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A New Loss Function with “Markov Property” for Information Extraction

Yuta Tsuboi Hisashi Kashima∗

Abstract

We propose a new loss function for the discriminative

learning of Markov random fields, which is an intermediate

loss function between sequential loss and pointwise loss.

We show this loss function has “Markov property”, that is,

the importance of correct labeling for a particular position

depends on the numbers of the correct labels around there.

This property works to keep local consistencies and is useful

for optimizing systems identifying structural segments, such

as information extraction systems.
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1 Introduction

Structure labeling problem is one of the most impor-
tant problems in structured data analysis. This is a
generalized supervised classification problem, where the
labels for a set of target variables are to be predicted
when the labels for a set of observed variables are given.
Many real-world tasks are formalized as structure label-
ing problems, for example, part-of-speech tagging and
information extraction tasks such as named entity ex-
traction in natural language processing [23], and pro-
tein secondary structure prediction and gene discovery
in bioinformatics [11].

In sequence labeling problems, hidden Markov mod-
els (HMMs) [23, 11] had been attaining some progress
for years. Recently, conditional models such as maxi-
mum entropy Markov models (MEMMs) [24] and con-
ditional random fields (CRFs) [19] have been attract-
ing considerable attentions because of their capabilities
to allow overlapping features, and their performances
overwhelming those of HMMs. Especially, CRFs are
considered as one of the state-of-art labelers, which are
the discriminative learning of Markov random fields.

One of the reasons for the success of the conditional
models is that their objective functions directly aim
to raise the prediction accuracy for target variables.
HMMs usually learn the joint probability distribution of
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target variables and observed variables, and utilize it for
conditional prediction. This means that this approach
tackles a more difficult problem than necessary, and
needs more training examples. On the other hand,
conditional models such as CRFs and MEMMs directly
estimate the conditional probability distribution, and
therefore more suitable for labeling tasks.

There are some researches on designing and com-
paring various loss functions (i.e. objective functions)
for labeling problems [1, 15, 4]. Two important classes
of the loss functions are sequential loss and pointwise
loss [15]. The sequential loss is the original objective
function that maximizes the sum of log-likelihoods, and
the pointwise loss maximizes the sum of marginal log-
likelihoods with target variables fixed at each position.
This indicates that the sequential loss aims to correctly
predict the whole target variables in a sequence. On the
other hand, the pointwise loss aims to correctly predict
each target variables as many as possible.

Information extraction is one of the typical applica-
tions of labeling problems, whose purpose is to identify
semantic segments in sequence, tree, or graph represen-
tations of natural language, biological data, and so on.
When applying the two loss functions to information
extraction tasks, the sequential loss achieves this goal,
but we have a possibility of resulting in a bad perfor-
mance in difficult problems with relatively small data.
The pointwise loss does its best, but is not enough to
represent the aim to extract segments adequately.

In this paper, we propose mixed loss, which is an
intermediate loss function between the sequential loss
and the pointwise loss, and that has characteristics
of both objective functions. It is defined as a linear
combination of sequential loss and pointwise loss, and
not seemingly be suitable for information extraction.
However, in sequence labeling and tree labeling, we can
show that the mixed loss has a “Markov property”, that
is, the importance of correct labeling for a particular
position depends on the numbers of the correct labels
around there. Therefore, our new loss function is
expected to be useful to predict clusters of correct labels.

This paper is organized as follows. In Section 2,
we give preliminaries of structure labeling problems,
conditional random fields, and losses used for training
them. In Section 3, we propose a new loss function



Figure 1: An example of graph structured data to be
labeled. The black nodes are observed variables x, and
the white nodes are target variables y.

called λ-mixed loss that is more suitable for information
extraction tasks. In Section 4 shows the results for the
preliminary experiment of a natural language task. In
Section 5, we mention related work. Section 6 concludes
this paper with discussion about the generalization of
our approach.

