
March 17, 2006
RT0646
Network; Security 8 pages

Research Report
Best Practice Patterns and Tool Support for Configuring
Secure Web Services Messaging

Michiaki Tatsubori
IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It
has been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or
copies of the article legally obtained (for example, by payment of royalities).

Best-Practice Patterns and Tool Support

for Configuring Secure Web Services Messaging

Michiaki Tatsubori Takeshi Imamura Yuhichi Nakamura

IBM Tokyo Research Laboratory

tazbori@jp.ibm.com imamu@jp.ibm.com nakamury@jp.ibm.com

Abstract

This paper presents an emerging tool for security

configuration of service-oriented architectures with Web

Services. Security is a major concern when implement-

ing mission-critical business transactions and such con-

cern motivated the development of Web Services Secu-

rity (WS-Security). However, the existing tools for con-

figuring the security properties of Web Services give a

technology-oriented view, and only assist in choosing

the data to encrypt and selecting an encryption algo-

rithm. The users must construct their own mental mod-

els of how the security configurations actually relate to

business policies.

 In contrast, the tool described here gives a simpli-

fied, business-policy-oriented view. It models the mes-

saging with customers and business partners, lists vari-

ous threats, and presents best-practice security patterns

against the threats. A user can select among variations

on the basic patterns according to the business policies,

and then apply them to the messaging model through the

GUI. The result of the pattern application is described

in the Web Services Security Policy Language (WS-

SecurityPolicy).

1. Introduction

Security is one of the major concerns when imple-

menting mission-critical business transactions using

Web Services. Since many software vendors have joined

in Web Services initiatives such as standardization in

W3C and OASIS, the concept of Web Services has been

widely accepted over the past few years. With Web Ser-

vices, applications can be coupled loosely—that is, in a

decentralized manner—even beyond the enterprise

boundaries. The concept is expected to influence busi-

ness processes, where security is of critical importance.

There exist new security challenges with Web Ser-

vices since Web Services allow for applications to inter-

act with each other over the Internet. While most existing

technologies are mainly concerned with how to protect

applications within a security domain, we must here con-

sider security among multiple security domains. The Web

Services Security Model proposed in April 2002 [1] con-

cerned federations among security domains, addressing

interoperability among different security infrastructures

such as Public Key Infrastructure (PKI) and Kerberos.

Specifications proposed and expected to become stan-

dards include WS-Security [12], WS-SecureConversation

[8], WS-Trust [7], and WS-Federation [10].

A problematic aspect of these specifications is their

usability. Although the Web services security concept

should provide a sophisticated basis to allow secure ap-

plication integration even over the Internet, just the stan-

dardization and implementation of the concept do not

contribute to usability enhancements enough. On the

contrary, the usability may become worse since the

specifications are growing rapidly so that they can cover

variety of security models. One of the usability issues

stems from requirements for detailed parameters such as

cryptography algorithms and encryption keys, which are

specific to particular security infrastructures. We believe

most users want to focus on how security affects their

business policies rather than worry about technological

details. A suitable Web service security abstraction

should serve as a bridge to the business level scope.

Leveraging the Web services security model, we

have designed a tool to configure security policies. Our

prototype tool generates WS-SecurityPolicy [6] descrip-

tions that express security policies and requirements for

a service. Since WS-SecurityPolicy is used by service

requestors to publish their policies, some of the techni-

cal details such as the locations of keys are not included.

The goal of our tool is to allow users to use their busi-

ness scenarios to construct WS-SecurityPolicy descrip-

tions.

In our approach, we prepare a collection of security

best-practice patterns, and relate security policy frag-

ment(s) to each of the patterns. Users first construct an

application model that represents their business scenario,

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

and then apply patterns to the model. Since each pattern

has security policy fragment(s), the mapping contributes

to the construction of a whole security policy. In addi-

tion, we introduce a platform model to represent the

user’s security environment. With the platform model,

we can automatically fill out even some of the detailed

parameters for the security policy.

The rest of this paper is organized as follows: Section

2 discusses usability issues in security configurations,

and investigates how users want to think about security.

