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Abstract

The time to recover from failures has a great impact on
the availability of Information Technology (IT) systems. We
find that the repair times have heavy-tailed power law dis-
tributions with scaling exponents close to one for two IT sys-
tems, an in-house system hosted by IBM and a high perfor-
mance computing system at the Los Alamos National Lab-
oratory. This means that the repair times of these systems
have infinite variance and may also have infinite mean. As a
result, a claasical metrics based on thie mean time to repair
are not suitable for evaluating the availability of these sys-
tems. We propose a new metric, the T-year return value, for
evaluating the reliability of IT systems. The T -year return
value refers to the value that the mean repair time exceeds
on average once every T years estimated based on the ex-
treme value theory. We evaluate the T -year return values of
the two IT systems and find that the T -year return value can
well represent the system availability.

1 Introduction

Achieving high dependability is a major requirement in
managing information technology (IT) systems. As IT sys-
tems play more roles in business and government activities,
the importance of its dependability has been increased. To
design and build a highly dependable IT system, it is of fun-
damental significance to measure and evaluate the availabil-
ity of the IT system such as the frequency of failures and the
time to recover from failures.

A significant amount of research has been devoted to
measure and analyze the statistics of repair time of IT sys-
tems. The statistics of repair time was first studied by Long
et al. [14]. They measured the time to repair (TTR) by
polling Internet hosts periodically for three months, con-
cluding that the repair time distribution is far from exponen-
tial. More intensive study on the statistics of repair time was
carried out by Schroeder and Gibson [18]. They analyzed
the statistical properties of repair time data, which were col-

lected over nine years at Los Alamos National Laboratory
(LANL) high performance computing (HPC) systems and
concluded that the repair time is well modeled by a log-
normal distribution. Also, based on the facts that the repair
time distribution is non-exponential, many reliability mod-
els have been proposed with non-exponential distributions
(in particlular, phase type distributions) [19, 2, 12].

While the prior work studies the distribution of repair
times, there has bee no research that particularly studies
long repair times, that is the tail of the repair time distri-
bution. Note that long repair times can have significant im-
pact on the availability of IT systems. We analyze the tail of
the repair time distribution of two IT systems and find that
the repair times have heavy-tailed power law distributions
with scaling exponents close to one. This means that that
the repair time has infinite variance and may have infinite
mean, and hence the sample mean of the repair times does
not converge or requires many samples to converge to the
true mean repair time.

We propose a new metric that can provide an intuitive
understanding of system availability even when the repair
time have heavy-tailed power law distribution. The metric
is referred as the T -year return value and is defined as the
value that the repair time exceeds on average once every T
years. We calculate the T -year return value, based on the
extreme value theory, a theory developed for evaluating the
maximum values of rare events.

The contributions of this paper are thus twofold. First,
we study the statistical properties of the repair times of
IT systems and find that the repair times have heavy-tailed
power law distribution. The study of repair time provides us
an insight as to how the system availability should be ana-
lyzed and evaluated. Second, we propose the T -year return
value as a new metric for evaluating the system availability.
We find that the T -year return value allows us to assess the
system availability more effectively than classical metrics
such as MTTR.

This paper is organized as follows. In Section 2, we an-
alyze the statistical properties of repair time data of two IT
systems and show that the repair times have heavy-tailed

1



of power law distributions. Section 3 gives a brief review
of the extreme value theory. In Section 4, we analyze the
T -year return value of the two IT systems and discuss the
results of the analysis Section 5 is devoted to concluding
remarks.

2 Repair Time Analysis

The prior work studies the statistical properties of the re-
pair time distribution and shows that the cumulative distri-
bution function (CDF) is ”S”-shaped. In contrast, we focus
on the statistics of the tail range since the statistics of rare
events with long rapair times can have significant meaning
in estimating the the mean time to repair. In this section, we
discuss the statistical properties of repair time distribution
in the tail range, showing that the repair time has a heavy-
tailed power law distribution.