2 Conditional Models for Labeling Structured
Data

Let x = (x1, x2, . . . , xT ), xt ∈ Σx be a set of observed
variables, and y = (y1, y2, . . . , yT ), yt ∈ Σy be a set
of target variables1, where Σx and Σy are the sets of
labels for observed and target variables, respectively.
Also, suppose that there is a graph structure among
the variables like Figure 1. Figure 2 is an example of
such graphs in part-of-speech tagging tasks, xt indicates
the t-th word, and yt indicates the part-of-speech tag of
the t-th word.

In structure labeling problem, given the labels of
each observed variables in x, we want to assign correct
labels for each target variable in y. For this goal, we
may exploit training data, E = (e(1), e(2), . . . , e(|E|)),
whose i-th example is e(i) = (x(i), y(i)), and |x(i)| =
|y(i)| = T (i).

The model of conditional random fields (CRFs) is
represented as a form of logistic regression extended to
handle multi target variables and multi labels as follows,

f(y|x) =
exp(

〈
Θ, Φ(x,y)

〉
)∑

ỹ

exp(
〈
Θ, Φ(x, ỹ)

〉
)
,

where Θ is the vector of the model parameters, and
Φ(x, y) is the feature vector for (x, y). Each element
φi of Φ(x, y) is the number of times the i-th feature

1For simplicity, we suppose that |x| = |y| = T , but we can
easily extend the results in this paper in a case that |x| 6= |y|.

Figure 2: A graph representation of a sequence in part-
of-speech tagging tasks．Given x as the sentence “the,
man, saw ,· · · , glasses.”，y as the part-of-speech tags
for the sequence, e.g.“DT, NN, VBD, . . ., NNS”, are to
be predicted.

Figure 3: Each feature is defined as a pair of two
consecutive variables such as (a) a pair of an observed
variable and a target variable, or (b) a pair of two target
variables.

appears in (x,y). Usually, each feature is defined to
be a pair of consecutive two variables such as in Figure
3. Especially, a pair of target features (Figure 3 b) are
called “transition features”. Given the labels for x, the
labels for y are predicted by argmaxyf(y|x).

The model is trained by finding the optimal param-
eters that minimize a loss function. In the original CRF
model [19], the sum of negative log-likelihoods is used
as the loss function.
Definition 1 (Sequential loss function [4]). Se-
quential loss function L1 is defined as

L1 = −
∑

i

log f(y(i)|x(i)).

The model is trained by iterative methods using the
following gradient,
(2.1)
∂L1

∂Θ
= −

∑

i

(
Φ(x(i), y(i)) −

∑

ỹ

Φ(x(i), ỹ)f(ỹ|x(i))
)
.



Note that both the loss function and its derivatives can
be calculated efficiently by the dynamic programming
techniques without enumerating all the possible target
variable paths.

Let us consider the implication of the sequential
loss function L1. This loss function tries to learn
the parameters that predict the labels for the whole
target variables in a sequence simultaneously, since the
likelihood of the set of target variable y(i) for each
example is maximized in this loss. However, there
is a possibility of resulting in a bad performance in
difficult problems with relatively small data since a
large negative weight is given to the features whose
transitions was never observed in a training set under
sequential loss. In addition, there are some tasks, e.g.
part-of-speech tagging, where it is enough to correctly
predict target variables as many as possible.

Based on those ideas, Kakade et al. [15] proposed
another loss function L0, which is based on the marginal
likelihood Pr(yt = y

(i)
t |x(i)) of the label y

(i)
t at each

position t.
Definition 2 (Pointwise loss function [15]). Point-
wise loss function L0 is defined as

L0 = −
∑

i

T (i)∑

t=1

log
∑

ỹ:ỹt=y
(i)
t

f(ỹ|x(i)),(2.2)

where
∑

y:yt=y
(i)
t

indicates summation over all possible
labels for the target variables with the t-th target variable
fixed as y

(i)
t ∈ Σy.