In Section 3, we give an overview of our tool and intro-

duce its constructs and user interface. Then we briefly

review a catalog of patterns for securing Web Services,

and show how each pattern addresses threats in Section

4. Section 5 discusses related work, comparing it to this

tool. In Section 6, we conclude this paper.

2. Usability Issues and Our Approach

It is hard to properly set up a security configuration.

This is especially true for Web services. Here, we dis-

cuss why it is hard in the context of Web services. Then

we consider some requirements to improve usability.

2.1 Securing Web Services

With the Web services concept, applications can be

coupled loosely, that is, in a decentralized manner be-

yond the enterprise boundary, typically over the Inter-

net. Moreover, each business can have its own security

infrastructure and mechanisms, such as Public Key In-

frastructure (PKI) or Kerberos. Therefore, we need to

interoperate these security systems over different secu-

rity domains. The Web services security model defines

an abstract model that allows federation of the security

domains.

The Web services security roadmap document [1] de-

scribes not only the abstract security model, but also

shows a collection of specifications to be published. If

the specifications are properly defined, we can have in

some sense complete security infrastructure. However, it

would be still hard to configure security. Instead, it is

still have !to find a way to leverage the abstract model

for improving usability.

As an example, let us take a look at the WebSphere

Application Development (WSAD) tool. Figure 1 shows

the GUI used to configure WS-Security. We can specify

which services are protected in the left pane, and how to

protect them in the right pane. In addition to specifying

which parts of the message require integrity and confi-

dentiality, we have to specify detailed information such

as cryptography algorithms and key locations.

Although the WSAD tool looks simple, users had

better have a clear idea about the technology-level de-

tails. For example, they have to know if there is a PKI

infrastructure upon which participants can establish a

trust relationship regarding a certificate authority. Our

thesis is that users want to think at the business level

rather than at such technological levels.

We illustrate our hypothesis about how users want to

think about security by using a sample scenario. Figure

2 shows a book order scenario where Alice orders books,

providing her card information. In this scenario, we can

imagine the following security requirements:

Book retailer (Book) needs to authenticate Al-

ice

Book orders should not be repudiated

Credit card info should be shown only to the

credit card company (Card)

With existing tools like WSAD, users do not see a

business scenario as in Figure 2, but only see a service

API to add security features. Such tool support is not

sufficient in the sense that users cannot think at business

level scope.

2.2 Usability Requirements

We assume that the user’s thinking involves the fol-

lowing steps:

Figure 1. The prototype GUI tool for configuring WS-

Security. (Details are not important here.)

Figure 2. Book Order Scenario.

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

1. Think about the application scenario. She identifies

participants such as Book and Credit and then envi-

sions typical interactions among them. For example,

Alice sends order and credit card information to

Book.

2. Hypothesize security policies for her business sce-

nario at a higher abstraction level. First she evalu-

ates risks and threats and identifies the security re-

quirements. For example, she needs to assess how

many orders may be repudiated. Then she con-

structs an abstract security policy such that orders

should not be repudiated

3. Elaborate the security policy. She makes the secu-

rity policy concrete, referring to the partner’s secu-

rity policies and her company’s security infrastruc-

ture.

4. Configure the system. She sets up detailed parame-

ters for the security policies such as key locations,

cryptography algorithms, and so on.

We think that the current tools mainly address Step 4,

but the earlier steps are more crucial to the users. There-

fore, we pay particular attention to support for Steps 1 to

3 in our tool.

In order to allow for users to think at the business

level, our tool targets the Web Services Security Policy

Language (WS-SecurityPolicy) [6] descriptions. With

WS-SecurityPolicy, we can describe the security re-

quirements to access Web services. Figure 3 shows a

policy sample for the book order service. Order infor-

mation requires integrity, and the credit card informa-

tion requires confidentiality, respectively.

3. Tool Support for Security Configuration

We propose a tool filling the gap between business-

level security policies and the concrete WS-Security

policies implementing them. When implementing a se-

cure Web Service system, the tool provides a GUI and

helps a system administrator who understands the busi-

ness-level security policies to configure the system so

that its messaging operations are performed securely.

