
January 31, 2006 
RT0641 
Computer Science   10 pages 

 

Research Report 
 
Problem Determination for a Java JIT Compiler using Replay 
Compilation 
 
Kazunori Ogata, Tamiya Onodera, Kiyokuni Kawachiya, Hideaki 
Komatsu, Toshio Nakatani 
 
IBM Research, Tokyo Research Laboratory 
IBM Japan, Ltd. 
1623-14 Shimotsuruma, Yamato 
Kanagawa 242-8502, Japan 
 
 
 
 
 
 
 
 
 
 
 
 

      

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

 
 



Problem Determination for a Java JIT Compiler 
using Replay Compilation 

Kazunori Ogata, Tamiya Onodera, Kiyokuni Kawachiya, 
Hideaki Komatsu, Toshio Nakatani 

IBM Tokyo Research Laboratory 
1623-14 Shimotsuruma, Yamato-shi, Kanagawa 242-8502, Japan 

ogatak@jp.ibm.com 
 

ABSTRACT 
The performance of Java has been tremendously improved by the 
advance of the compilation technology.  However, debugging a 
dynamic compiler is much harder than a static compiler.  
Recompiling the problematic method again to produce a 
diagnostic output does not necessarily work because the 
compilation of a method depends on the runtime information at 
the time of compilation. 
In this paper, we propose a new approach, called replay JIT 
compilation, to reproduce the same compilation process remotely 
using two compilers: the state-saving compiler saves all the input 
to the JIT compiler in the production environment, and the 
replaying compiler reproduces the same compilation process later.  
We reduced the overhead to save the input by using the system 
dump and categorizing the input based on the constancy.  In our 
preliminary experiment, the overhead of running the state-saving 
compiler was negligible, and the size of the additional memory 
area needed for saving input was only 10% of the compiler-
generated code. 
 

Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging – 
debugging aids; D.3.4 [Programming Languages]: Processors – 
compilers, debuggers. 

General Terms 
Reliability. 

Keywords 
Replay compilation, deterministic replay, problem determination, 
Java, JIT compiler, dynamic optimization, serviceability. 

1. INTRODUCTION 
Over the decade, the performance of Java has been tremendously 
improved.  Undoubtedly, the advance of the compilation 

technology has significantly contributed to this improvement.  The 
Java JIT compiler performs increasingly more advanced [5,11,13], 
thus complicated, optimizations, and can generate more efficient 
code than a static compiler by taking advantage of runtime profiles. 
However, debugging a dynamic compiler is much harder than a 
static compiler.  Assume that an application crashed in a 
production environment, and that we identified through analysis 
that the code generated for a certain method may cause the crash.  
What will then be the next step?  If the application was developed 
with a static compiler, we can simply recompile the method with 
an option to produce diagnostic output.  The diagnostic output 
contains all the details of what the compiler does, including what 
optimizations are applied and how each optimization transforms 
the code.  This greatly helps a compiler writer analyze a bug in the 
compiler. 
We could do the same when the application is written in Java.  
Precisely, we could have the problematic method recompiled 
again by rerunning the application with an option specified to 
produce a diagnostic output.  However, this does not necessarily 
work because the method may not be compiled in exactly the same 
way.  The reason is that the compilation of a method depends on 
not only the bytecode but also on the runtime information at the 
time of compilation, such as the resolution status of classes 
referenced in the method, the class hierarchy, and the execution 
profile.  This runtime information is not necessarily the same from 
run to run because the Java application is multi-threaded, and non-
determinism in execution is unavoidable.  We actually observed 
that the combination of the applied optimizations had changed at 
least one out of ten executions for each of the Java programs we 
evaluated because of changes in the execution order of threads and 
the results of the built-in profiler. 
A straightforward solution would be to run an application with the 
diagnostic option specified even in a production environment.  
However, this significantly increases the compilation time, and 
thus the execution time of the application.  Furthermore, forcing 
the compiler to always generate the diagnostic output would 
require a prohibitively large amount of the disk space since the 
diagnostic output for a single execution of a SPECjvm98 
benchmark can be more than hundreds of megabytes. 
In this paper, we propose a new approach, called replay JIT 
compilation, which allows methods to be recompiled exactly the 
same way as in a production environment.  For the problem 
determination based on the system dump, our approach uses two 
compilers, the state-saving compiler and the replaying compiler.  
The state-saving compiler is run in a production environment, and, 
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while compiling a method, records into a repository all of the 
runtime information referenced during the compilation.  The 
repository is in the main memory, and automatically included in 
the system dump when the application crashes.  We then run the 
replaying compiler with the system dump, to recompile any target 
method with the options for diagnostic output. 
It is worth noting that using a system dump to reproduce a 
problem that crashed a mission-critical application is much 
preferable to trying to reproduce the problem by recreating the 
environment in which the application crashed at a remote site.  
Such an application tends to be very complicated to install, 
configure, and deploy, and may demand substantial hardware 
resources.  Thus, it would be very hard to set up the same 
environment at a remote site to reproduce the observed problem.  
In addition, it may be impossible to obtain the data to run the 
application if the data includes highly confidential or sensitive 
information such as credit card numbers. 
We implemented our prototype based on the J9 Java VM [3] and 
the TR JIT compiler for AIX and successfully recreated the same 
compilation processes with the replaying compiler.  Our 
preliminary experiment showed that the overhead of running the 
state-saving compiler is negligible, and the total size of the 
additional memory area required for saving the states is only 10% 
of that of the compiled code.  This is three orders of magnitude 
smaller than the original diagnostic output file.  To our knowledge, 
this is the first report describing how to successfully replay the JIT 
compilation process offline. 
The rest of this paper is organized as follows.  Section 2 
summarizes related work.  Section 3 discusses our approach to 
replaying the JIT compilation using a system dump.  Section 4 
describes the implementation of our prototype of the replay JIT 
compiler.  Section 5 shows how small the overhead of the replay 
JIT compilation is in terms of the size of the saved input and the 
time to save the input.  Section 6 offers concluding remarks. 