The pointwise loss function L0 aims to correctly
predict each of the target variables as many as possible.
and do not care the consistencies among consecutive
labels. The pointwise loss function is experimentally
shown to be competitive to the sequential loss [1, 15]．

The gradient of L0 is

(2.3)

∂L0

∂Θ
= −

∑

i

( T (i)∑

t=1

∑

ỹ:ỹt=y
(i)
t

Φ(x(i), ỹ)f(ỹ|x(i), y
(i)
t )

−T (i)
∑

ỹ

Φ(x(i), ỹ)f(ỹ|x(i))
)
.

This loss function and the derivatives can be also cal-
culated efficiently by the dynamic programming tech-
niques.

Under pointwise loss, a positive weight is given to
all the features of which the second target label appears
in a training data. Figure 4 describes the difference of
the way to updating the weights of transition features
between sequential loss and pointwise loss.

(a) sequential loss (b) pointwise loss

Figure 4: Weight updates for transition features under
sequential loss and pointwise loss: The double circles
show the labels which occurred in a training sample and
the thin circles show the labels which did not occurred in
the data. The bold edges describe rewarded transitions
and dashed edges describe punished transitions by each
loss function

3 New Loss Function for Information
Extraction

Although each of the losses reviewed in the previous
section makes sense in each context, we might imagine
intermediate situations where it is desired to correctly
predict clusters of variables. For example, in informa-
tion extraction tasks such as named entity recognition
and protein secondary structure prediction, we want to
find local segments that indicate named entities, alpha
helices or beta sheets regions, and they are represented
as clusters of labels.

Therefore, a suitable loss function for information
extraction is the one with the characteristics of both
L1 and L0. In other words, we want a loss function
with “Markov property”, ¡¡¡¡¡¡¡ markov.tex that is, the
importance of correct labeling for a particular position
depends on the numbers of the correct labels around
there. We define the following new loss function Lλ for
this purpose.

Definition 3 (λ-mixed loss function). For a
given constant 0 ≤ λ ≤ 1, we call

Lλ := λL1 + (1 − λ)L0

= −
∑

i

(
λ log f(y(i)|x(i))

+ (1 − λ)
T (i)∑

t=1

log
∑

ỹ:ỹt=y
(i)
t

f(ỹ|x(i))
)

(3.4)

λ-mixed loss function.
We can see this loss function goes between the



sequential loss and the pointwise loss, since Lλ is
identical to L0 when λ = 0, and identical to L1 when
λ = 1.

On first sight, although the new objective function
does not seem to enhance local consistencies of labels,
we show that it really does in sequence labeling. Let
us consider the CRF for sequence labeling, which is
described as

(3.5) f(y|x) =
exp(

T+k−1∑
τ=−k+1

〈
Θ,Φ(xτ ,yτ+1

τ )
〉
)

∑
ỹ

exp(
T+k−1∑

τ=−k+1

〈
Θ, Φ(xτ , ỹτ+1

τ )
〉
)
,

where x = (x−k+1, . . . , xT+k−1), y =
(y−k+1, . . . , yT+k), and yτ+1

τ = (yτ , yτ+1). The
variables in t < 1 or t > T (i) are dummy variables
which always take a special label σ0, i.e. xt = yt = σ0.
(See Figure 5(a).) These dummy variables are for
convenience for the following analysis, and Eq. (3.8) is
equivalent to the model without them.

======= that is, the importance of correct la-
beling for a particular position depends on the numbers
of the correct labels around there. We define the follow-
ing new loss function Lλ for this purpose.
Definition 3 (λ-mixed loss function). For a given
constant 0 ≤ λ ≤ 1, we call

Lλ := λL1 + (1 − λ)L0(3.6)

= −
∑

i

(
λ log f(y(i)|x(i))(3.7)

+(1 − λ)
T (i)∑

t=1

log
∑

ỹ:ỹt=y
(i)
t

f(ỹ|x(i))
)

λ-mixed loss function.
We can see this loss function goes between the

sequential loss and the pointwise loss, since Lλ is
identical to L0 when λ = 0, and identical to L1 when
λ = 1.