The proposed tool is called the WS-Policy Organizer or

WSPO.

WSPO works with two levels of security configura-

tion: the abstract one and the concrete one. Figure 4

depicts the abstract-level security configuration with

WSPO while Figure 5 depicts the concrete-level secu-

rity configuration.

For the abstract configuration, as shown in Figure 4,

WSPO first accepts an application model. Then it shows

a GUI for configuring secure messaging on the given

application model. According to the operations on the

GUI, it generates an abstracted WS-SecurityPolicy de-

scription that is platform independent. WSPO uses best-

practice patterns for securing Web Services messages in

order to provide its users reasonably narrowed options

for configuring the system’s implementation-level secu-

rity.

For the concrete configuration, as shown in Figure 5,

WSPO also accepts a platform model. Then it shows a

GUI for specifying the detailed parts of the WS-

SecurityPolicy descriptions. The options shown in the

GUI are reasonably narrow based on the specified plat-

form model.

With WSPO, users process the configuration of their

systems with secure messaging in the following manner:

1. An application developer constructs an application

model that models the messages exchanged with the

<Policy>
<Integrity>
<TokenInfo>
<SecurityToken>

<TokenType> X509v3</TokenType>
<TokenIssuer>VeriSign</TokenIssuer>
</SecurityToken>
</TokenInfo>
<MessageParts>//OrderInfo</MessageParts>
</Integrity>
<Confidentiality>
<KeyInfo>
<SecurityToken>

<TokenType> X509v3</TokenType>
<TokenIssuer>VeriSign</TokenIssuer>
</SecurityToken>
</KeyInfo>

<Claims>

<SubjectName>Visa</SubjectName>
</Claims>
<MessageParts>//CardInfo</MessageParts>
</Confidentiality>
</Policy>

Figure 3. WS-SecurityPolicy Sample

Sender Receiver
Message

AT1

Sender Receiver
Message

NT1

Sender Receiver
Message

EI1

Intermediary

Application model

Pattern repository

WSPO

Conduct

securing

Security Admin

Platform-independent

WS-SecurityPolicy

Figure 4. WSPO accepts an application model and gener-

ates an abstracted WS-SecurityPolicy description accord-

ing to the users operations.

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

participants, assuming the business application sce-

nario of the configured system.

2. A security administrator applies the patterns pro-

vided in WSPO to each message in the application

model. Users must consider their security require-

ments to choose the several appropriate patterns

relevant to their system.

3. WSPO automatically generates formal security pol-

icy descriptions (WS-SecurityPolicy) based on the

templates in the patterns chosen in Step 2.

4. A system deployer fills in the platform-dependent

parts of the generated policies so that the policies

can be deployed in the configured system platform.

The details of the policies such as encryption algo-

rithms and the locations of the keys are specified in

this step.

Users of WSPO can configure their systems in a “top-

down” manner. They can start by designing at the busi-

ness level and then gradually step into more detailed

parts of their systems.

3.1 Separation of application models and plat-

form models

An important feature of WSPO is the separate de-

scription of an application model and a platform model.

This separation allows users to use a GUI specialized

for the given descriptions. The platform model of the

system can be provided by the person who configured it.

The application model can be provided by the applica-

tion developer without concern about its message-level

security. A system integrator (or application deployer)

who knows the business-level security policies for the

configured system can apply the policies to the applica-

tion model using the tool.

An application model describes the business messag-

ing models in an application scenario. Here is an exam-

ple application model description:

<?xml version="1.0" encoding="UTF-8"?>
<ApplicationModel ..>
 <name>Bookstore Web Service Server</name>
 <self>uri:Bookstore</self>
 <Entities>
 <Entity name="Bookstore" id="uri:.."/>
 ...
 </Entities>
 <Messages>
 <Message name="Book order request"
id="uri:Bookstore#bookOrderRequest">
 <sender idref="uri:Alice"/>
 <receiver idref="uri:Bookstore"/>
 <MessageParts>
 <MessagePart name="User info."
path="//User" id="uri:Bookstore#user"/>
 ...
 </MessageParts>
 </Message>
 ...