2.1 Repair Time Data and System Con-
figuration

Analyzing the statistical properties of repair time re-
quires large number of incident data. This is especially so
when we study the tail of a distribution. Since incidents of
IT systems do occur rarely, one needs to use the systemat-
ically collected incident data of large IT systems which is
collected for a long period in production. To analyze the
large amount of repair time data, we use the data of two
large IT systems, whose incident data is stored in the inci-
dent management database in an organized way for years

2.1.1 An in-house system

One data used for analysis is the repair time data of an in-
house system which is hosted by IBM. We use 332 incidents
data which occurred in the system from April 1st, 2005 to
February 27, 2006.

The data is extracted from an incident management
database which stores records on every incident that oc-
curred at all systems that include open systems and mission-
critical systems. Each record contains incident descrip-
tion, time of occurrence, time of recovery, recovery process,
business impact level and so forth. Note that the data stored
in the database contains all incidents including those which
do not affect the system. To analyze data more precisely,
we extracted the incidents which did affect the system, be-
cause, in case of the incidents which do not have system
impact, the restore time can be longer than expected.

The incident data are created as follows. When incidents
are detected by a monitoring system, alerts are displayed on
the monitoring console. Alternatively, operators are called
in by users when the system is unavailable. Then the opera-
tor creates a new record and inputs the incident description

and start time of the failure. Following that, the operator
asks system engineers to repair the system or to seek the di-
rections to repair. Operators input the time into the database
every time when a remedy for repair is executed. And when
finally the system is recovered, the incident end time and
incident description is inputted to the database.

Since the data is created manually by operators, as
pointed out by Schroeder and Gibson [18], the accuracy of
data depends highly on the operator. To avoid using inaccu-
rate data, we eliminated the incorrect data by checking the
incident description for all incidents.

2.1.2 LANL HPC System

The other data we use for analysis is the one which has been
collected on the LANL HPC system. LANL provides its
computer operational data to support and enable computer
science research [1]. In the following analysis, 3997 inci-
dents are used which occurred in one of the LANL HPC
system during May 6, 2002 to September 8, 2005.

LANL HPC system consists of 22 high-performance
computing sub-systems, which is 18 SMP-based systems
and four NUMA-based systems. Each sub-system varies
in the number of nodes, the number of processors and the
number of processors per node. More information on the
system can be found in [1, 18]. The failure record contains
the start time and end time of the failure, the system and
node affected, and the root causes. Incident reporting sys-
tem is much like to that of the in-house system.

Since each sub-system varies in production time, it is
not reasonable to treat all repair time data of the whole sys-
tem together. It is rational to analyze the data on only one
sub-system because each incident of one sub-system can
be assumed to be a realization with an identical distribu-
tion. Form this point of view, we use records on incidents
which have been occurred on a sub-system whose system
ID equals to 18, which corresponds to the system ID 7 in
the reference [18]. This sub-system consists of 1024 nodes
each of which has four processors and falls into four types
according to the size of memory per node, 8, 16, 32 and 352
GB.

2.2 Analytical Results

2.2.1 Statistics summary

Statistics for both system are summarized in the Table 1.
While 75% of the incidents are repaired within 201.5 mi-
nuites and 179.4 minutes for each system respectively, the
repair time of the other 25% of the incidents vary very
widely. The result shows that the median for the in-house
system is slightly smaller than that of the LANL HPC sys-
tem, whereas the 3rd quantile for the in-house system is
larger. This implies that the repair time of the first 50%
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Table 1. Summary statistics.
system Min. 1st Qu. Median Mean 3rd Qu. Max.

in-house system 0.0 16.00 49.0 504.8 201.5 35400.0
LANL HPC system 1.0 28.00 58.0 179.4 142.0 25370.0

of the in-house system is small, but long repair times are
required to recover from the failures more often a the in-
house system. incidents occur. There exists one incident
that is repaired within one minute. This record gives that
the minimum repair time of the in-house system equals to
0.0.