On first sight, although the new objective function
does not seem to enhance local consistencies of labels,
we show that it really does in sequence labeling. Let
us consider the CRF for sequence labeling, which is
described as

(3.8) f(y|x) =
exp(

T+k−1∑
τ=−k+1

〈
Θ,Φ(xτ ,yτ+1

τ )
〉
)

∑
ỹ

exp(
T+k−1∑

τ=−k+1

〈
Θ, Φ(xτ , ỹτ+1

τ )
〉
)
,

where x = (x−k+1, . . . , xT+k−1),
y = (y−k+1, . . . , yT+k), and yτ+1

τ = (yτ , yτ+1). The

Figure 5: Sequence labeling.
⊗

indicates a dummy
variable that always takes a special constant label.

variables in t < 1 or t > T (i) are dummy variables which
always take a special label σ0, i.e. xt = yt = σ0. (See
Figure 5.) These dummy variables are for convenience
for the following analysis, and Eq. (3.8) is equivalent to
the model without them.

¿¿¿¿¿¿¿ 1.43
Under these assumptions, we define another loss

function that has Markov property.
Definition 4 (k-th order Markov loss function).
For a given integer k > 0, we call

Mk := −
∑

i

T (i)∑

t=−k+1

log
∑

ỹ:ỹt+k
t =y(i)t+k

t

f(ỹ|x(i))(3.9)

= −
∑

i

T (i)∑

t=−k+1

log
∑

ỹ:ỹt+k
t =y(i)t+k

t

·
exp(

T (i)+k−1∑
τ=−k+1

〈
Θ, Φ(x(i)

τ , ỹτ+1
τ )

〉
)

∑
ỹ

exp(
T (i)+k−1∑
τ=−k+1

〈
Θ, Φ(x(i)

τ , ỹτ+1
τ )

〉
)
,

k-th order Markov loss function.
In words, the k-th order Markov loss function is

the summation of the loss at position t which depends
exclusively on the conditional distribution of next k
positions. Note that, in contrast with the marginal
likelihood (2.2) fixing only one target variable at a time,
Mk fixes k + 1 consecutive target variables at a time.
Therefore, this loss function tries to correctly predict as
many chunks of length k + 1 as possible.

Now, we obtain the following theorem that claims
equivalence of mixed loss function and Markov loss
function.
Theorem 1. For any integer k ≥ 0, let

(3.10) λ =
k

k + 1
.

Then,
1

1 − λ
Lλ = Mk.



yt
(i)yt-1

(i) yt+1
(i)

yt
’

yt’
’’

yt-1
’

yt-1
’’

yt+1
’

yt+1
’’

yt+2
(i)

yt+2
’

yt+2
’’

yt
(i)yt-1

(i) yt+1
(i)

yt
’

yt’
’’

yt-1
’

yt-1
’’

yt+1
’

yt+1
’’

yt+2
(i)

yt+2
’

yt+2
’’

yt
(i)yt-1

(i) yt+1
(i)

yt
’

yt’
’’

yt-1
’

yt-1
’’

yt+1
’

yt+1
’’

yt+2
(i)

yt+2
’

yt+2
’’

Figure 6: Weight updates of transition features under
second order Markov loss function: The updated weight
of the transition features in the box is equal to that of
the mixed loss of 2/3L1 + 1/3L0.

Proof. The proof is done by simple algebraic substitu-
tion. See Appendix for details. ¤

This theorem indicates that, for any positive integer
k > 0, minimization of 1

1−λLλ is equivalent to minimiza-
tion of Mk by choosing λ that satisfies (3.10). There-
fore, our new loss function works for correct prediction
of labels while keeping local consistencies among them
and we can see sequential loss and pointwise loss are
the special cases of k = ∞ and k = 0 of Markov loss,
respectively.