 </Messages>
</ApplicationModel>

The first <Message> element specifies the content

carried in a request message for a service port. Each

<MessagePart> element in the message elements or a

message itself is a candidate to be secured.

Platform models describe the platform-specific envi-

ronmental properties where applications are deployed.

They are written in our Platform Description Language

or PDL, which is a language defined for this tool. A

PDL document contains the information that we used to

specify with existing tools, as shown in Step 4 in Sec-

tion 2.2. For instance, the key locations and the avail-

able cryptography algorithms are specified in a PDL

document. Following is an example PDL description:

<?xml version="1.0" encoding="UTF-8"?>
<PlatformModel ..>
 <name>Bookstore Web Service Server</name>
 <Platforms>
 <Platform name="Bookstore Platform" entity-
IdRef="uri:Bookstore">
 <X509>
 <TrustedCerts>
 <Cert subject="CN=CA,O=VeriSign.."/>
 </TrustedCerts>
 ...
 </X509>
 ...
 </Platform>
 ...
 </Platforms>
</PlatformModel>

3.2 Patterns in the repository

The semi-automated generation of WS-

SecurityPolicy description by WSPO is based on best-

practice patterns for securing Web Service messages,

which we have collected for this tool.

A pattern consists of:

Platform model

Specify

details

Deployer

Platform specific

WS-SecurityPolicy

WSPO

Platform-independent

WS-SecurityPolicy

Figure 5. WSPO accepts a platform model and gener-

ates concrete WS-SecurityPolicy description which

includes platform-specific configurations.

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

targeted attacks and threats to protect against and

their descriptions,

the business messaging model to be protected, and

templates of security policies for implementing the

protection.

The narrative descriptions of the best-practice pat-

terns are available at [2]. Also, we will show a simpli-

fied version of the patterns in Section 4.

3.3 GUI operations

WSPO shows the view of a given application model

that allows users to operate on the view in terms of the

application model. The view contains:

entities (the company and its business partners), and

messages sent between the company and its busi-

ness partners.

Figure 6 shows a screen snapshot of a view for orga-

nizing WS-SecurityPolicy description (book-wsp.xml)

from a WSDL description (book.wsdl). The system

shows the application model represented by the WSDL

description.

Through the GUI, a user can select each message to

be secured as shown in Figure 7. The options available

in the menu are:

Make confidential

Give integrity

Authenticate, and

Prevent repudiation

When a message is chosen to be secured in some way,

WSPO shows the available options for implementing it.

For instance, WSPO shows two implementation options

for SSL (Protection by Lower Layer) and ENC (Encryp-

tion for Receiver) when the credit card part of the or-

derRequest message is specified by a user as confiden-

tial. She can choose one of the implementation options

or cancel the securing operation itself.

3.4 WS-SecurityPolicy Generation

WSPO generates a WS-Policy file for each message

specified as secure. The generated policy for an order-

Request message in the application model given in Sec-

tion 3.1, with an authentication option of the implemen-

tation variation AT3 (a combination of the PASS,

NONCE, and ENC idioms) applied to the book-info part,

would be as follows:

<Policy>
 <SecurityToken>
 <TokenType>UsernameToken</TokenType>
 <Claims>
 <UsePassword Usage="Required"/>
 <UseNonce Usage="Required"/>
 </Claims>
 </SecurityToken>
 <Confidentiality>
 <KeyInfo>
 <SecurityToken>

<TokenType>${TOKEN_TYPE}</TokenType>
<TokenIs-

suer>${TOKEN_ISSUER}</TokenIssuer>
<Claims>
 <SubjectName>CN=Book</SubjectName>
</Claims>

 </SecurityToken>
</KeyInfo>
<Mes-

sageParts>//UsernameToken</MessageParts>
 </Confidentiality>
</Policy>

4. Idioms and Best-Practice Patterns with

WS-Security

The best-practice pattern language we developed for

our tool has two levels of conceptual components. They

Figure 6. A GUI for an application model in WSPO.