2.2.2 Analysis of time to repair

Figures 1 and 2 show the time series data of repair time Xi

(1 ≤ i ≤ n) , the sample average series X̄i = 1/i
∑i

j=1 Xj

and the sample variance series S2
i = 1/(i− 1)

∑i
j=1(Xj −

X̄i) for the in-house system and the LANL HPC system.
We see that the time series data shows bursts, which cor-
responds to rare events which have long repair time. The
sample average data for the in-house system jumps at the
same moment when the burst occurs and the saome average
does not seems to converge. The same phenomena also can
be seen in the sample average data for the LANL HPC sys-
tem seems, but on the contrary, the sample average seems
to converge to a certain value, whereas the sample variance
does not seems to converge. The results that the sample av-
erage or sample variance fluctuate in time suggest that the
distribution for the repair time is heavy-tailed and that the
scaling exponent for the in-house system is smaller than 1,
whereas that of LANL HPC system is in the range between
1 and 2.

To see these property quantitatively, in Figure 3, we plot
the complementary cumulative distribution function of re-
pair time Fc(x) = Pr{X > x} in log-log plot together with
the same in semi-log plot. As mentioned in the previous
studies, the semi-log plot shows ”S”-shaped, which means
that the distribution is not exponential. With respect to the
tail of the distribution, we find that the distribution of re-
pair time for each system has a long tail. This means that
the probability that the incident that requre very long re-
pair time occurs does not decay exponentailly as x → ∞.
The power low of the repair time distribution is cleare in the
case of LANL HPC system, where we see the scaling law in
a wider range (Figure 3 (b)). The scaling exponent α such
that,

Fc(x) ∼ x−α as x → ∞

is obtained to be 0.7 and 1.1 for each IT system respectively
by the least square fit of data in power law region, which
suggests that the both distribution is heavy-tailed. If 0 <

α ≤ 1, both mean and variance of the distribution is infinite
whereas if 1 < α ≤ 2, only variance is infinite. The scaling
exponents obtained agree with the results in Figure 3, where
the sample average does not converge in-house system case
and only the variance does not converge in the LANL HPC
case

This result is interesting since if the repair time distribu-
tion is heavy-tailed with scaling exponent α ≤ 1, we cannot
obtain the “real” mean time to repair. In this case, the sam-
ple average of repair time do not converge to the population
mean value since the law of large number does not work
because of the infinite moments of the distribution. This
means that the sample average of repair time varies in time
and thus do not represent an intrinsic value. In the case of
1 < α ≤ 2, the sample variance do not converge to the pop-
ulation variance whereas the sample mean converge into the
population mean. In this case, the sample mean does exist
but its confidence interval is not obtained using the sample
data. To avoid these difficulties, other representative values
which represents a system availability should be offered. To
meet these demands, in the following section, we propose
a new metric, T -year return value, to represent the system
availability which works well even when the repair time has
a heavy-tailed distribution.

The arguments on the values of the scaling exponents
may be appropriate to be mentioned here. To obtain the
scaling exponent in the power law range more precisely,
larger number of data is required. The log-log plot of the re-
pair time distribution for the whole LANL HPC system and
whole data of the in-house system data shows power law
distribution over 3 orders of magnitude (Figure 4). The scal-
ing exponent of this range is close to 1.0, which is slightly
smaller than that of the previous analyzed sub-system. As
mentioned previously, the data for the whole LANL HPC
system contains the data for various systems and the pro-
duction time. The repair time distribution for the whole in-
house system data including those incidents data which af-
fect the system shows the power law distribution with long
scaling range (Figure 4). The scaling exponent of this re-
gion is also close to 1.0 We believe that the scaling expo-
nent varies in the system but we have no clear explanation
as to what determines the scaling exponent. The important
findings here is that the repair time has a heavy-tailed dis-
tribution whose scaling exponent is less than 2.

