
November 29, 2006
RT0688
Computer Science; Mathematics 7 pages

Research Report

Fast Shortest Path Computation for Solving the Multicommodity Flow Problem

Hiroki Yanagisawa

IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

1

Fast Shortest Path Computation

for Solving the Multicommodity Flow Problem

Hiroki Yanagisawa
IBM Tokyo Research Laboratory

yanagis@jp.ibm.com

Abstract

For solving the multicommodity flow problems, Lagrangian relaxation based algorithms are fast
in practice. The time-consuming part of the algorithms is the shortest path computations in solving
the Lagrangian dual problem. We show that an A* search based algorithm is faster than Dijkstra’s
algorithm for the shortest path computations when the number of demands is relatively smaller than
the size of the network.

Keywords: shortest path, A* search, multicommodity flow

1 Introduction

The multicommodity flow problem is to find the minimum cost flow which satisfies capacity constraints
and flow conservation requirements while every pair of demands is delivered. Many logistics and com-
munication network problems can be formulated as large multicommodity flow problems.

This problem can be easily formulated by linear programming, thus it is solvable in polynomial
time. Many studies are done on this problem [1, 6] for solving large scale problem fast. At the best of
my knowledge, Lagrangian relaxation based algorithm by Banonneau et al. [1] is the fastest in practice.
While it mainly focuses on reducing the number of iterations when it solves the Lagrangian dual problem,
it does not focus on accelerating the shortest path computations: It constructs Dijkstra trees (shortest
path-spanning tree) by using Dijkstra’s algorithm [3] for the shortest path computation. Since the shortest
path computations are time-consuming [1] when we solve multicommodity flow problems, it is important
to compute the shortest paths fast.

We show that an A* search [5] based algorithm is faster than Dijkstra’s algorithm for computing the
shortest paths when the number of demands is relatively smaller than the size of the network. When
the number of demands is relatively small, it is inefficient to construct Dijkstra trees for computing the
shortest paths of demands, because only a small fraction of the Dijkstra trees are utilized for computing
the shortest paths of the demands. Therefore, it is better to compute the shortest paths of the demands
separetely. While single source single target Dijkstra’s algorithm can be used, A* search is a refined
algorithm for this approach. A* search is originally designed for accelerating the shortest path com-
putation in 1960’s and the searches can be seen as guided search to the target node. Since A* search
requires preprocessing, there was not much use for the shortest path computation (it was often used in
the artificial intelligence area). Recently, because of attentions in these years on the P2P shortest path
problem (a problem to find the shortest paths between the specified pairs of nodes), some studies [4] have
been done on acceleration of the shortest path computaion by using A* search. Solving the Lagrangian
dual problem is similar to solving the P2P shortest path problem in a sense that we compute the shortest
path many times on the same network. Since the preprocessing time does not impact so much on the
total execution time for solving the multicommodity flow problem, A* search will be suitable for solving

2

the problem. In this paper, we show an empirical study of applying an A* search based algorithm to the
multicommodity flow problem.

This paper is organized as follows. In section 2, we define the multicommodity flow problem. In
section 3, we show an A* search based algorithm for the shortest path computation. In section 4, we
show our results of empirical study. Section 5 concludes this paper.

2 The Linear Multicommodity Flow Problem

Given a network (graph) G(N,A) with node set N and arc set A, the linear multicommodity flow problem
is defined as follows:

min
∑
a∈A

ca

∑
k∈K

xk
a

subject to:

∑
k∈K

xk
a ≤ ua, ∀a ∈ A

Mxk = dkδ
k, ∀k ∈ K

xk
a ≥ 0, ∀a ∈ A,∀k ∈ K

where M is the network matrix and δk is a vector of zeros except in the components associated with the
end nodes of the demand of commodity k. ca is the unit cost on arc a and ua is the capacity of arc a. dk

is the demand for commodity k ∈ K. xk is variable for flow of commodity k on the arcs of the network.
When we relax the capacity constraint, the Lagrangian dual problem is

max
λ≥0

L(λ)

where
L(λ) = min

xk≥0,k∈K
{L(x, λ)|Mxk = δk,∀k ∈ K},

and L(x, λ) is the Lagrangian function

L(x, λ) =
∑
a∈A

ca

∑
k∈K

xk
a +

∑
a∈A

λa

 ∑
k∈K

xk
a − ua

 .

