
January 31, 2006
RT0642
Computer Science; Service Science 8 pages

Research Report
Easy SOA: Rapid Prototyping environment with Web
Services for End Users

Takayuki Yamaizumi, Takashi Sakairi, Masaki Wakao,
Hideaki Shinomi, Samuel Adams
IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It
has been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or
copies of the article legally obtained (for example, by payment of royalities).

Easy SOA: Rapid Prototyping environment with Web Services
for End Users

Takayuki Yamaizumi, Takashi Sakairi
Tokyo Research Laboratory, IBM Japan

{zumi,sakairi}@jp.ibm.com

Masaki Wakao, Hideaki Shinomi
Yamato Software Laboratory, IBM Japan

{wakao,shinomi}@jp.ibm.com

Samuel Adams
IBM Research

ssadams@us.ibm.com

Abstract

Wikis and blogs allow end users to do their work with
only a Web browser, since they do not need to in-
stall any client application to their personal comput-
ers. This implies that an application developments tool
for end users should not require installing special ad-
ditional programs nor adding special configurations to
their personal computers. This paper describes Easy
SOA. Easy SOA is a rapid prototyping model for SOA
based on Ad hoc Development and Integration tool for
End Users (ADIEU). With ADIEU, end users can pro-
totype their Web applications and Web Services rapidly
by putting ’cards’ into a ’sheet’ constructed on a Web
browser. Easy SOA realizes a prototype development
model for Service Oriented Architecture (SOA) as well
as for Web applications and Web Services using ADIEU.
Easy SOA makes it easier for end users to understand
Web services, as it hides the low level details of the def-
inition in WSDL file.

1. Introduction

Many end users edit and update their documents
with tools such as a wiki [3] or a blog [2] with just a
Web browser, since they do not need to install any client
applications if they decided to use a wiki or a blog pro-
vided by an Internet service provider.

Some end users have also become involved
in “End-user programming” by creating various
tools to make their personal work more effective.
Spreadsheet[27], HyperCard [23] and its clones are
the most successful experiences of “End-user program-
ming”, but it is too hard for users to migrate their arti-

facts into other “End-user programming” environment.
Because of a barrier hindering migration to the other
development environments, end users prefer asking ap-
plication developers to develop new applications rather
than migrating their application into the other develop-
ment environments.

First, this paper describes Ad hoc Development and
Integration tool for End Users (ADIEU) [1]. ADIEU
works on a Web browser by communicating with an
ADIEU server without installing any special develop-
ment environment in a personal computer, shown in
Figure 1. With ADIEU, end users can prototype their

SheetCard

Figure 1. Sample ADIEU screen

application rapidly by placing cards into a sheet which
is displayed in a Web browser and represents an applica-
tion. ADIEU also has a function to import external Web
Services, creating new cards to represent the imported
Web service methods by reading WSDL (Web Services
Definition Language) files [12] and by generating the

cards for each Web service methods.
Second, we propose Easy SOA, which is a proto-

type development model for the Service-Oriented Ar-
chitecture (SOA) to create Web applications and Web
Services with ADIEU.

The rest of this paper is organized as follows: Sec-
tion 2 describes the motivations for this paper. ADIEU
is introduced in Section 3, followed by an explanation
of how ADIEU imports an external Web service in Sec-
tion 4. Section 5 illustrates our Easy SOA model and a
development scenario based on it, followed by a “His-
torical Stock Quote in any currency units” development
example. Finally, in Section 6, we discuss our work and
related work. The conclusion and future work is sum-
marized in Section 7.

2. Motivations

Many end users write tools to make their personal
work more effective. However, when end users ask ap-
plication developers to develop applications for their
businesses, such as a system to handle transactions, end
users often find it difficult to explain to the application
developers what they want. This communication gap
often mislead application developers to construct a dif-
ferent system from what the end users had asked them
to construct, and to modify the system to conform to
the end users’ specifications. Such iterations may also
cause delays in the development, which becomes unac-
ceptable as developers are asked to develop and to de-
liver ever more complex applications compared to pre-
vious versions, but in a shorter period of time[21]. For
this reason, prototyping tools are needed to encourage
end users to participate in system design.