3



0

10000

20000

30000

40000

4/1/2005 9/14/2005 2/27/2006

re
pa

ir 
tim

e 
(m

in
)

repair time

(a) In-house system

0

10000

20000

30000

40000

5/6/2002 1/6/2004 9/8/2005
re

pa
ir 

tim
e 

(m
in

)

repair time

(b) LANL HPC system

Figure 1. Time series plot for repair time for the in-house system (a) and for the LANL HPC system
(b).
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Figure 2. Sample average series (solid line) and sample variance series (dashed line) of repair time
series for the in-house system (a) and for the LANL HPC system (b).
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Figure 3. Complementary cumulative distribution function of repair time for the in-house system (a)
and the LANL HPC system (b). The dashed line for each shows ∝ x−0.7 in (a) and ∝ x−1.1 in (b)
respectively. In the inset, we show the semi-log plot of the complementary cumulative distribution.
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Figure 4. Log-log plot of the complementary
cumulative distribution function for the in-
house system (dashed) and for the LANL
HPC system (solid). The slope denotes ∝
x−1.0. In the inset, semi-log plot of the CDF
is shown.

3 Extreme Value Theory

In the previous section, we find the distribution of repair
time is heavy-tailed. This leads us to apply the extreme
value theory to the repair time data. In this section, we
review the extreme value theory and introduce the T -year
return value.

3.1 Model Formulation

The extreme value theory originally roots the study of
limiting distribution of maximal values by Fisher and Tip-
pett [9] and now forms a branch of statistics that studies the
statistics of maximal or minimal value of rare events. After
the success in applying the theory to engineering by Gum-
bel [11], the theory has been widely used in many fields
such as hydrology [8, 17], meteorology [20], telecommuni-
cation engineering [21], actuarial science [15] and financial
engineering [5, 13].

Suppose that there exits a series of block maximal
{M1, ..., Mn} over a certain period of time. This is for
example the time series data of monthly maximum rainfall
data or the data of annual maximum sea levels. Then the ex-
treme value theory tells us that the distribution of these max-
imal series approaches to a distribution family named Gen-
eralized Extreme Value distribution (GEV) given by Equa-
tion 2) in the limit of n → ∞. Thus, the distribution of the
block maximal Mi may be well approximated by a GEV for
large number of n,

The main essence of the extreme value theory is con-
tained in the following Fisher-Tippett theorem [9]. Let Mn
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denote the maximal value for a sequence of n independent
and identically distributed random variables X1, X2, ..., Xn

with a common probability distribution F (x), i.e.,

Mn = max{X1, ..., Xn}.

The theorem says that if there exist sequences {an > 0}
and {bn} such that

Pr{(Mn − bn)/an ≤ x} = F n(anx + bn)

→ G(x) as n → ∞, (1)

where G(x) is a non-degenerate distribution function, then
G is a member of the Generalized Extreme Value Distribu-
tion (GEV) family given by

Gξ(x) = exp

{

−

[

1 + ξ

(

x − µ

σ

)]−1/ξ
}

. (2)

The GEV family are referred to as Fréchet distribution for
ξ > 0, Gumbel distribution for ξ < 0, and Weibull distri-
bution for ξ = 0. If Condition (1) is true, we say that F is
in the maximum domain of attraction of G and we write as
F ∈ MDA(G). Using this definition, the theorem can be
stated as follows: if F ∈ MDA(G), then G is Gξ for some
parameter ξ. The domain of Gξ is known to be large, and
almost all well known distributions belong to MDA(Gξ).
In relation to our study, the MDA of the Fréchet distribu-
tion Gξ for ξ > 0 should be mentioned here. It is shown
by Gredenko [10] that Fc(x) = x−1/ξL(x) if and only if
F ∈ MDA(Gξ) for ξ > 0, where L(x) is a slowly varying
function which satisfies

lim
x→∞

L(ax)/L(x) = 1 for a > 0.

This implies that the maximal distribution is the Fréchet dis-
tribution if and only if the distribution function is heavy-
tailed power law distribution. Our particular interest is the
MDA of the Fréchet distribution since, as seen in the pre-
vious section, the repair time distribution is heavy-tailed
power law distribution. Thus, the maximal of repair times
can be well modeled by the Fréchet distribution.