Figure 7. A selection dialog in WSPO GUI.

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

are technical idioms and combinational patterns. First

we present several idioms that abstract technologies

extracted from Web Services specifications like WS-

Security and WS-SecurityPolicy. Then, we show several

patterns that clarify how we can combine these idioms

to counter security threats. An early draft, but with more

comprehensive descriptions of the patterns we devel-

oped, is available at [2].

4.1 Idioms in WS-Security

Before pigeonholing the best-practice patterns for se-

curing Web Service messaging, it is better to abstract

from the somewhat prosaic protocol specifications and

define common notions for representing the functional

features defined in the specifications. In this section,

first we present several “idioms”, which are used when

implementing secure messaging with WS-Security. Each

idiom is just a building block and does not provide a

complete solution.

Protection by Lower Layer (SSL)

Protects a channel between a sender and a receiver

by using security protocols provided by lower layers,

such as SSL/TLS provided by the transport layer and

IPSec provided by the network layer. The sender is ei-

ther an initial sender or an intermediary. The receiver is

either an intermediary or an ultimate receiver.

Encryption for Receiver (ENC)

A message is encrypted using a receiver’s key. The

receiver is the ultimate receiver of the content to be sent.

The key may be obtained beforehand or when sending

the message. If the key is a public key, it is obtained

from a security token service (STS) using WS-Trust. If

the key is a secret key, it is received from the receiver

using WS-SecureConversation. The key-bearing mes-

sage is encrypted using WS-Security.

Digital Signature by Sender (DSIG)

A digital signature is attached to a message using the

sender’s private key. The sender is either an initial

sender or an intermediary. The digital signature is at-

tached using WS-Security.

MAC by Sender (MAC)

Attaches a message authentication code (MAC) to a

message using a sender’s secret key. The sender is either

an initial sender or an intermediary. The key needs to be

shared with the receiver.

The key is shared between the sender and the re-

ceiver using WS-SecureConversation. The key may be

exchanged beforehand or when sending the message.

The MAC is attached using WS-Security.

Password of Sender (PASS)

An initial sender’s username and its password are at-

tached to a message. The pair consisting of a username

and a password is attached using WS-Security.

Nonce (NONCE)

A nonce is attached to a message. The nonce may be

attached to part of a message being processed, or if a

digital signature or a MAC is attached, to a manifest of

the digital signature or the MAC. The nonce can be at-

tached using WS-Security if the data is only a username

or a pair consisting of a username and password, or a

timestamp can be used as the nonce.

4.2 A Best-Practice Patterns Catalog

We focused on four types of threats to Web Services:

eavesdropping, falsification, masquerade, and repudia-

tion. Each idiom presented in the previous section pro-

vides an implementation for protection from some of

these threats. A single idiom may protect against a sin-

gle threat or a combination of idioms may protect

against several threats.

This section presents protection patterns where tech-

nical idioms are combined to counter certain threats. We

use the idioms presented in the previous section to de-

scribe the implementations of the protections.

Confidential Message

Synopsis

Provide a confidential message.

Context

Threat: eavesdropping

Solution

Make it impossible for attackers to get or read any

message content by encrypting it and transmitting an

encrypted message instead of the original message.

Implementation Options

SSL (ET1) or ENC (ET2)

Message with Integrity

Synopsis

Provide a message with integrity.

Context

Threat: falsification

Solution

Make it impossible for attackers to get any messages,

or make it possible for the receiver to detect any

changes to the messages by attaching digital signatures

to a message.

Implementation Options

SSL (ST1), DSIG (ST2) or MAC(ST3)

Authenticated Message Source

Synopsis

Authenticate the message source.

Context

Threat: masquerade

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

Solution

Perform authentication and make it impossible for at-

tackers to get or reuse any authentication information.