From (2.1) and (2.3), the gradients of the proposed
loss function are derived as follows:

∂Lλ

∂Θ
= −

∑

i

(
λΦ(x(i), y(i))

+(1 − λ)
T (i)∑

t=1

∑

ỹ:ỹt=y
(i)
t

Φ(x(i), ỹ)f(ỹ|x(i))

−(λ + (1 − λ)T (i))
∑

y̆

Φ(x(i), y̆)f(y̆|x(i)))
)
.

Figure 6 shows the way to updates weights of tran-

sition features under the second order Markov loss (or
2/3-mixed loss) function, and elaborates the equivalence
of mixed loss and Markov loss the viewpoint of their
derivatives. At each position, the weights of transition
features in the chunk of length k + 1 are updated un-
der the manner of sequential loss and the weights of
the transition before the chunk are updated under the
manner of pointwise loss. Therefore, the summation of
updated weights is mixed value of updated weights by
the gradients of sequential loss and pointwise loss at the
fixed rate λ.

In above case, since we inherently assumed that k is
integer, corresponding λ can take only discrete values.
Then, what if k is not integer, i.e. bkc < k < dke
? Intuitively, Lλ is just an intermediate loss between
Mbkc and Mdke. The following two corollaries are easily
derived from Theorem 1. The first one just justifies this
intuition, and the other gives another interpretation.
Corollary 1. For any k ≥ 0, let λ = k/(k + 1).
Then,

(3.11)
1

1 − λ
Lλ = (dke − k)Mbkc + (k − bkc)Mdke.

Proof. It is easily verified from Theorem 1 and the
definition of mixed loss (3.6) that

Mbkc = bkcL1 + L0,

Mdke = dkeL1 + L0.

Noting that the following equations hold,

(dke − k) + (k − bkc) = 1,

(dke − k)bkc + (k − bkc)dke = k,

the right hand side of (3.11) becomes

kL1 + L0 =
λ

1 − λ
L1 + L0 =

1
1 − λ

Lλ.

¤
Note that, since 0 ≤ dke−k, k−bkc ≤ 1 and (dke−k)+
(k − bkc) = 1, Lλ is just an internally dividing point
between Mbkc and Mdke.

From another perspective, this can be understood
as a weighted sum of Markov losses with exponentially
decaying weights.
Corollary 2. For any 0 < λ < 1,

(3.12)
1

1 − λ
Lλ = (1 − λ)

∞∑

κ=0

λκMκ.



Proof. From Theorem 1, the summation in the right
hand side becomes,

∞∑

κ=0

λκMκ =
∞∑

κ=0

λκ(κ + 1)L κ
κ+1

.

Evaluating the infinite series,

∞∑

κ=0

λκMκ =
∞∑

κ=0

λκ(κL1 + L0) =
λ

(1 − λ)2
L1 +

1
1 − λ

L0.

Substituting this into (3.12) completes the proof.

¤
This weighted sum gives large weights to Mκ with small
κ, and the weight decays exponentially as κ becomes
larger. λ is the parameter controlling the speed of the
decay, and small λ means fast decay. This corollary
makes a weighted sum of Markov losses corresponds to
Lλ with a particular 0 < λ < 1, and we can interpret
that the mixed loss is not intended only for a particular
length of chunks, but for all length of chunks with
weighting them depending on their lengths.

4 Experiment

To test our new loss function, we compared the perfor-
mances of sequential, pointwise, and mixed loss func-
tions for CRFs on a Named Entity Recognition task.

4.1 Data Set Named Entity Recognition (NER) is a
subtask of information extraction which deals with iden-
tifying phrases that contain the names of persons, orga-
nizations, locations, times and quantities in sentences.

We used the Spanish corpus provided for the shared
task of CoNLL2002 on NER [29]. The corpus is com-
posed of a training set, a development set, and a test set,
which contain 8322 (264680), 1914 (52849), and 1516
(51487) sentences (tokens), respectively. The shared
task concentrates on four types of named entities: per-
sons, locations, organizations, and names of miscella-
neous entities. The tokens in the corpus are annotated
with nine target labels, i.e. |Σy| = 9: the beginning
and continuation of the named entities and non-named
entities. Figure 7 shows an example of named entity
labels encoded in the data. The average phrase length
of named entities is 1.74 in the corpus.