3.2 Threshold Models

The model described in the previous subsection uses the
data of block maximal, but using only these values could
be an inefficient approach. It turns out that we can use data
which exceeds a certain threshold to study the distribution
of the block maximal. Thus, the peak over threshold (POT)
method, which focuses on the excesses above the thresh-
old u has been developed [6, 7]. The classical extreme
value theory mentioned previously suggests that the block
maximal distribution is roughly approximated by the GEV,

whereas this POT model suggests that a data series over a
certain threshold is approximated by the Generalized Pareto
distribution (GPD), which is given by Equation (4).

The conditional probability of the excess over the thresh-
old u under the condition that X is larger than u is given as

Fu(y) = Pr{X − u ≤ y|X > u} (3)

=
F (y + u) − F (u)

1 − F (u)
,

for 0 ≤ y < xF − u where xF is the right endpoint of the
cumulative distribution function F defined by

xF = sup
x∈R

{F (x) < 1}.

The Pickands-Balkema-de Haan theorem [3, 16] shows
that if and only if F ∈ MDA(Gξ), then there exists a mea-
surable positive function σ(u) such that

lim
u→xF

sup
0≤x<xF−u

∣

∣Fu(y) − Gξ,σ(u)(y)
∣

∣ = 0,

where Gξ,σ(u)(y) is a Generalized Pareto Distribution
(GPD),

Gξ,σ(u)(y) = 1 −

(

1 +
ξy

σ(u)

)−1/ξ

(4)

and
σ(u) = σ + ξ (u − µ) .

This theorem tells us that, for a sufficiently high threshold
u, the distribution function of the excesses can be approxi-
mated by Gξ,σ(u) as

Fu(y) ≈ Gξ,σ(u)(y), y > 0, (5)

for some values of ξ and σ(u) if and only if F ∈ MDA(Gξ).
As discussed in Subsection 3.1, the distribution of maximal
repair time can be modeled by the Fréchet distribution for
sufficient number of samples, which leads that the repair
time distribution belongs to the maximal attractor domain
of the Fréchet distribution. This gives us a strong theoreti-
cal background that the distribution of the excesses for re-
pair time can be well approximated by GPD. Thus, in the
following analysis, we adopt the POT method and models
the excesses of repair time by GPD.

3.3 Model Validation

To use the model for further inference, we need to check
how well the model describes the data. The goodness of
fit of the model to data can be evaluated by comparing the
empirical distribution function and the model distribution
function.
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Let y(1) ≤ y(2) ≤ · · · ≤ y(m) denote the series of ex-
cesses over the threshold u in ascending order. Then the
empirical distribution function is given as,

G̃(y) = i/(m + 1) for y(i) ≤ y < y(i+1).

The corresponding model distribution function for ξ 6= 0 is
given by substituting the estimated parameters ξ̂ and σ̂(u)
to Equation (4) as,

Ĝ(y) = 1 −

(

1 +
ξ̂y

σ̂(u)

)−1/ξ̂

.

If the threshold model works well, the probability plot
points

(

G̃(y(i)), Ĝ(y(i))
)

, i = 1, ..., m (6)

should lie close to the straight line with gradient of 1 and
y-intercept of 0. Thus this plot enables us to verfityvisually
whether the data can be modeled by GPD.

Another commonly used method for diagnosis is to com-
pare the quantiles of each distribution function. The prob-
ability plot given by Equation (6) describes how well the
model probability distribution function predicts the proba-
bility. In contrast, the quantile plot can be used to evaluate
the goodness of fit in the tail range.

To see the goodness of fit in the different scale, the quan-
tile plot is used. By operating the inverse function to Equa-
tion (6), the corresponding quantile plot is obtained as,

(

Ĝ−1(i/(m + 1)), G̃−1(i/(m + 1))
)

, i = 1, ..., m,

where

Ĝ−1(y) =
σ̂

ξ̂

{

(1 − y)−ξ̂ − 1
}

and
G̃−1(i/(m + 1)) = y(i).