2. RELATED WORK 
Trace-and-replay is a common technique for cyclic debugging of 
multi-threaded programs.  There are two approaches for trace-and-
replay, ordering-based and content-based [12] approaches. 
The ordering-based approach is to record and replay the order of 
synchronization events [7], such as locking and message passing.  
For this approach, many techniques [1,2,7,9] have been developed 
and discussed to trace and replay the program execution with a 
little overhead.  For a Java JIT compiler, the compiler itself is a 
single-threaded program and it operates deterministically.  The 
reason for the non-deterministic operation of the JIT compiler is 
that the input from the Java VM changes non-deterministically 
during the execution of the Java program.  The input to the JIT 
compiler is the runtime data of the Java VM.  Since they are 
changed by many of the typical Java operations, such as object 
allocation, the access to a field variable, or the method invocations, 
it is impractical to use the ordering-based approach for a Java VM 
to replay the input to the JIT compiler by recording the order of 
those operations 
The content-based approach is to save and restore the values of the 
input.  Recap [10] records the input for a program.  However, the 
size of the trace became large even on a slow VAX-11/780 
machine, and a faster machine will produce an unacceptably huge 

trace.  The jRapture system [15] records the parameters and the 
results of a Java API that interacts with the underlying system.  
Their prototype was three to ten times slower than the normal 
execution.  However, the only problem of the content-based 
approach is the high overhead.  Thus, we adopted this approach 
and made it practical for JIT compilers by minimizing the input 
that the JIT compiler must save. 
Dynamic deoptmimization [4] is a technique to debug a program 
compiled by a JIT compiler.  Tikir [16] also addressed problem 
determination with a JIT compiler.  These techniques compile the 
target method again and generate new compiled code that is good 
for debugging.  Because their objective is to debug Java 
applications by assuming that the JIT compiler itself is bug-free, it 
is not applicable to debugging the JIT compiler itself. 

3. OUR APPROACH 
The replay JIT compilation technique uses two compilers: the 
state-saving compiler saves all of the input for the JIT compiler 
into a special data area, and the replaying compiler reproduces the 
compilation process in the state-saving compiler using the saved 
input.  In the typical usage of these compilers, the state-saving 
compiler runs in a production environment that executes the user 
application, and the replaying compiler runs in the environment of 
the service people who fix problems that occur in the production 
environment.  Developers of JIT compiler can also benefit from 
our technique.  In this usage, the state-saving compiler runs test 
cases and the replaying compiler reproduces the operation of the 
failed tests.  Developers do not need to run a test case repeatedly 
to reproduce the error even though it is hard-to-reproduce problem. 
The data area, called a repository, is allocated in the memory area 
of the process for the runtime environment, so that it is 
automatically saved into the system dump when the process 
crashes.  Thus, the support people can analyze the compiled code 
using only a system dump from a customer.  By using a system 
dump, we can avoid the overhead of explicitly writing the 
repository to disk during the execution of the user application.  At 
the same time, the size of repository must be kept small because 
the repositories and the data of the user applications must co-exist 
in the address space of the process.  We reduced the size of the 
repository by only storing the input for the compiler whose value 
may change after a compilation, because the constant values are 
already going to be stored in the system dump.  We refer to those 
inputs that may change after a compilation as the variable inputs, 
and all other inputs as the fixed inputs.  
The replaying compiler retrieves the original values of the variable 
input from the repository saved in the system dump.  Figure 1 
shows the architecture of the replay JIT compilation. 

