ACM
SIGPLAN and SIGOPS Workshop on Parallel and
Distributed Debugging (PADD), pp. 124-129. May, 1988.

[11] M. Paleczny, C. Vick, and C. Click. The Java HotSpot
Server Compiler. In Proceedings of the Java Virtual
Machine Research and Technology Symposium (JVM '01).
April, 2001.

[12] M. Ronsse, K. D. Bosschere, J. C. Kergommeaux. Execution
replay and debugging. In Proceedings of the Fourth
International Workshop on Automated and Algorithmic
Debugging (AADEBUG). August, 2000.

[13] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M.
Kawahito, K. Ishizaki, H. Komatsu, and T. Nakatani.

Overview of the IBM Java Just-In-Time Compiler. IBM
Systems Journal, Java Performance Issue, Vol. 39(1),
February, 2000.

[14] Standard Performance Evaluation Corporation. 'SPEC
JVM98 Benchmarks', available at
'http://www.spec.org/osg/jvm98/' and SPECjbb-2000,
available at 'http://www.spec.org/osg/jbb2000/'

[15] J. Steven, P. Chandra, B. Fleck, and A. Podgurski. jRapture:
A Capture/Replay Tool for Observation-Based Testing. In
Proceedings of International Symposium on Software Testing
and Analysis (ISSTA), pp. 158-167. August, 2000.

[16] M. M. Tikir, G. Y. Lueh, and J. K. Hollingsworth.
Recompilation for Debugging Support in a JIT-Compiler. In
Proceedings of Workshop on Program Analysis for Software
Tools and Engineering (PASTE), pp. 10-17. November,
2002.

[17] 'XML Parser for Java'. Available at
'http://www.alphaworks.ibm.com/tech/xml4j'

[18] zlib, available at 'http://www.gzip.org/zlib/'