Therefore, many software tools have developed for
end users to design and to develop applications [25]
by selecting items from graphical menus, placing text
fields in windows, and by performing other graphical
operations. However, to use those applications, end
users have to install these applications on their personal
computer. Many of end users are bothered by the instal-
lation. Even if an end user installs them successfully, it
is more difficult to find useful components or user inter-
faces, because those components or user interfaces must
have been developed by users who have skills to de-
velop them. Finding such users are all too often impos-
sible. Therefore, these tools cannot be adopted as de-
velopment tools for end users. There are also still some
technical challenges in delivering a graphical develop-
ment environment for end users and non-professional
programmers. The card-based programming model is
one of the solutions. In the card-based programming
model, an application is decomposed into separate inter-

faces for each effective function and some code snippets
which attach the interfaces, while a traditional procedu-
ral programming language typically rendered an appli-
cation to lines of text. Those separate interfaces become
a kind of Integrated Development Environment (IDE)
for each statement in a program, which provides a num-
ber of advantages in providing statement-specific guid-
ance, help, and features such as activity logging and
control flow-based execution tracing. Since each card
represents a statement in the programming language of
ADIEU, new cards, whether developed in ADIEU itself
or in JavaTM,1, effectively provide the ability to extend
and reshape the programming language to better fit the
problem domain which concerns users.

At the same time, many Web services are avail-
able to the public through the Internet [8, 11, 16], al-
though most of them are provided as test services. They
are quite useful for skilled developers who can imple-
ment the interfaces for such Web services with stub
code, because these Web services prevent them from
having to“reinventing the wheel”. Likewise, these pub-
lic Web services can be accessed through the Web in-
terfaces generated from WSDL files [12, 15]. How-
ever, since some of the Web services require specify-
ing complicated data structures for the input data, users
must have a skill to handle complicated data, and this
should not be required of end users. Web services have
come to a vendor-independent open standard and can be
used widely. If a development tool can import WSDL
files and use the Web service methods described in the
WSDL files, then users can develop applications with
less cost and time.

SOA also gives us another motivation to construct
a rapid prototyping environment for end users. SOA
is a framework and an emerging methodology to con-
struct enterprise systems [5], as well as to integrate ex-
isting systems into larger systems. Web services now
play an important role in SOA because most SOA sys-
tems are constructed by combining Web services. How-
ever, current tools to construct SOA systems are very
demanding for personal computers and lack functions
to examine how the models defined in the tools actu-
ally work. Therefore, rapid prototyping tools for SOA,
such as Easy SOA will become important to construct
IT infrastructures. Users can define the relationships be-
tween any points in the data structures which are used
as the inputs or outputs of a Web service even if their
data structures are very complicated, as shown in Sec-
tion 5.2.

1Java and all Java-based trademarks are trademarks of Sun Mi-
crosystems, Inc. in the United States, other countries, or both.

3. ADIEU Overview

ADIEU is a programming environment which op-
erates within a Web browser2. It can be installed in the
WebSphere Application Server or Apache Tomcat. A
typical screen shot is shown in Figure 1. Users can de-
velop and deploy Web applications and Web services
without installing any software onto their personal com-
puters, because all of the information about the ADIEU
environment is stored in the Web application server and
an applet which creates this communication channel be-
tween the Web browser and an ADIEU server is auto-
matically downloaded from the Web server to a client
when users launch the ADIEU environment.

An application in the ADIEU environment consists
of two parts, a sheet and cards. These parts correspond
to an application and its logic, respectively. Users can
develop the application by using collections of cards,
each of which acts like single-function applications in a
form-based, desktop-like environment. The data fields
in cards can be used like cells in a spreadsheet and can
contain either data or an expression that evaluates the
data at run time. Cards can also run other cards which
has aCardsToRun field, such as “If card”, “Sequence
card” and “Iterator card”, by specifying a sequence of
card IDs separated by commas.

Cards can also refer to a value which is held by a
field in another card by inserting a special anchor to
point at the field using the following format (1):

<card id>.< field name> (1)

For the end users’ convenience, this anchor can be in-
serted by clicking the “insert variable” button at the
right side of a text area (Figure 2), and the field name
can be selected directly from the menu list. In the ex-
ample shown in Figure 2,A.variable is inserted into
thehtml field.

Figure 2. “Insert variable” button and a menu
to select a field

These capabilities provide the basic flow control

2Currently, ADIEU works only on the Internet Explorer.

and the data transfer necessary for programming con-
cepts such as decision branching, sequences, and loops.

Users can access their applications as Web applica-
tions by clicking the link on a Web Page Card. With a
Web Service Card, users can also execute their applica-
tions as Web services without any special operations for
deployment.