3.1 The Input for the JIT Compiler 
The Java JIT compiler uses the contents of Java class files, such as 
the Java bytecode and string constants, and the runtime data of the 
Java VM as its input.  Since the bytecode and the string constants 
are fixed during the execution of a program, they are automatically 
going to be saved into a system dump if they stay in the memory 
when the execution environment crashes.  The state-saving 
compiler only needs to save their addresses, instead of their values, 
into the repository.  The replaying compiler retrieves their values 
from the system dump using the address saved in the repository. 



The state-saving compiler always saves the values of the variable 
input when it gets that input from the Java VM.  It saves each of 
the variable inputs in the smallest possible space in the repository.  
Since the largest parts of the input for the Java JIT compiler are 
the fixed input, such as the bytecode and the string constant, the 
state-saving compiler only has to save a small part of the input 
into the repository. 

The factors affecting the variable input can be categorized into 
four groups, as shown in Table 1.  This table is a good summary of 
what the JIT compiler uses as input. It enumerates all the factors 
affecting the input to the JIT compiler, because the other causes of 
non-determinism do not affect the JIT compiler.  These irrelevant 
factors include inter-process communication, interrupts from 
devices, and operations depending on the current time.  The first 
two reasons in the table are due to the definition of the Java 
language [8].  The other two reasons are due to the nature of the 
dynamic optimizations. 

3.2 Scope of Replay Compilation 
The size of the repository depends on how the input is received by 
the JIT compiler.  For the fixed input, the state-saving compiler 
only saves its address in the repository, and the replaying compiler 
retrieves the value of the input from the system dump using the 
address of the fixed input.  However, if the state-saving compiler 
does not know a persistent address for some fixed input, then the 
state-saving compiler needs to save the value of the input into 
repository as if it were a variable input.   For example, if the JIT 
compiler gets bytecode using a function call, the state-saving 
compiler needs to save the value of the bytecode because the 
return value of a function call does not have a persistent address. 

For this reason, the size of the repository can depend on the point 
in the code where the input is saved.  Thus, the selections of those 
points in the code where the input are saved are important. 
The JIT compiler works with the other components of the runtime 
environment from which the compiler obtains input.  In general, a 
component reproduces the same sequence of outputs to the 
compiler by saving and restoring the input to the component if and 
only if it is deterministic. 
If the input to the compiler from a component is large and the 
input to the component is small, we can reduce the size of the 
repository by saving only the input to the component.  In this case, 
we must replay the group of such components together with the 
JIT compiler, instead of replaying only the JIT compiler.  We call 
this group a replay scope. 
Figure 2 shows an example of the replay scopes when a JIT 
compiler obtains all of the input from a component of a Java VM 
by using function calls.  There are two possible replay scopes: 
RS1 and RS2.  For this example, replaying RS1 saves the 
bytecode in the repository, as well as the runtime data, because 
using function calls to get the bytecode forces the compiler to save 
it in the repository.  Thus, we can reduce the size of the repository 
by choosing RS2. 
In general, setting the boundary of the replay scope at the point 
where it captures the function calls tends to create a large 
repository because it may save the runtime constants in the 
repository as if they were variable data.  However, there is a trade-
off between the size of the repository and the workload to 
implement the state-saving and replaying compilers, because 
expanding the replay scope increases the number of changes in the 
source code to implement the state-saving and replaying compilers. 

3.3 Replaying the Compilation 
The replaying compiler retrieves the values of the input from the 
repository and the data area of the Java VM that were saved in the 
system dump.  Then it reproduces the compilation process by 
using that input and generates the diagnostic output. 

3.3.1 Invocation of the Replaying Compiler 
The replaying compiler is invoked in a bootstrapping process that 
executes in the environment of the support staff.  The 
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bootstrapping program can be the same Java VM as that was 
executed in the production environment.  In this case, the 
replaying compiler never needs to use the runtime data of the 
bootstrapping Java VM, even though it is a Java VM. 
The bootstrapping program can be any other program if it provides 
interfaces for the replaying compiler to retrieve the input from the 
system dump.  In this case, it is possible to replay the compilation 
of the JIT for one operating system in another operating system if 
these compilers apply the same optimizations for both of the 
operating systems. 
The bootstrapping process is invoked by specifying the name of a 
system dump file.  The method to replay can be provided either by 
command line options or by reading it from console interactively.  
There is no restriction on the order of the methods to replay.  For 
example, we can replay the compilation of all of the compiled 
methods in the reverse order of when they were compiled by the 
state-saving compiler. 