3.4 T -year return value

It is not meaningful to analyze the maximal value of the
repair time distribution xF , since in the previous section, we
find that the scaling parameter ξ is positive, which means
that the repair time distribution is not bounded above, i.e.
xF = ∞. Instead we adopt the T -year return value as a
representative value, which represents the value that is ex-
ceeded on average once every T years. Note that T -year
value does not depend on the degree of exceeds, but only
depends on the number of times of excesses during T -years.
In the context of the operational risk management, T -year
return value is referred as the value at risk. Suppose that a
GPD with parameter ξ and σ(u) models the exceedances of

a threshold u. Then from Equation (3), (4) and (5), the prob-
ability that a variable X is larger than x under the condition
that X > u is obtained as

Pr {X > x|X > u} =

[

1 + ξ

(

x − u

σ(u)

)]−1/ξ

.

If incidents occur λ times per year, then the T -year return
value xT is the solution of the following equation

ζu

[

1 + ξ

(

xT − u

σ(u)

)]−1/ξ

=
1

λT
,

where ζu = Pr {X > x}. Consequently the T -year return
value is given by

xT = u +
σ(u)

ξ

[

(λTζu)ξ − 1
]

. (7)

Hence, substituting the estimated parameters into Equa-
tion (7), the estimated T -year return value x̂T is obtained
as

x̂T = u +
σ̂(u)

ξ̂

[

(λ̂T ζ̂u)ξ̂ − 1
]

, (8)

where ζ̂u is the portion of incidents exceeding u.

4 Analytical Results

We apply EVT to the following two data sets: repair time
data of an in-house system which is hosted by IBM and
data collected at the LANL HPC system. In this section,
we see the goodness-of-fit of the GPD model and see the
effectiveness of the T -year return value for the assessment
of system availability.

4.1 Parameter Estimation

At this moment, there has not been established a univer-
sal way to decide the threshold value. In our study, we use
the σ∗ method [4] to choose an optimal threshold value.
We chose threshold u = 100 for the in-house system case
and u = 200 for the LANL HPC system case. The number
of exceedances m is m = 121 and m = 666, respectively.

Maximum likelihood estimation is used to estimate the
model parameters ξ̂ and σ̂(u). We obtain the maximal like-
lihood estimators by maximizing the log likelihood function

log L(X1, ..., Xm|ξ, σ(u))

= −m logσ(u) −

(

1 +
1

ξ

) m
∑

i=1

log

(

1 +
ξXi

σ(u)

)

,

solving the 2-dimensional linear equation for ξ̂ and σ̂(u)
numerically using the Newton-Raphson method. The initial
value for ξ and σ(u) are obtained by the rough estimation
since the moment method does not work for positive scaling
parameter.
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4.1.1 In-house system

By using the 121 exceedances data over the threshold
u = 100, maximizing likelihood estimates the parameter as
(ξ̂, σ̂) = (0.969, 266.3) with the corresponding maximized
log-likelihood of −1341.2 . The inverse of the Fisher’s in-
formation matrix gives the 95% parameter confidence in-
terpal for ξ̂ and σ̂ as [0.613, 1.32] and [170.7, 361.8] for
each. Recall that the scaling exponent α of power-law
is given by the reciprocal of the scaling parameter ξ, i.e.
α = ξ−1. Then the estimated scaling exponent is obtained
as [0.75, 1.63] with 95% confidence. The estimated scaling
exponent α is a slightly above 1.0, but there is a possibil-
ity that the exponent is less than 1.0 since the confidence
interval ranges over 1.0. Thus, in this case, we cannot dis-
tinguish whether that the scaling exponent is less than 1 or
not.

4.1.2 LANL HPC system

The scaling and positioning parameters are estimated by
maximizing the log likelihood function using the 666 ex-
ceedances repair time data of LANL HPC system. The pa-
rameters are estimated as (ξ̂, σ̂) = (0.809, 170.6) with the
corresponding maximized log-likelihood of −5331.6. The
95% parameter confidence intervals for ξ̂ and σ̂ are calcu-
lated as [0.665, 0.953] and [144.9, 196.4], which are smaller
than those of the in-house system case. The corresponding
confidence interval for scaling exponent α is [1.05, 1.50].
Contrary to the results of the in-house system, the scaling
exponent is 1 < α ≤ with 95% confidence, which leads
that the distribution is heavy-tailed with infinite variance,
but finite mean.