The Web application sample and the Web service
sample are shown in Figure 3 and 4, respectively. In
4, the Web application consists of two Variable Cards
and one Web Page Card and the Web service consists
of two Variable Cards and one Web Service Card. The
“run” card (CardE) is a generated card by consuming
the WSDL file of the Web service. The WSDL file is
automatically generated by the ADIEU environment.

Figure 3. Running a Web application devel-
oped in the ADIEU environment

Figure 4. Specifying the URL of WSDL in the
ADIEU environment itself

This function can be also used to import external
Web Service. We will discuss this in the next section.

4. Importing Web Services into ADIEU

The ADIEU environment can generate cards by
reading the WSDL files on remote Web application
servers. Users can use these cards to compensate for
the gaps between the original functions which is pro-
vided by built-in cards and the users’ requirements for
their tools. Users can import an external Web service
into an ADIEU environment by specifying an URL of a
WSDL file, as shown in Figure 4.

In this section, we discuss these generated cards
with a sample Web service. This Web service has Bank-
Info, UserInfo and AccountInfo classes and BankInfo
class has five methods which are exported as Web ser-
vice methods, as illustrated in Figure 5.

Figure 5. Class diagram of a Web service sam-
ple (internal operations are omitted)

4.1. Card Generation Example

ADIEU generates one card for each Web service
method. For example, in the Web service example as
illustrated in Figure 5, five cards are generated, such
as addAccountInfo card, addUserInfo card, getUserInfo
card, getUserInfoList card and setUserInfo card. These
generated cards can be used in exactly the same way
as the built-in cards. For example, users can refer to
fields in these generated cards from the other cards, and
vice versa. After ADIEU imports a WSDL file which
includes the data structure of Web service methods, it
parses the WSDL file to extract the data structures, and
finally generates the generic treeview-like interfaces as
shown in Figure 6.

Each card has a treeview-like interface with input
fields to help an end user to understand the data struc-
ture, because Web service methods generally handle
complex data types, which are defined as complexType
data in a WSDL file, as their inputs and outputs. The

number of fields on the card can be changed if the data
include more than one array of complexType data by
clicking the “Add element” button or “Delete element”
button on the card. As a result, users can easily integrate
external Web services into their applications.

Figure 6. A screen shot example of generated
cards

4.2. Support for complexType Data

In general, Web service methods are invoked with
input data which is too complex for end users to han-
dle [18, 19, 20], because they must build SOAP [13]
messages in a format which it is acceptable for a Web
service. Output data from a Web service method, writ-
ten in the SOAP format, is also too complex for users
to handle, though raw SOAP messages are useful for
developers and programmers, because they can analyze
them to debug their software. Accordingly, users need
some tools which can support to handle both inputs and
outputs data.

4.2.1. SimpleType and ComplexType.The format of
a SOAP message is defined in a WSDL file in the
XML Schema format [14]. Developers must classify
the data into two types, complex types and simples type
which are called complexType and simpleType in the
specification of XML Schema, respectively. Complex-
Type data include other complexType data or simple-
Type data, while simpleType data can include neither
complexType data nor other simpleType data. In the
example shown in Figure 5, BankInfo, UserInfo, and
AccountInfo are classified into complexType data, and
userName, userId, password, accountName, accountId,
unitName and amount are classified into simpleType
data. In addition, userInfoList and accountInfoList are
classified into arrays of complexType, since they hold

complexType data as elements. If a data structure de-
fined in a WSDL file is represented as a tree graph, this
tree graph possesses the following properties.

1. Data in a non-leaf node must be complexType data.

2. Data in a leaf node must be simpleType data or
complexType data that does not have any child
nodes, i.e. complexType data with no child data.

For this reason, we propose to display the data struc-
ture as a tree, because users can easily recognize nodes
which hold complexType data. Additionally, we define
an array of complex type as consisting of two types of
node, one is an “element node” which is a node repre-
senting an element of an array and included in a “parent
node”, and the other is a “parent node”, which repre-
sents an array of complexType. By this definition, users
can know the data type that is represented by a node.

4.2.2. Serialization and deserialization model.The
comparison between ADIEU’s serialization and dese-
rialization model and Apache Axis’ original serializa-
tion and deserialization model is illustrated in Figure
7. Apache Axis expects a developer to implement and

XML Type

Java Class

ComplexType

Serializer

Deserializer

One-on-one mapping
between XML Type
and Java Class

(a) The model in Apache Axis

XML Type

Java Class

ComplexType

Serializer Deserializer

Mapping between
Java class
and XML Type.