3.3.2 Accessing the Input Saved in a System Dump 
The replaying compiler reproduces the compilation process for the 
specified method.  The function to obtain the input in the state-
saving compiler must be modified for the replaying compiler to 
search for the results corresponding to the given parameters from 
the restored repository, instead of executing the function again.  
Any code reading directly from memory must be modified to 
obtain the values from the repository or from the data area of the 
Java VM that was saved in the system dump. 
The versions of the source code for the state-saving and the 
replaying compilers must be synchronized, because this technique 
requires both of them to apply the same optimizations for the same 
inputs.  This requirement does not cause a problem for version 
control because the state-saving and the replaying compilers can 
be implemented by modifying the same base JIT compiler.  All of 
the source codes that obtain the inputs in the base compiler are 
modified to save and restore, respectively, the inputs.  Using 
conditional compilation (i.e., #ifdef), both compilers can be built 
from a single source code. 

Table 1. The variable input used by the Java JIT compiler and the reasons why its values may change 
Factor The reason for changing the input  The variable input for the JIT compiler Possible optimizations the JIT compiler can apply 
Built-in multi-threading of Java language 
 A class is initialized when it is used for 

the first time in the Java VM. 
The JIT compiler typically first compiles 
the method that has been executed most 
frequently. 

• The set of initialized classes 
• The address of the compiled code 
• The saved results of the JIT 

optimizations (such as the results 
of an inter-procedural analysis) 

• When the class has already been initialized, the 
JIT compiler can skip generating the code to 
initialize the class. 

• The JIT compiler can generate the code that 
directly calls the compiled code of the callee 
method if it is already compiled. 

• The JIT can reuse the saved result of inter-
procedural analysis if it is stored in persistent 
memory. 

Dynamic linking of Java classes 
 A class is loaded when it is accessed for 

the first time in the Java VM. 
An external reference is resolved when it 
is accessed for the first time in the class. 

• The class hierarchy of the loaded 
classes  

• The resolution status of the 
external references at the time of 
the compilation 

• The JIT compiler can use the class hierarchy 
analysis to devirtualize the method invocation 
of virtual and interface methods. 

• For each resolved reference, the JIT compiler 
can skip generating the code that checks if the 
reference is resolved. 

• The JIT compiler may be able to inline the 
callee method when the reference to it has been 
resolved. 

On-line profiler 
 The on-line profiler continuously updates 

the results. 
• The results of the profiler 
• The optimization level is decided 

based on the results of the profiler 

• The JIT compiler will apply more aggressive 
optimizations to the frequently executed path, or 
can generate the code that is specialized for the 
frequently appearing values. 

• The JIT compiler selects the set of optimizations 
to apply based on the optimization level. 

The configuration of the execution environment 
 The configuration of the execution 

environment, including both hardware and 
software information, is set at the time of 
the invocation of the Java VM. 

• The processor specification (such 
as the model and the number of 
processors in the machine, and the 
cache size) 

• The type and version of the 
operating system 

• The command line options and the 
environment variables 

• The JIT compiler can generate code that can run 
faster in a specific environment than generic 
code. 



One problem when modifying the code accessing the input 
directly is any memory dereference through a pointer restored 
from the system dump.  Such a pointer points to an address in the 
address space of the process that executed the state-saving 
compiler.  Therefore, accessing this address in the replaying 
compiler may access an unexpected address, which might be 
invalid, because the memory layout of the replaying process is not 
necessarily the same.  Thus, the replaying compiler needs to adjust 
the values of all of these pointers to the corresponding addresses 
in the replaying process. 
This adjustment can be avoided by restoring the data area of the 
Java VM and the repository into the same address in the replaying 
process.  Since the inputs to the compiler are stored in the process 
heap and the mapped memory region, and not stored in the stack, 
the bootstrapping process needs to restore only the heap and the 
mapped memory regions.  The bootstrapping process should be 
able to restore these areas if it restores them at the beginning of its 
initialization.  The disadvantage of this approach is that the 
feasibility very much depends on the target operating system.  It 
also prevents replaying a compilation that took place in a different 
operating system. 

3.4 Discussion 
The Java VM may also unload a class and delete the contents of 
the class from the memory if the class is no longer used by any 
class in the Java VM.  The class unloading is becoming a common 
event in modern Java applications, especially for those that use 
generated bytecode or adopt a plug-in based componentized 
model, such as Eclipse.  Since our technique uses the system 
dump to save the fixed input, such as Java bytecode and the string 
constants, the replaying compiler cannot restore the fixed input for 
the unloaded classes, and it fails to replay such a compilation. 

However, the unloaded classes are usually unnecessary for the 
problem determination.  A Java VM can unload a class only when 
all of the classes that can access the class to be unloaded can also 
be unloaded [8].  In other words, the classes of live objects and 
methods referenced from stack frames are never unloaded.  When 
a Java VM crashes because of an error in a JIT-compiled method, 
the problematic method usually has a stack frame, and thus its 
class should not have been unloaded. 