4.2 Model Validation

The probability plot and the quantile plot are shown in
Figure 5 and Figure 6. In Figure 5 (a) and (b), we see that
the probability plot points lie diagonally, which means that
the empirical model distribution is well described by the
estimated model distribution. This is especially so in case
of LANL HPC where the points are located very close to
the diagonal line. On the contrary, there seems exist some
quantile points which do not lie on the diagonal line, in both
systems (Figure 6 (a) and (b)). These points correspond to
the rare events whose repair time is above 103. As we can
see in Figure (3), the power law distribution breaks in this
tail region and this is the reason that these points do not lie
on the diagonal line. On the other hand, in the region where
x < 103, the model quantile agrees well with the empirical
quantile (the inset of the Figure 6 (a) and (b)).

4.3 T -year return value

Since the formula (7) contains the estimated parameters,
the variance of these parameters should be considered to
estimate the confidence interval of the T -year return value
x̂T . Suppose that the incident occurrence interval x follows
the exponential distribution with rate λ. Then the maximal
likelihood estimates and Fisher’s information matrix gives
the log-likelihood estimates λ̂ = n/

∑n
i Xi with variance

λ̂−2n−1. Similarly, if the number of exceedances over u
follows the binomial distribution Bi(n, ζu), then the log-
likelihood estimates ζ̂u = m/n with variance ζ̂u(1− ζ̂u)/n.
Then the variance-covariance matrix V for (λ̂, ζ̂u, ξ̂, σ̂(u))
is approximated as

V =









λ̂−2n−1 0 0 0

0 ζ̂u(1 − ζ̂u)/n 0 0
0 0 v1,1 v1,2

0 0 v2,1 v2,2









where vi,j denotes the (i, j) term of the variance-covariance
matrix of ξ and σ(u). Using the delta method, the variance
for xT is approximated as

Var(xT ) ≈ ∇xT
tV ∇xT ,

where

∇xT
t =

(

∂xT

∂λ
,
∂xT

∂ζu
,
∂xT

∂ξ
,

∂xT

∂σ(u)

)

.

4.3.1 In-house system

The arrival rate and the exceedance probability is calculated
as λ̂ = 332/(333/365) = 364.0 and ζ̂u = 121/332 =
0.364. Subsisting these estimators into Equation (8), we ob-
tain 1-year return value as 31119.2 and the 1-month return
value as 2640.8. In Figure 7 (a), we show the time series
data together with the 1-year return value and 1-month re-
turn value. We see that the only 1 incident and 10 incidents
exceeds the 1-year return value and 1-month return value,
respectively during the observation period of April 1, 2005
and Feb. 27, 2006, which is 333 days. We find that these
values are very close to the expected number of times when
repair time exceeds each return value 333/365 = 0.912 and
333/365 × 12 = 10.9. For reference, the 1-week return
value is 560.3 which gives the realized exceedance as 46
whereas the expected value 333/365 × 12 × 4 = 43.8.
This also gives rather good agreement. Correspondences
are summarized in the Table 2. The table shows that the
estimated T -year return value predicts the return value with
accuracy in every time scale.