ComplexType
array

Serializer/
Deserializer for
ComplexType

Serializer/
Deserializer for
ComplexType array

(b) The model in ADIEU

Figure 7. The comparison of serialization and
deserialization model between Apache Axis
and ADIEU

to assign Java classes to serialize and to deserialize the

XML type data which is defined as complexType data
in a WSDL file. Apache Axis also expects a developer
to store the relationships between the Java classes and
the XML types. As a result, a developer have to im-
plement the same number of pairs of a serializer and a
deserializer as those of XML type which a WSDL file
includes.

An ADIEU environment handles data with two
pairs, each consisting of a serializer and a deserializer.
One pair which handles any complexType data, and
the other pair which handles any arrays of complex-
Type data. These serializers and deserializer are pro-
vided as a part of the ADIEU environment and can han-
dle any XML types which are defined as complexType
data in a WSDL file, so that they liberate an ADIEU
user from implementation of a serializer and a deserial-
izer. ADIEU’s serializer for a complexType array over-
rides the ArraySerializer’sserialize() method in
Apache Axis version 1.1[17] to work on arrays of com-
plexType data, since Apache Axis version 1.1 cannot
handle relationships if more than one XML type shares
the generic serializer and deserializer for complexType
data.

4.2.3. Data identification in XPath representation.
Once a data structure is represented as a tree graph,
users can point to any data included in complexType
data uniquely using an XPath format[9].

To preserve the uniqueness of names between the
fields, when there is more than one card on a sheet and
they have the same complexType data structure, the user
specifies a data node in the complexType data in the
following format (2):

#{< card ID>.< data name in XPath format>} (2)

The data name in the XPath format follows a card ID
which includes the data, and the concatenated string is
put in curly brackets to coexist with the other expres-
sions such as mathematical expressions by using the es-
caping slash characters such as are used for the division
symbol in a mathematical expression. Since format (2)
may be long in some cases, these data names in format
(2) can be automatically entered by clicking on the “In-
sert variable” button to select a suitable field in a menu,
as shown in Figure 2.

5. Prototyping on Easy SOA

Users can build applications in a very simple style
of Service Oriented Architecture, because an output of
a Web service can be connected to an input of another
Web Service in ADIEU in a Web browser and users can
exports the application in a Web browser as a Web ap-

Web Application Server
ADIEU

Import Generated
 cards

Built-in
 cards

ADIEU cards

 Web
application

 Web
service

 Development
 environment
on a Web browser

Applet

Export
Communicate about
card information
through socket.

WSDL
 fileImport a WSDL file on ADIEU

environment

Web Services
 on Internet

Figure 8. Easy SOA development model

plication or a Web service without any deployment op-
erations, as we discussed in the previous section. We
name this approach Easy SOA and demonstrate that
users can realize Easy SOA with a simple sequence of
operations.

5.1. Development Scenario with Easy SOA

The infrastructure for Easy SOA is illustrated in
Figure 8. An user can develop a Web application and
a Web service with the ADIEU environment by the fol-
lowing three steps:

1. The user imports some Web services which pro-
vide what they want to integrate their system.

2. The user orchestrates the Web service methods by
defining relationships between them, as discussed
in Sections 3 and 4.

3. The user exports their artifact as a Web applica-
tion or a Web service. If the artifact is exported
as a Web service, other users may integrate it into
their application even if they integrate it without
ADIEU. A WSDL file for the Web service is auto-
matically generated by the ADIEU environment.

The above development scenario shows that an user can
construct another Web service recursively from those
which has been imported by the user without any code.

In Easy SOA model, built-in cards which are sup-
plied with an original ADIEU environment mainly help
the orchestration of the generated cards.

5.2. Development example using Easy SOA:
Historical Stock Quotes

For example, suppose we have decided to construct
a Historical Stock Quotes Web application as shown in
Figure 9, which can return a stock price for any past
date. This Web application also displays the result in
Japanese Yen (JPY) by calling a Web service which can
convert the currency unit at the rate on the past day to
check the profits which we receive from our shares. We
can construct the service by following these steps:

1. The user imports a Web service and generates a
card which can convert a currency unit on any past
date [16], and place it on a sheet . The ADIEU
environment assignsA as the card ID.

2. The user places a Web Page Card (cardB), an As-
signment Card (cardC), and a Variable Card (card
D) onto the sheet and fills the fields in the Input
fieldset, as shown in Figure 10.