It is also possible to implement state-saving and replaying 
compilers that could replay the compilation of an unloaded 
method.  To do this, the state-saving compiler could save the 
contents of the unloaded class to a disk when it is unloaded. The 
state-saving compiler would also record the timestamps when each 
class was unloaded and when each method was compiled.  The 
replaying compiler would recreate the process memory image 
when the target method was compiled by using the system dump 
and the file to save the contents of the unloaded classes.  The 
replaying compiler would use the timestamps to find the memory 
image each of the compilations. 

Since the unloaded class would have been saved in the middle of 
the execution of a user application, this would cause additional 
overhead for the replay JIT compilation.  This overhead for saving 
to a disk could be reduced by saving several unloaded classes at 
the same time, but not by a large amount, because the access to a 
disk for a single chunk of unloaded classes is usually faster than 
several separated accesses for the unloaded classes in small sizes.  
The repositories for the unloaded, but not yet saved to a disk, 

classes are saved into the system dump when the Java VM crashes 
before saving those classes to a disk, because they stay in memory 
until they are saved to a disk, though they are made invisible in the 
class hierarchy. 

Because of this additional overhead, whether or not to support 
replaying the unloaded methods is an option for the compiler 
writer, calling for balancing between the lower execution overhead 
and the higher reliability for reproducing the compilation process. 

4. IMPLEMENTATION 
This section describes our prototypes of a state-saving compiler 
and a replaying compiler, which we have implemented based on 
the J9 Java VM [3] and the TR JIT compiler for AIX. 

4.1 State-Saving Compiler 
The state-saving compiler saves the appropriate values for each of 
the input types shown in Table 1 into the repository.  Table 2 
shows examples of the values that are saved into the repository for 
each of the input types.  Our state-saving compiler allocates a 
memory area as the repository for each compilation of the methods.  
The repository works as if it were a cache, so that the compiler can 
avoid saving duplicated input that happened to be constant during 
the compilation. 
If the JIT compiler implements recompilation that compiles a hot 
method more than once to optimize it more aggressively, the state-
saving compiler needs to manage the repository by associating it 
with the address of the compiled code rather then the address of 
the method. Then, it is possible to identify the repository for a 
particular compilation of a method at a given optimization level 
based on the address of the compiled code. 

Table 2.  An example of the values to be saved in a repository
The input to a JIT compiler The value to be saved into a repository 

The bytecode The address of the compiling method. 
The string constant The address of the string constant. 
The status of class 
initialization 

A flag for each class indicating if the class 
has been initialized. 

The address of the JIT 
compiled code 

The list of the addresses of the compiled 
code blocks invoked from the compiling 
method. 

The saved results of inter-
procedural analysis 

The list of the pointers of the classes that 
holds the result of the escape analysis. 

The resolution status of 
external references 

A bitmap indicating which of the external 
references have been resolved. 

The class hierarchy The parameters and the result of each 
function call that checks if there is only a 
single implementation of a virtual method.  
It returns the address if a single 
implementation exists. 

The results of an on-line 
profiler 

The result and the parameters to read the 
result from the data structure of the on-line 
profiler. 

The level of the optimization The value of the optimization level. 
The configuration of the 
execution environment 

The number and the specification of the 
processor in the system, and the type and 
version of the operating system. 

The command line options 
and the environment variables

The address of the data structure that holds 
the parsed command line options and the 
environment variables. 



Since the class unloading did not occur in our measurement 
environment, this prototype does not save the repositories for the 
unloaded classes in the middle of the execution. 

4.2 Reducing the Size of the Repository 
This section describes the techniques applied to reduce the total 
size of repository in a Java VM. 

4.2.1 Choosing the Replay Scope 
In this section, we will discuss the process to find the replay scope 
that minimizes the size of the repository in our JIT compiler.  This 
consists of four major components as shown in Figure 3.  Table 3 
describes each component briefly.  The main component of the 
compiler, COMP, obtains the input from CLSMGT and CHA by 
using function calls and from PROF by accessing memory directly.  
COMP uses five kinds of input: fixed input such as bytecode and 
string constants, the statuses of the classes, the class hierarchy 