The L(λ) can be seen as a shortest path problem for the graph in which each arc a has a cost ca +λa.

3 Shortest Path Computation

A shortest path computation for a graph G(N,A) is a fundamental problem in computer science. When
we compute the shortest path from source node s to target node t, Dijkstra’s algorithm and A* search
are often used.

3.1 Dijkstra’s algorithm

Dijkstra’s algorithm [3] is one of the fastest algorithm for the shortest path computation. It maintains
tentative distance d(v) for each node v during execution. Initially, d(s) is set to 0 for the source node s
and d(v) is set to ∞ for node v 6= s. A priority queue stores reached nodes (d(v) < ∞) using d(v) as the
priority (initially the priority queue contains the source node s only). In each iteration, the algorithm
removes a node u from the priority queue and scan the arcs coming out of u. To scan an arc (u, v), check
to see if d(v) > d(u)+l(u, v), where l(u, v) is a length (cost) of arc (u, v). If so, we set d(v) = d(u)+l(u, v)

3

and put v into the priority queue. When we reach the target node t, d(t) is the shortest path cost from
node s to node t.

By executing the shortest path computation from a single node s to all the other nodes, we can
construct a Dijkstra tree whose root node is s.

3.2 A* search

A* search can be used for accelerating the shortest path computation by using preprocessing. It can
be interpreted as defining node potentials πt(v) as lower bound of the distance v to t and corresponding
reduced arc weights lπ(u, v) = l(u, v) + πt(v) − πt(u) and solving it by Dijkstra’s algorithm.

We call an algorithm admissible if it is guaranteed to find an optimal path from s to t for any graph
and feasible if it is guaranteed to scan nodes in nondecreasing order of their distance from s and scans each
node at most once. To guarantee the admissibility and feasibility of the A* search, the node potentials
must meets the following conditions.

Theorem 3.1 [5] If all the πt(v)s give lower bounds of the shortest path costs ∀v, t ∈ N , then A* search
is admissible.

Theorem 3.2 [3, 4] If lπ(u, v) ≥ 0 for all arcs (u, v), then A* seach is feasible.

The following theorem shows that better node potentials give better performance.

Theorem 3.3 [5, 4] Let πt and π′
t be two feasible potential functions such that πt(t) = π′

t(t) = 0 and
π′

t(v) ≥ πt(v) for any node v. Then the set of nodes scanned by A* search using π′
t is a subset of the set

of nodes scanned by A* search using πt.

Note that the above theorem implies that A* search with appropriate (admissible and feasible) node
potentials scans no more nodes than Dijkstra’s algorithm, since Dijkstra’s algorithm is equivalent to the
A* search with zero potential function.

3.3 A* search based algorithm

We show an A* search based algorithm here for solving the multicommodity flow problem. In the
preprocessing stage of the algorithm, it solves the all pairs shortest path problem on graph G(N,A) in
which each arc a ∈ A has a cost ca and it sets the shortest path cost from node v to node t as the node
potentials πt(v). When it solves the Lagrangian dual problem, it uses A* search with the node potentials
πt(v). Because each arc a ∈ A has a cost ca + λa in graph G(N,A) and λa is nonnegative, the node
potential πt(v) gives a lower bound of the shortest path costs from node v to node t, which gurantees
the admissibility. It is also easy to show that the node potential πt(v) guarantees the feasibility. Note
also that the node potential πt(v) gives good lower bounds. Since some observations [1, 2] showed that
the number of congested arcs in an optimal solution on practical problems is a small fraction of the total
number of arcs in the network, most of node potential πt(v) is close to the shortest path cost from node
v to node t.