4.2 Experimental Setup We conducted two types
of experiments: (1) evaluating according to the stan-
dard procedure of the shared task of CoNLL 2002, and
(2) evaluating the performances varying training data
sizes.

For the first experiment, the CRF with each loss
function was trained with the training data. The

development data was used for tuning the parameter of
the CRFs. The parameter is the variance of Gaussian
prior, which is a regularization term added to loss
functions [6]. When the best parameters were found,
CRFs were evaluated on the test data. For the second
experiment, we used the first 100, 200, 300, 400,
600, and 800 sentences of the train data in training
phase. Both the development set and the test set were
used in evaluation phase. In this experiment, we did
not use regularization terms in objective functions to
concentrate on the comparison of the performances of
loss functions.

We used pairs of consecutive labels and observed
word information as features (See Figure 3). Each word
is represented as binary features which are composed
of a word occurring and some spelling features. An
example of the spelling features is “Is the word ends with
period and the current label is Person?”. Those spelling
features can be overlapped each other. We use those
features of not only the current word but also of the
words within a fixed window of size 3 (i.e. the previous
and next words). The more detailed description of
features is described as the S3 features in [4]. For
parameter estimation, we employed conjugate gradient
descent method [25].

4.3 Results Table 1 shows the results according to
the standard procedure of the shared task of CoNLL
2002. The column “point”, “k=l”, and “seq” repre-
sent the results of pointwise loss function, mixed (l-th
Markov) loss function, and sequential loss function, re-
spectively. Under the “Markov loss” interpretation of
the proposed loss function, we investigated the perfor-
mances varying the parameter k from 1 to 5. The per-
formances were evaluated according to Precision, Re-
call, and F1 measure on the test set. Precision is the
percentage of named entities found that are correct. Re-
call is the percentage of found named entities present in
the corpus. F1 measure is the harmonic mean of the
precision and recall of named entity.

The results indicate that the performances of the
proposed loss function are competitive with the conven-
tional loss function. Especially, the k = 3 Markov loss
slightly performs better than others. Since the average
length of named entities is 1.74, this results agree with
our intuitions since the size of segment plus two (i.e.
k + 1) represents proper local consistency to recognize
the edges of segment.

Table 2 shows the results of the NER task varying
training data sizes. We compared the performances
of sequential loss, pointwise loss, and mixed losses
varying the parameter k from 1 to 5. The performances
were evaluated according to the average F1 measure of



development set and test set.
In total, pointwise loss and mixed loss show higher

performance than sequential loss, though the difference
between pointwise loss and mixed loss was not stable
when the size of training data was varied. The CRFs
trained on mixed loss with the range k = 2− 4 perform
better than the others with the smaller training data
sets of 100 and 300. With the larger training data sets,
the performances of pointwise loss and mixed loss with
the range k = 1 − 2 show higher performance than the
others. This empirical result suggests that the proposed
loss function works well in relatively small data set.

5 Related Work

After MEMMs [24] and CRFs [19] became conspicuous
as standard labelers, several variations for enhancing
their efficiency and accuracy have been proposed, for ex-
ample, a perceptron-based efficient learning algorithm
called hidden Markov (HM) perceptron [8], a support
vector machine (SVM)-based algorithm [5, 27], and a
boosting-based algorithm [2]. Most of them including
MEMMs and CRFs allow dual representation so as to
exploit kernels to handle rich features and their com-
binations [5, 30, 20, 3, 27]. Although represented in
dual forms, they can not exploit structured convolution
kernels [14, 12] that exploit arbitrarily large substruc-
tures such as string kernels [22, 21], tree kernels [9, 16],
and graph kernels [13, 18], since they essentially come
back to the primal space when finding the best label-
ing by using Viterbi decoding. For avoiding this, two
stage learning approaches of candidate generation and
classification are proposed in [10, 17].