information, the profiler results, and information about the 
execution environment.  There are eight points that can be the 
boundaries of a replay scope (Bv1, Bv2, Bv3, Bh1, Bh2, Bp1, 
BP2, and Be1). 
As a first step, we defined a replay scope RS1 that only contains 
COMP, and compared the repository size against that of another 
replay scope RS2 that contains COMP and CLSMGT.  For RS1, 
the compiler needs to save the values of the fixed input from 
CLSMGT at Bv1 because COMP gets them using function calls.  
For RS2, the compiler saves the values of the variable input at 
Bv2 and the addresses of the fixed input at Bv3, but it does not 
save the values of the fixed input because they will be 
automatically saved into the system dump.  As a result, the size of 
the repository for RS1 was approximately 1.8 times larger then the 
size of the JIT-compiled code, but that for RS2 was approximately 
24%. 
Then we compared the size of the repository for RS2 against that 
of other replay scopes to find the replay scope with the smallest 
repository.  There are two more replay scopes: RS2+CHA that 
added CHA into RS2, and RS2+PROF that added PROF into RS2. 
The difference of the size of the repositories between RS2 and 
RS2+CHA is the difference of the size of the input to be saved at 
Bh1 and Bh2, respectively.  The compiler calls the functions of 
CHA to check if a method can be devirtualized.  For RS2, the 
compiler needs to save the parameters and the return values of the 
function calls. 
For RS2+CHA, the compiler needs to save the parameters and the 
time stamp of the function calls, and it also saves the time stamps 
of each class loading event to record the order of the class loading 
and the function calls.  Thus, the size of the repository for 
RS2+CHA is larger than that of RS2 by at least the size of the 
time stamps of the class loading events, because the size of the 
time stamp of function calls is equal to or larger than the size of 
the return value for the function calls.  Another drawback of 
RS2+CHA is that we cannot discard the time stamps of class 
loading even if they get old, as described in the next section, 
because all of the records are necessary to rebuild the class 
hierarchy for an error. 
The size difference for the repositories between RS2 and 
RS2+PROF is the difference of the size of the input values saved 
at Bp1 and Bp2, respectively.  Since there are usually a few 
methods that use the profiler results for their compilations, COMP 
needs the profile result at Bp1 only when it recompiles a very 
frequently executed method with more aggressive optimizations.  
In comparison, since PROF updates the profile data at short 
intervals, such as 10 ms, the size of the input at Bp2 is too large to 
save.  Thus, the size of the repository for RS2 must be smaller. 
As discussed above, RS2 is the replay scope for the smallest 
repository for the JIT compiler of Figure 3.  On the other hand, 
implementing the state-saving compiler for RS2 requires more 
workload than that for RS1 because it needs to modify CLSMGT 
in addition to COMP. 

4.2.2 Filtering Trustworthy Methods 
We can reduce or limit the total size of the repository in a Java 
VM by considering how probable it is that a particular JIT-
compiled method has an error and by assuming that those methods 
that are unlikely to have any error are unnecessary to replay for the 
problem determination. 
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Figure 3. The components of our JIT compiler 
 

Table 3.  Description of each component 
Component Description 

COMP The main component of our JIT compiler, which consists 
of optimizers and a code generator. 

CLSMGT The component to manage loaded classes and their status.  
The status includes the resolution status of the external 
references and the set of initialized classes. 

PROF The on-line profiler component. 
CHA The component to keep track of the current the hierarchy 

of loaded classes.  The data is used for class hierarchy 
analysis so that the JIT can devirtualize virtual and 
interface method invocations. 



The level of trustworthiness is not uniform for all JIT-compiled 
methods, but depends on various factors, such as the category of 
the method to be compiled and the time after its compilation.  We 
call this metric the confidence.  We can optionally adopt a filtering 
technique to reduce or limit the total size of the repository by 
discarding the repositories for those methods with high confidence.  
We can use multiple factors to define the confidence of a method 
and the order of discarding the repositories. 

For example, one factor affecting the confidence is how long it has 
been since the method was compiled.  A fatal problem in a 
compiled method is most likely to crash the process in the first few 
executions after compilation.  For another example, confidence 
depends on the complexity of the method.  Since the path length 
in the compiler is usually longer to compile a complex method, it 
is more likely to cause a problem for the compiler.  We can use the 
size of the intermediate representation for a method as it is being 
compiled, the size of the compiled code, or the time taken to 
compile the method as a metric of complexity. 

Confidence also depends on the category of a method.  The 
methods that are commonly used in many programs can be 
considered less likely to cause an error because they should be 
well tested during the development of the JIT compiler.  For 
example, the methods of system classes, such as the java.lang 
package, are used in many programs, and most of the paths in the 
compiler used to compile these methods should have been 
executed during development of the compiler.  Therefore, we can 
reasonably believe that those methods will not cause an error.  

The drawback for using this filtering technique is the possible 
difficulty in the problem determination if a needed repository was 
discarded.  For example, this could occur when the confidence is 
defined based on the assumption that all paths in the JIT compiled 
code were executed, but the problem exists only in a rarely 
executed path, perhaps code used for exception handling.  The 
compiler designer can conserve repository memory, but such 
filtering may decrease the reliability of the problem determination. 