To improve the above A* search based algorithm, we make use of information of upper bounds of
the shortest path costs. Suppose that we know in advance that the shortest path cost from s to t does
not exceeds UB. During an execution of the A* search, d(v) + πt(v) gives a lower bound of the shortest
path cost from s via v to t. If we find that d(v) + πt(v) > UB for a node v during the A* search, we see
that the shortest path from s to t does not go through v. Thus, we can skip putting v into the priority
queue. This improvement yields reducing the number of nodes in the priority queue, which accelerates
the A* search. The pseudocode of the algorithm is given in Fig 1. The upper bounds are easily obtained
while solving the Lagrangian dual problem. When we solve the Lagrangian dual problem, we iteratively

4

calculates the shortest path costs for the same from-to pairs. So we memorize the shortest path in the
previous iteration and, in the following iteration, we take an upper bounds as the total cost along the
shortest path in memory.

Algorithm A* search(s, t, UB)
s and t are nodes and UB is an upper bound of s − t shortest path cost

begin
forall v ∈ N { k(v) := ∞; d(v) := ∞; }
k(s) := 0; d(s) := 0;
Q := {s};
while Q is not empty

delete v from Q such that v := argv∈Q min k(v);
forall (v, w) ∈ A

if k(w) > k(v) + l(v, w) − πt(v) + πt(w) then
k(w) := k(v) + l(v, w) − πt(v) + πt(w);
d(w) := d(v) + l(v, w);
if d(w) + πt(w) ≤ UB then { Q := Q ∪ {w}; }

endif
endfor

endwhile
end

Figure 1: A* search using an upper bound

Overall, the A* based algorithm is written as follows:

1. Set the lagrangian multipliers to zeros.

2. Calculate all pairs shortest paths for G(N,A) and set them as node potenitals.

3. Update the lagrangian multipliers.

4. For each pair of demands, calculate upper bound (i.e. the total cost along the shortest path in the
previous iteration).

5. For each pair of demands, calculate the shortest path by using the upper bound (by using algorithm
in Fig. 1) and stores it.

6. Go to step 3.

For a further acceleration technique, we partition the demands into groups according to their desti-
nation nodes and we make use of the shortest paths in the same group. Suppose that the shortest path
from node s to node t is given and that node u is on the shortest path s− t (i.e. the path s− u− t is the
shortest path). Since a subpath of the shortest path is also a shortest path, path u − t is the shortest
path from node u to node t. When we compute the shortest path from node s′ to node t, we can use
the fact that path u − t is the shortest path. That is, when we reach node u during the A* search from
node s′ to t, we see that the path s′ − u − t is the shortest path among paths which goes through node
u. Therefore, when we reach the node u, we scan all the edges on the shortest path u − t, instead of
putting u into the priority queue. That is, for each arc (v, w) on the shortest path u− t, we remove node
w from the priority queue (if any), set d(w) to the sum of d(v) and the cost of the shortest path v − t if
necessary, and put w into the queue. This acceleration technique improves execution time drastically.

5

4 Experiment

We conducted experiments of the A* search based algorithm against Dijkstra’s algorithm. Since our
focus is on accelerating the shortest path computations, we adopted a simple subgradient method for
solving the Lagrangian dual problem.

4.1 Subgradient method

We used a subgradient method to obtain a solution. The subgradient sa(λ) shows subgradient of L at λ
with respect to arc a ∈ A. The lagrangian multipliers λis are updated by

λi+1
a = λi

a + d
UB − L(λi)
||s(λi)||2

sa(λi) (for all a ∈ A),

where UB is an upper bound on the objective value of the original problem and d is a step size parameter
satisfying 0 < d ≤ 2. In our implementation, UB is set to twice the maximum Lagrangian dual cost so
far, and d is initially set to 2 and halved whenever the lower bound does not increase in 20 consecutive
iterations. The iteration is terminated after 500 iterations.

4.2 Results

Experiments are conducted on a PC (Pentium 4, 3.2 GHz, 3GB of RAM) under Windows XP operating
system.

We used two sets of test problems: planar problems and grid problems. The planar problems are
generated to simulate telecommunication problems and the grid problems has a grid structure such that
each node has four incoming and four outgoing arcs. These two sets of problems are given in [1], which
are originally given in [6].

Table 1 displays data on the two sets of problems. For each instance, we give the number of nodes
|N |, the number of arcs |A|, the number of demands |K|, the objective value z∗ of an optimal solution
(given in [1]).