Although our discussion in this paper is based on
logarithmic loss functions, other types of loss functions
such as exponential loss [2], and hinge loss [5, 30,
3, 27] have been proposed. Our point of view in
this paper is orthogonal to this classification, so that
our approach could also be applied to those types of
objective functions.

In this paper, although we only discussed label-
ing problems of structured data, the discussion is not
only limited to labeling, but more general problems of
learning mapping from structured data to structured
data [31, 7, 30, 26, 30, 28] are considered. One of
the most related works to this paper is semi-Markov
CRFs [26] that directly aim to segment sequence data.
Their model makes consecutive observed variables corre-
spond to a target variable that indicates a segment. Al-
though the motivation of the semi-Markov CRFs is very
similar to ours, their model is not readily deal with tree
segmentation. Also, since the ideas of the semi-Markov
CRF model and the mixed loss function are uncompet-
itive with each other, they can naturally complement

Figure 8: Tree labeling.
⊗

indicates a dummy variable
that always takes a special constant label.

to each other. While the semi-Markov CRFs cluster
observed variables corresponding to segments, our loss
function aims predicts clusters of target variables.

6 Conclusion and Discussion

In this paper, we proposed a new loss function called
mixed loss for information extraction, which is an in-
termediate loss function between the two loss functions,
sequential loss and pointwise loss, so that it has char-
acteristics of both objective functions. Also, we showed
that “Markov property” of the mixed loss in sequence
labeling, that is, the importance of correct labeling for a
particular position depends on the numbers of the cor-
rect labels around there.

It is possible to consider Lλ for data with more
complex structures such as trees and graphs. In this
paper, we only showed Theorem 1 in the case of
sequence labeling, but the theorem holds for data with
rooted tree structures like Figure 8, e.g. information
extraction from parse trees [17]. As in the case of
sequence labeling, we assume that there are sufficiently
many dummy variables above roots and below leaves,
all of which take a special label σ0. If segments in Mk

are defined to be all tree-structured subgraphs with all
their root-to-leaf paths have length of k+1, we can show
the equivalence of Lλ and Mk by using a decomposition
similar to Eq. (A.1).

∑

y:yt=y
(i)
t

exp(
∑

τ∈V

ΘΦ(x(i)
τ , yπ(τ)

τ ))(6.13)

=
( ∑

yIN(t)∪{yt}:yt=y
(i)
t

exp(
t−1∑

τ∈IN(t)

ΘΦ(x(i)
τ , yπ(τ)

τ ))
)

·
( ∑

yOUT (t)∪{yt}:yt=y
(i)
t

exp(
∑

τ∈OUT (t)∪{t}

ΘΦ(x(i)
τ ,yπ(τ)

τ ))
)



y

x Wolff   ,  currently  a   journalist  in  Argentina  ,   played with  Del  Bosque …

B-PER O       O       O         O       O    B-LOC    O      O      O  B-PER  I-PER …

…

Figure 7: The named entity labels over an example sentence: Words labeled with O are non-named entities. The
B–XXX label is used for the first word in a named entity of type XXX and I–XXX is used for all continued other
words in named entities of type XXX. PER represents persons and LOC represents locations.

Table 1: Precision, Recall, and F1 measure according to the standard evaluation procedure of CoNLL-2002 NER
shared task.

Loss Function
point k=1 k=2 k=3 k=4 k=5 seq

Precision 77.91 77.96 77.95 78.10 78.03 77.91 78.10
Recall 76.71 76.85 76.88 76.96 76.85 76.82 76.85
F1 77.30 77.40 77.41 77.53 77.43 77.36 77.47

where V is the set of the indices of tree nodes, and π(t)
is the index of the parent node of the t-th node. Also,
OUT (t) indicates the indices of the nodes “outside”
of the t-th node, and similarly, IN(t) is indicates the
indices of the “inside” nodes.