4.2.3 Compaction and Compression 
The state-saving compiler can reduce the size of repository by 
removing any runtime datum whose value is the same as a 
predefined default for that input.  Since the replaying compiler 
uses the default value if it fails to find a value for an input in the 
repository, it uses the same input as the state-saving compiler. 
The default value is usually a conservative value subject to further 
improvement of this technique.  The replay compilation technique 
may be able to narrow down the cause of a problem by changing 
the parameters to control the optimizations that are used.  In such 
a case, the replaying compiler may need an input that was not 
accessed by the state-saving compiler, and it uses the default value.  
The conservative default value might disable an aggressive 
optimization, which might prevent us from reproducing the 
problem, or even cause a new problem. 
The state-saving compiler can also compress a repository using a 
well-known compression technique, such as zlib [18]. 

4.3 Replaying Compiler 
For the case of our implementation, the bootstrapping Java VM 
restores all of the repositories and the data area of the Java VM for 
running the state-saving compiler from a system dump during its 

initialization, and then invokes the replaying compiler.  The 
bootstrapping process needs to find a repository within a block of 
binary data, because a system dump saves the contents of the data 
area of the process memory space as a block of unstructured 
binary data.  Our state-saving compiler manages all repositories 
using such a data structure that all of them are reachable from a 
single pointer, such as a linked list.  The single pointer is stored in 
an anchor data structure that has signature words in its header and 
trailer.  The bootstrapping process scans the signature words in the 
system dump to find the saved anchor structure.  When it finds the 
signature words, it verifies the size, finds the single starting 
pointer, and then finds all of the saved repositories by walking 
through the data structure. 
The anchor structure has another pointer variable that holds the 
address of the repository for the currently compiling method 
(called the current repository).  Since an incomplete repository 
will crash the replaying compiler, the current repository should 
not be accessible in the list of "complete" repositories.  While the 
JIT is compiling a method, the pointer holds the address of the 
current repository, and clears it when the compilation has finished 
successfully.  Using this pointer variable, the replaying compiler 
can tell if the system crashed during a JIT compilation. 

5. EXPERIMENTAL RESULTS 
We measured the memory and execution speed overhead for 
saving the input into repositories.  We used the prototypes of the 
state-saving and the replaying compilers described in Section 4 for 
these measurements.  Table 4 describes the configurations of the 
machines used for these measurements.  Table 5 describes the 
programs we used for the measurements. 
Our prototype successfully reproduced the compilation processes 
for all of these programs in each of the three tested machines by 
executing the state-saving and the replaying compilers in the same 
machine.  This prototype always creates a system dump when it 

Table 4.  Configuration of the tested machines 
 Machine-1 Machine-2 Machine-3 

CPU POWER3,  
single processor 

POWER4,  
4-way SMP 

POWER3,  
2-way SMP 

RAM 768 Mbytes 8 Gbytes 768 Mbytes 
OS AIX 5.2L AIX 5.2L AIX 4.3.3 

 

Table 5.  Evaluated programs 
Program Description 

mtrt, jess, compress, db, 
mpegaudio, jack, javac

Each of the programs included in the 
benchmarks suite SPECjvm98 [14]. 

SPECjbb The SPECjbb2000 [14] benchmark. 
xml parser The operation to parse a sample XML file

using the XML parser for Java [17].  The 
sample file is included in the package.  The 
execution performance was measured by the 
elapsed time for parsing the sample file. 

jigsaw The operation to start the Jigsaw HTTP 
server release 2.2.5a [6], and load the 
default top page using a Web browser.  The 
execution speed was not measured because 
this is an I/O bound program. 



terminates.  In addition, the replaying compiler also successfully 
reproduced the compilation processes by using the system dump 
generated by a different machine.  The replaying compiler 
succeeded in replaying all six of possible combinations of the 
machines to execute the state-saving compiler and the replaying 
compiler. 

5.1 The Size of Repository 
Figure 4 shows how the total size of repositories changes for the 
chosen replay scope.  The size is relative to the total size of the 
compiled code.  We measured the total size of the repository when 
we chose both of the replay scopes described in Section 4.2.1, 
RS1 and RS2.  We applied neither compression using the zlib 
library nor any filtering for the methods of high confidence. 
The total size of the repository for RS1 and RS2 was 180% and 
24%, respectively, relative to the compiled code.  (All percentages 
are geometric means.)  Since RS1 saves the fixed input into the 
repository as well as the variable input, the size of the repository 
was much larger than that of RS2.  As shown by this result, it is 