3. The user imports another Web service and gener-
ates a card (cardE) which can return a stock price
on any past date [8], and place a card which repre-
sents a suitable method on the sheet.

4. The user defines the relationships between the
cards by typing a sequence of evaluations such as
C,A,E in thecardToRun field on cardB.

We can examine how the card works at each step in the
development, so that we can easily test the application.
Figure 9 shows a typical ADIEU screen after the user
has been finished the above steps. There are five cards
placed in a Web browser.

By clicking on the link on a Web Page Card, the
Historical Stock Quotes application is started, as shown
in Figure 10. Since the foreign exchange Web service
provides the exchange rates at noon on the specified
date and the Historical Stock Quote Web service pro-
vides a stock price at the end of the day on the specified
date, this Historical Stock Quote Web application pro-
vides a rough figure as a result. However, this value may
be still important for end users, because they sometimes
want to check whether or not their stocks are profitable,
especially if they hold stock in foreign companies.

6. Related Work

To develop the enterprise system based on SOA,
developers can define Web services behaviors for busi-
ness processes with the Business Process Execution
Language for Web Services (BPEL4WS[10]). Tool sup-
port has also been provided to make the definitions

Figure 9. Screenshot of“Historical Stock Quote
in JPY” Web application

Figure 10. Cards which consist of “Historical
Stock Quote in JPY” Web application

in BPEL4WS easier. However, developers must have
deep understandings and analyze their business pro-
cesses and the interactions of the Web services which
they wants to define in the BPEL file. It is also diffi-
cult for developers to examine how it works before the
actual system has been constructed.

The data structure of a Web service is written in
XML Schema [14] format. Therefore, the Web inter-
face can be generated by reading the data structure def-
initions in a WSDL file from the Web service provider
[15], and users can confirm and test the functions of
the methods in the Web services. However, this test
service [15] lacks functions to develop applications by
defining the relationships between Web service meth-
ods. Huy proposed Toshiba Web Service Gateway [22],

which can easily convert information sources in the In-
ternet into Web services with a Web service wrapper.
The wrapper generator tool generates the Web service
wrapper by reading a wrapper description file, but this
approach is not suitable for end users because a wrap-
per description file must be designed with some mod-
ules and an user also must design the modules if they
do not exist.

HyperCard[23] and its clones are the most suc-
cessful experience of “End-user programming”, but it
is too hard for users to migrate their artifacts into the
other “End-user programming” environment. More-
over, Users must create cards themselves by placing
small GUI parts and write code to define the relation-
ships between cards.

Tanaka [7] applies their Meme media technologies
to the publication and reuse of intellectual resources on
the Web. Users can organize resources in Web pages
by editing Web pages which are wrapped by meme me-
dia wrappers. Pautasso[26] and Alonso designs Bio-
Opera and JOpera. They are fully implemented in a
development environment for Web Service composition
with usability features emphasizing rapid development
and visual scalability. However, users have to install
the special application to their personal computer and
meme media wrapper cannot wrap Web services. Bio-
Opera and JOpera still need manual intervention to re-
solve ambiguities and connect parameters between Web
Services. In this paper, we show how to connect param-
eters with an XPath representation.

7. Conclusions and future work

In this paper, we first described ADIEU, which al-
lows end users to develop Web services and Web appli-
cations without installation by placing cards on a sheet
which is displayed in a Web browser, and then by defin-
ing the relationships between cards with minimal mouse
and keyboard operations. For this reason, we conclude
that this tool can be used most effectively in the pro-
totyping phase of development, because end users can
participate in a design process of an application’s de-
velopment and communicate with the developers about
their applications with their artifacts in the ADIEU envi-
ronment. Collaborative development may contribute a
great deal to shorten the development time for an appli-
cation and result in improved satisfaction for end users.
Unlike other development tools for end users, ADIEU
can import an external Web service and can generate
cards which allow end users to integrate it into their
own application in the ADIEU environment on a Web
browser. Thus, end users can concentrate on their own
work without “reinventing the wheel”. We defined two

pairs of generic user interfaces, serializers and deseri-
alizers for complexType data and for arrays of com-
plexType data. This approach with generic implemen-
tations is completely different from existing approaches
and liberates end users from the maintenance work of
Web client code for their business.

Second, we proposed the concept of Easy SOA by
connecting the interfaces between cards which repre-
sent Web service methods using a Web browser with
simple operations. The XPath representation style for
complexType data structures will provide a starting
point to enhance this representation to a simpler format,
even if another representation is required for end users.
We also described that users can easily construct Web
service from the other Web services which they import
into ADIEU environment with a minimal effort.