For more general graph-structured data, we have no
clear correspondence between Lλ and other objective
functions so far. However, intuitively, this would also
be an intermediate loss function which balances local
accuracy and global consistency.

One possible generalization of our loss is to make
Lλ position dependent. Although Lλ gives importance
to clusters of labels, all positions are equally weighted.
However, for example, it seems to be more important
to correctly predict boundaries between named entities
and other regions, and capability of tuning importance
of each position is desirable.

One of the possibilities to make Lλ consider position
dependent costs is to employ position dependent weights
w

(i)
t ≥ 0 as follows.

Lλ := λL1 + (1 − λ)
∑

i

T (i)∑

t=1

w
(i)
t log

∑

ỹ:ỹt=y
(i)
t

f(ỹ|x(i))

The larger w
(i)
t becomes, the more importance the label

for yt is given.
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Appendix: The Proof of Theorem 1

The following decomposition plays an important role in
the proof.

(A.1)

∑

ỹ:ỹt+k
t =y(i)t+k

t

exp(
T (i)+k−1∑

τ=−k+1

〈
Θ, Φ(x(i)

τ , ỹτ+1
τ )

〉
)

=

( ∑

ỹt
−k+1:ỹt=y

(i)
t

exp
( t−1∑

τ=−k+1

〈
Θ, Φ(x(i)

τ , ỹτ+1
τ )

〉)
)

· exp(
t+k−1∑

τ=t

〈
Θ, Φ(x(i)

τ ,y(i)τ+1

τ )
〉
)

·

( ∑

ỹT (i)+k
t+k

:ỹt+k=y
(i)
t+k

exp
( T (i)+k−1∑

τ=t

〈
Θ, Φ(x(i)

τ , ỹτ+1
τ )

〉)
)

= F
(i)
t (y(i)

t ) · exp
( t+k−1∑

τ=t

〈
Θ, Φ(x(i)

τ , y(i)τ+1

τ )
〉)

·B(i)
t+k(y(i)

t+k)

where we defined,

F
(i)
t (y(i)

t ) :=
∑

ỹt
−k+1:ỹt=y

(i)
t

exp
( t−1∑

τ=−k+1

〈
Θ, Φ(x(i)

τ , ỹτ+1
τ )

〉)
,

B
(i)
t (y(i)

t ) :=
∑

ỹT (i)+k
t :ỹt=y

(i)
t

exp
( T (i)+k−1∑

τ=t

〈
Θ, Φ(x(i)

τ , ỹτ+1
τ )

〉)
.

From (3.7) and (3.8),

1
1 − λ

Lλ = −
∑

i

( λ

1 − λ

T (i)+k−1∑

τ=−k+1

〈
Θ, Φ(x(i)

τ , y(i)τ+1

τ )
〉

+
T (i)∑

t=−k+1

log
∑

ỹ:ỹt=y
(i)
t

exp(
T (i)+k−1∑

τ=−k+1

〈
Θ, Φ(x(i)

τ , ỹτ+1
τ )

〉
)

−(
λ

1 − λ
+ T (i)) log

∑

ỹ

exp(
T (i)+k−1∑

τ=−k+1

〈
Θ, Φ(x(i)

τ , ỹτ+1
τ )

〉
)
)
.

Substituting k = λ
1−λ and decomposing the second

term, we obtain

1
1 − λ

Lλ = −
∑

i

(
k

T (i)+k−1∑

τ=−k+1

〈
Θ, Φ(x(i)

τ ,y(i)τ+1

τ )
〉

+
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log F
(i)
t (y(i)

t ) +
T (i)∑

t=−k+1

log B
(i)
t (y(i)
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−(k + T (i)) log
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ỹ

exp
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Combining the first three terms leads to

1
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Lλ

= −
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i

(
T (i)∑
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log
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Applying (A.1), we obtain

1
1 − λ

Lλ
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i

(
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log
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= Mk.
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