Implementation Options

PASS + SSL (AT1), PASS + NONCE + ENC (AT3),

DSIG + NONCE (AT5), MAC + NONCE (AT6), DSIG

+ SSL (AT9) or MAC + SSL (AT10)

Note that there are two ways to validate authentica-

tion information: by myself or by a proxy. In the latter

case, validation is requested using WS-Trust. Validation

may be done using WS-Federation as well. Validation

of gateways can be regarded as a variation of this case.

Non-Repudiated Message

Synopsis

Provide a message that cannot be repudiated.

Context

Threat: repudiation

Solution

Add versions for every message to be sent and attach

digital signatures to messages using a private key.

Implementation Options

DSIG + NONCE (NT1) or DSIG + SSL (NT2)

4.3 Patterns against Threats

Table 1 shows the mapping between threats and im-

plementation variations. From the table, we can see

what variation to use to counter each threat. We can also

see what variations to combine to counter some of the

threats efficiently. This table is used to find and analyze

combinations of variations that meet the security re-

quirements.

For example, suppose we want to counter all the

threats from both third parties and intermediaries. Using

the NT1 variation, we can counter repudiation as well as

falsification and masquerade, because that variation is

constructed from the DSIG idiom and the NONCE id-

iom, and from those idioms, the ST2 variation and the

AT5 variation are constructed. Therefore, using the NT1

variation in combination with the ET2 variation, we can

counter all of the threats.

5. Discussion

5.1 Related Work

Yoder et al. proposed patterns for an architecture for

making an application secure [15]. By combining some

of the patterns and implementing the combination, a

secure application can be built. Yoder et al. focused on

the architecture of an application and classified its secu-

rity aspects, which is different from what we focus on,

messaging between applications. Their patterns are or-

thogonal to ours and would be useful for building an

application.

Braga et al. proposed patterns for messaging between

applications [16]. Our situation calls for patterns of this

sort. However, each pattern is too abstract to use in tools

proposed in this paper. Also, it is assumed that commu-

nication is directly between sender and receiver, and is

protected using application layer security mechanisms.

We should consider that one or more intermediaries may

exist between sender and receiver in the context of Web

Services. Moreover, Braga et al. targeted the patterns

only while we target policies and configurations as well.

The Basic Security Profile Working Group of WS-I

studied the security of Web Service scenarios [17].

Though they targeted the same area as Braga et al. did,

they studied it in more detail, especially considering

intermediaries and transport-layer security mechanisms.

Their work does not consider the possibility that some

of the intermediaries are malicious and it does not well

address how to combine application and transport layer

security mechanisms. However, it would be useful for

refining some part of our patterns.

5.2 Limitations of Our Approach

Here, we discuss some limitations of our tool, envi-

sioning how to enhance it. First, the actual descriptions

of WS-SecurityPolicy are not abstract enough to elimi-

nate technical details completely. As in Figure 1, two

levels are explicitly distinguished in IBM WebSphere:

the service and binding levels. As for signature, which

parts require integrity should be defined at the service

level, and signature algorithms and key types should be

defined later at the binding level. On the other hand,

these different levels of information are mixed in the

WS-SecurityPolicy descriptions. It seems possible to

define a classification hierarchy of policy descriptions

Table 1. Mapping threats to implementation variations

Threat Variation SSL ENC DSIG MAC PASS NONCE

Eavesdropping ET1 x
ET2 x

Falsification ST1 x
ST2 x
ST3 x

Masquerade AT1 x x
AT3 x x x
AT5 x x
AT6 x x
AT9 x x
AT10 x x

Repudiation NT1 x x
NT2 x x

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

on the basis of the key elements of WS-SecurityPolicy

such as Integrity and Confidentiality.

Second, the federation of security domains should be

taken into consideration for security configurations.

Although WS-SecurityPolicy can support federation,

our pattern representation and platform model do not

take it into account. Since it is important for Web ser-

vice security, we have to enhance our models as soon as

possible.