We have described two development scenarios.
One is a very simple calculator Web application, and
the other is a Historical Stock Quotes service created by
orchestrating two Web services which are deployed by
different organizations. Those examples demonstrate
that the ADIEU environment can realize SOA services
in a simple way.

Some technical challenges for future works still re-
main. In this paper, we do not discuss about the user
interface of the ADIEU card. XPath representation of
nodes is a convenient method for a computer, but it is
not so convenient for an end user. YAML [24] or an-
other simplified representation may be a solution, but,
this investigation will be an important future works.

References

[1] Ad Hoc Development and Integration Tool for End
Users (ADIEU),
http://www.alphaworks.ibm.com/
tech/adieu

[2] B. Nardi, D. Schiano, M. Gumbrecht, and L. Swartz;
“Why We Blog”, Communications of ACM, December
2004, 47(12), pp.41-46.

[3] Wiki: “What Is Wiki”,
http://wiki.org/wiki.cgi?WhatIsWiki

[4] Endrei, M. et al, Patterns: Service-Oriented Architecture
and Web Services,
http://www.redbooks.ibm.com/redbooks/
pdfs/sg246303.pdf

[5] Service-Oriented Architecture,
http://www.ibm.com/software/info/
openenvironment/soa

[6] S. M. Kim and M. Rosu, “A Survey of Public Web Ser-
vices”, In Proceedings of the 13th International World
Wide Web Conference 2004, pp.312-313, Chiba, Japan,
2004.

[7] Y. Tanaka, “Meme Media Architecture for Intuitively
Accessing and Organizing Intellectual Resources”,In-

tuitive Human Interfaces 2004, Springer-Verlag, LNAI
3359, pp. 108-126.

[8] StrikeIron, Your Trusted Web Services Marketplace,
http://www.strikeiron.com/

[9] W3C, XML Path Language (XPath) Version 1.0,
http://www.w3.org/TR/xpath

[10] Business Process Execution Language for Web Services
version 1.1,
ftp://www6.software.ibm.com/software/
developer/library/ws-bpel.pdf

[11] XMethods web site,http://www.xmethods.net/
[12] W3C, Web Services Description Language (WSDL) 1.1,

W3C Note, 2001.
[13] W3C, SOAP - Simple Object Access Protocol,

http://www.w3.org/TR/SOAP
[14] W3C, XML Schema,

http://www.w3.org/XML/Schema
[15] Mindreef: Comprehensive Web services diagnostics and

testing,http://www.mindreef.com/
[16] Federal Reserve Bank of New York, Pilot Noon

Foreign Exchange Rates Web Service,
http://www.ny.frb.org/markets/pilotfx.html

[17] Web Services - Axis,
http://ws.apache.org/axis/

[18] Amazon Web Services,
http://www.amazon.com/gp/browse.html/
002-0381178-1342459?%5Fencoding=UTF8
&node=3435361

[19] Google Web APIs,
http://www.google.com/apis/index.html

[20] eBay Developers Program,
http://developer.ebay.com/soap/

[21] M. Bochicchio and N. Fiore, WARP: Web Application
Rapid Prototyping,ACM Symposium on Applied Com-
puting, March 14-17, 2004, Nicosia, Cyprus, pp.1670-
1676.

[22] H.P.Huy, T.Kawamura and T.Hasegawa, How to Make
Web Sites Talk Together - Web Service Solution, In
Proceedings of WWW 2005, May 10-14, 2005, Chiba,
Japan.

[23] D. Goodman, The The Complete HyperCard 2.2 Hand-
book, Iuniverse Inc, 1998.

[24] YAML Ain’t Markup Language (YAML) Version
1.1, http://yaml.org/spec/current.html ,
2004.

[25] C. Kelleher and R. Pausch, Lowering the Barriers to Pro-
gramming: A Taxonomy of Programming Environments
and Languages for Novice Programmers,ACM Comput-
ing Surveys, Vol. 37, No. 2, June 2005, pp. 83-137.

[26] C. Pautasso and G. Alonso, Visual Composition of Web
Services, InProceedings of VL/HCC2003, pp 92-99.

[27] M. Burnett, C. Cook, O. Pendse, G. Rothermel, J. Sum-
met and C. Wallace, End-User Software Engineering
with Assertions in the Spreadsheet Paradigm, InPro-
ceedings of the 25th International Conference on Soft-
ware Engineering, 2003.