Instance ID |N | |A| |D| z∗
planar300 300 1680 3584 6.89982 × 108

planar500 500 2842 3525 4.81984 × 108

planar800 800 4388 12756 1.16737 × 108

planar1000 1000 5200 20026 3.44962 × 109

grid10 625 2400 2000 1.64111 × 108

grid11 625 2400 3000 3.29259 × 108

grid12 900 3480 6000 5.77189 × 108

grid13 900 3480 12000 1.15932 × 109

grid14 1225 4760 16000 1.80268 × 109

grid15 1225 4760 32000 3.59353 × 109

Table 1: Test instances

We implemented Dijkstra’s algorithm and the A* search based algorithm for comparison. We used
binary heap to maintain the priority queue. In Dijkstra’s algorithm, we partition demands according
to their origin nodes and construct |N | Dijkstra tree for each node. In the A* search based algorithm,
we partition demands according to their destination nodes and the lower bounds (node potentials) are
calculated by constructing Dijkstra tree for each node.

6

Table 2 shows the results. For each instance, we give the execution time of preprocessing of the A*
search based algorithm, the total time for 500 iterations of the A* search based algorithm (excluding the
preprocessing time), the total time for 500 iterations of Dijkstra’s algorithm, and the ratio of execution
time (time of Dijkstra’s algorithm divided by time of the A* based algorithm). All the times are in
seconds. All results have the objective value within 0.1% error.

The results shows that the execution times of Dijkstra’s algorithm are 50-280% that of the A* search
based algorithm. By comparing the results of grid10 to grid11, grid12 to grid13, and grid14 to
grid15, we see that the A* search based algorithm is faster than Dijkstra’s algorithm when the number
of demands are relatively smaller than the size of the network.

Instance ID Preprocessing time A* search (a) Dijkstra (b) ratio (b/a)
planar300 0.3 134.6 140.2 1.04
planar500 0.9 149.5 414.2 2.77
planar800 2.4 813.2 1093.2 1.34
planar1000 3.7 3202.2 1661.7 0.52
grid10 1.1 170.4 456.8 2.68
grid11 1.0 272.2 483.1 1.77
grid12 2.3 458.7 1028.0 2.24
grid13 2.3 954.8 1044.5 1.09
grid14 4.6 1323.4 2008.5 1.52
grid15 4.5 2538.0 2025.2 0.80

Table 2: Test results

5 Concluding Remarks

We show that the A* search based algorithm is faster than Dijkstra’s algorithm when the number of
demands is relatively smaller than the size of the network. The A* search based algorithm can be
incorporated into the techniques [1] for reducing the number of iterations in solving the Lagrangian dual
problem, which will yield acceleration for solving the multicommodity flow problem. We note that the
A* search based algorithm can also be used for solving similar multicommodity network problems such
as the multicommodity network design problem.

For a further study, improving the node potentials will accelerate the A* search. While we give the
lower bounds of arc costs in this paper, we do not give the lower bounds of the lagrangian multipliers. If
we can give the lower bounds of the optimal lagrangian multipliers, the node potentials will be further
improved.

References

[1] F. Banonneau, O. du Merle, and J.-P. Vial, “Solving large scale linear multicommodity flow problems
with an active set strategy and Proximal-ACCPM,” Operations Research, Vol. 54, No. 1, pp. 184–197,
2006.

[2] P. Chardaire and A. Lisser, “Simplex and interior point sprecialized algorithms for solving non-
oriented multicommodity flow problems,” Operations Research, Vol. 50, No. 2, pp. 260–276, 2002.

[3] E.W. Dijkstra, “A note on two problems in connection with graphs,” Numerische Mathematik, Vol.
1, pp. 269-271, 1959.

7

[4] A.V. Goldberg and C. Harrelson, “Computing the shortest path: A* search meets graph theory,” In
Proceedings of 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’05), pp. 156–
165, 2005.

[5] P.E. Hart, N.J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum
cost paths,” IEEE Transactions on Systems Science and Cybernetics, Vol. 4, pp. 100–107, 1968.

[6] T. Larsson and Di Yuan, “An augmented lagrangian algorithm for large scale multicommodity
routing,” Computational Optimization and Applications, Vol. 27, No. 2, pp. 187–215, 2004.

8