The square root of variance of 1-year return value and
1-month return value are calculated as 19728.1 and 676.5,
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Figure 5. Probability plot for the in-house system (a) and the LANL HPC system (b). The dashed line
corresponds to G̃(y) = Ĝ(y).
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Ĝ−1(i/(m+1))

0

1000

2000

3000

4000

5000

0 1000 2000 3000 4000 5000

G~ −
1 (i/

(m
+1

))
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Figure 6. Quantile plot for the in-house system and the LANL HPC system (b). The dashed line
corresponds to G̃−1(y) = Ĝ−1(y). In the inset, the the same plot enlarged around the origin is drawn.
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Table 2. The number of exceedances over the T -year return value.
system 1-week 1-month 1-quarter 1-year

in-house system (estimated) 43.8 10.9 3.65 0.921
in-house system (realized) 46 10 5 1
LANL HPC system (estimated) 160.7 40.2 13.4 3.35
LANL HPC system (realized) 172 38 9 3
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Figure 7. T -year return value for the in-house system (a) and for the LANL HPC system (b).The
dashed line corresponds to the 1-year return value, the broken line corresponds to the quarterly
return value, the dotted line corresponds to the 1-month return value, and the dash-dotted line cor-
responds to the 1-week return value. Note that the number of exceedance over the 1-year return
value for the in-house system is 1, whereas that for the LANL HPC system is 3.

respectively. This leads the 95% confidence interval as
[−7547.8, 69876.3] and [1314.8, 3966.7]. The result gives
rather large interval. This uncertainty is largely due to the
uncertainty of the scaling parameter, which is caused by the
short range of magnitude of the power law range.

4.3.2 LANL HPC system

The arrival rate λ and the exceedance probability ζu

for the LANL HPC system are calculated as λ̂ =
3997/(1222/365) = 1193.9 and ζ̂u = 666/3997 = 0.167.
Then we obtain the 1-year return value as 15281.5 and 1-
month return value as 2036.9. We see that the number of
exceedances over the 1-year return value is 3 (Figure 7 (b)).
The expected value during the observation period of May
6, 2002 - Sep. 8, 2005, that is 1222 days, is calculated as
1222/365 = 3.34, which gives good agreement with the
realized value 3. The number of exceedances over the the
1-month return is 38, whereas the expected value is 40.2,
which also gives rather good agreement with the expected
value. Again, also in the case of LANL HPC system, the
table 2 shows that the T -year return value predicts the the

return value with accuracy in every time scale, from 1-week
to 1-year.

Agreement of the estimated T -year return value with the
realized value in both system shows that by estimating the
T -year return value, we can safely predict the worst case
occurs during the next certain period of time in future while
we cannot predict when occurs. The value gives rather good
information on availability comparing to the classical value
such as MTTR, since these classical values do not give us
any information on the occurrence probability of incidents
in future. Thus the T -year return value gives us the infor-
mation on how the system is available or what degrees of
incidents occur in a target IT system in a certain period in
future.

The square roots of the variance for 1-year return
value and for 1-month return value are calculated as
4062.7 and 219.0, leading the 95% confidence interval as
[7318.6, 23244.4] and [1607.6, 2466.1]. Comparing to in-
terval of the in-house system, we see that the uncertainty is
smaller.
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5 Conclusion

We have found that repair times of two different IT sys-
tems have heavy-tailed power law distributions and the scal-
ing exponents of the tails close to one. This implies that the
repair time can have infinite variance and mean. In fact, we
have seen that the sample mean and the sample valiance of
the repair times of the two IT systems have large fluctua-
tions and do not appear to converge in several years.

Since the mean time to repair (MTTR) is not a suitable
metric for evaluating the availability of an IT system when
the repair time can have infinite variance and mean, the T -
year return value is proposed as a new metric for evaluat-
ing the system availability. We calculated the T -year return
value for the two IT systems by modeling the repair time
by the Generalized Pareto distribution. The 1-year return
value and 1-month return value for each system are found
to be very close to those of the expected values, which sug-
gests that the T -year return value calculated as in this paper
can well predict the value that the repair time exceeds on
average once in T years.

At this moment we have no clear explanation as to why
the repair time distribution has a heavy-tailed power law
distribution and what determines the value of the scaling
exponent. To answer these questions, far more studies in
human systems of operators are required. More detailed
analysis on the tail distribution is now under investigation
and will be reported elsewhere.

The authors would like to thank to the LANL Computer
Science Educational Institutes for publishing the repair time
data. They are also grateful to T. Idé of TRL for his contin-
uous encouragement.
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