Finally, our tool has not been integrated with an ac-

tual development process. For now, we assume that us-

ers construct application models from scratch, referring

to WSDL. However, the application development trend

is for the Model Driven Architecture (MDA). In MDA,

users construct an abstract model for the business proc-

ess, and refine the model repeatedly. This suggests that

we want to reuse a model at some abstraction level

when creating the application model. In addition, our

tool would be used during the model construction proc-

ess. Actually, the Business Process Modeling Language

(BPML) [20] defines a business process notation which

is quite similar to our application model. In this way, we

want to seek how to leverage existing MDA efforts for

our tool.

6. Concluding Remarks

This paper proposed a tool giving a simplified, busi-

ness-policy-oriented view to its users, who are configur-

ing secure Web Services for their systems. It models the

messaging with customers and business partners, lists

various threats to the messaging, and offers best-practice

patterns for the threats. A user can select among varia-

tions on the basic patterns according to the business

policies, and then apply them to the messaging model

using the GUI. The process of configuration with the

tool is in a “business-friendly” manner. That is to say

they can start with designing at the business level and

then gradually step into more detailed parts of their sys-

tems.

Acknowledgment

We thank Tim Ebringer and Shannon Jacobs for their

advice on this work and English proofreading. We also

thank anonymous reviewers of this paper for their valu-

able comments, and they are reflected on the final ver-

sion of this paper.

References

[1] Security in a Web Services World: A Proposed Architec-

ture and Roadmap, Apr 7, 2002.

[2] Takeshi Imamura and Michiaki Tatsubori: Patterns for

Securing Web Services Messaging, OOPSLA 2003 Work-

shop on Web Services and Service Oriented Architecture

Best Practice and Patterns, Anaheim, California, USA,

November 26-31, 2003.

[3] Extensible Markup Language (XML) 1.0, W3C Recom-

mendation, Oct 6, 2000.
http://www.w3.org/TR/REC-xml

[4] SOAP Version 1.2, W3C Recommendation, June, 2003.
http://www.w3.org/TR/soap12

[5] Web Services Policy Framework (WS-Policy), May 28,

2003.
http://www-106.ibm.com/developerworks/library/ws-polfram

[6] Web Services Security Policy Language (WS-

SecurityPolicy), Dec 18, 2002.
http://www-106.ibm.com/developerworks/library/ws-secpol/

[7] Web Services Trust Language, Draft, Dec 18, 2002.
http://www-106.ibm.com/developerworks/library/ws-trust

[8] Web Services Secure Conversation, Draft, Dec 18, 2002.
http://www-106.ibm.com/developerworks/library/ws-secon

[9] Web Services Description Language (WSDL) 1.1, W3C

Recommendation, Mar 15, 2001.

http://www.w3.org/TR/wsdl,

[10] Web Services Federation Language, Jul 8, 2003.
http://www-106.ibm.com/developerworks/webservices/library/

ws-fed

[11] Bruce Schneier, Secrets and Lies: Digital Security in a

Networked World, John Wiley & Sons, 2001.

[12] Web Services Security: SOAP Message Security, OASIS

WSS TC Working Draft, Aug 27, 2003.

[13] Web Services Security: UsernameToken Profile, OASIS

WSS TC Working Draft, Aug 11, 2003.

[14] Web Services Security: X.509 Certificate Token Profile,

OASIS WSS TC Working Draft, Aug 19, 2003.

[15] J. Yoder and J. Barcalow. Architectural Patterns for Ena-

bling Application Security, PLoP '97.

[16] A. Braga, C. Rubira, and R. Dahab. Tropyc: A Pattern

Language for Cryptographic Software, PLoP '98.

[17] WS-I Security Scenarios, WS-I Basic Security Profile

Working Group Draft, Feb. 14, 2004.

[18] Frankel, D: Model Driven Architecture, Addison-Wesley

(2003).

[19] Baker, J. and Ghalimi, I: BPML 101 Implementing the

BPML Specification (2001).

[20] Business Process Modeling Language (BPML), Business

Process Management Initiative, Mar 8, 2001,
http://www.bpmi.org/bpml.esp

Proceedings of the IEEE International Conference on Web Services (ICWS’04)
0-7695-2167-3/04 $ 20.00 IEEE