important to choose an appropriate replay scope that avoids saving 
the return values from function calls. 
Figure 5 shows how the total size of the repository changes due to 
compression and filtering.  The size is relative to the total size of 
the compiled code.  The replay scope for this experiment is RS2.  
The left two bars for each program show the results when no 
compression is used, and the right two bars show the results with 
compression using the zlib library.  The bars labeled "no filter" 
(first and third) show the results when the compiler does not use 
filtering and holds the repositories of all of the compiled methods.  
The bars labeled "filter system classes" show the results when the 
compiler uses filtering of the system classes (the classes in the 
java.lang, java.util, java.math, and java.io packages).  The 
compiler does not discard any old repositories in these 
measurements. 
The reduction of the size of the repository by filtering the system 
classes was 22.7% and 25.4% without and with compression using 
the zlib library, respectively.  The reduction of the number of the 
saved repositories was 38% as shown in Table 6.  This table 
shows the number of repositories that were saved in a process 
memory area and which were to be saved in a system dump when 
filtering is and is not used.  It also shows the ratios of reduction of 
the number of methods by filtering and of the total size of 
repositories when no compression is applied.  We think the reason 
the size reductions are relatively smaller than the reductions in the 
number of repositories (due to filtering out the methods of the 
system classes) is because many of the filtered methods are 
smaller than average methods. 
Compression reduced the total size of the repositories by 
approximately half.  Filtering reduced the total size of repositories 
by 25.4% over the compressed repositories, and the reduction 
made by the combination of compression and filtering was 62.9%.  
As a result, the geometric mean of the sizes of the repositories was 
reduced to less than 10% of the compiled code, which was our 
initial target as being acceptable for many users. 
The total size of the repository is less than 0.1% of the total 
memory usage of the Java VM process because the size of the Java 
heap is much larger.  Thus, either of the replay scopes may be 
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Table 6. The number of the saved repositories 
Program No 

filter 
Filter system 

classes 
 Reduction of the size 
by filtering (no zlib) 

mtrt 153 113 (-26%) -16% 
jess 153 104 (-32%) -12% 

compress 39 22 (-44%) -25% 
db 59 22 (-63%) -38% 

mpegaudio 161 141 (-12%) -9% 
jack 201 141 (-30%) -16% 
javac 604 514 (-15%) -7% 

SPECjbb 502 345 (-31%) -20% 
xml parser 78 44 (-44%) -25% 

jigsaw 160 64 (-60%) -49% 
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suitable for some users.  However, we think it is still meaningful 
to keep the size of the repository much smaller than the size of the 
JIT compiled code, because the compiled code is used to directly 
benefit the user by improving the execution performance of the 
programs, but the repository is used only for the problem 
determination. 

5.2 Compilation Time 
Figure 6 shows the increases of compilation times in the state-
saving compiler over the times to compile the same methods using 
the base compiler.  The bars labeled "No zlib" show the 
compilation times when no compression was used, and the bars 
labeled "zlib" show those times with zlib compression.  Filtering 
was not applied for both cases in order to measure the upper 
bound of the overhead when compressing all of the registries. 
Since our JIT compiler implements profile-based recompilation, 
the number of compiled methods may not always be the same.  
Therefore, we compared the compilation times of the methods that 
were compiled in both the base and the state-saving compiler. 
The increase of compilation time was up to 2.0% for both cases.  
The geometric mean of the increase was about 1.0% and 1.1% for 
"No zlib" and "zlib", respectively.  Thus, the increase of the 
compilation time was very small, and the time to save the input to 
the repositories was negligible. 

5.3 Execution Speed 
The additional overhead in the state-saving compiler against the 
base compiler is used to save the input into repositories, because 
the state-saving compiler uses the same inputs as the base 
compiler and generates the same compiled code.  There is no 
additional overhead in the compiled code. 
Since the increase of compilation time was small, the slowdown of 
execution speed was also small.  The geometric mean of the 
slowdown was only 1%. 

6. CONCLUSION 
We have proposed a new approach, called replay JIT compilation, 
to reproduce the same JIT compilation process offline and 
remotely by using two compilers, the state-saving compiler and 
the replaying compiler.  The state-saving compiler is designed to 
run in the production environment as part of the Java runtime and 
save into the repository in the memory all of the inputs to the JIT 

compiler that are necessary for the replaying compiler to 
reproduce the same compilation process later.  When the Java 
application fails, the operating system will automatically generate 
a system dump that includes the repository.  We developed our 
prototype based on the J9 Java VM and the TR JIT compiler for 
AIX and showed that the prototype successfully reproduces the 
same compilation processes done by the state-saving compiler.  
We did a preliminary experiment, where the overhead of running 
the state-saving compiler is negligible and the size of the 
additional memory area required for state saving was only 10% of 
the compiled code.  This is three orders of magnitude smaller than 
the size of the diagnostic output file.  To our knowledge, this is 
the first report of successfully replaying the JIT compilation 
process offline. 
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