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Abstract

Automated determination of performance problems in
today’s complex Information Technology (IT) systems is a
crucial step in the development of Autonomic Computing.
A new approach to detect and determine performance prob-
lems in a distributed computing system is proposed. The ap-
proach is based on a simple principle that the value of a par-
ticular performance metric, service demand, does not vary
in time regardless of external environment changes, such as
transaction mix ratio changes and intensity changes. Thus
an abrupt change of the service demand value suggests an
occurrence of a performance problem. Based on this idea,
the authors developed a system which detects and localizes
the machine causing a problem automatically by estimat-
ing and observing the service demand value using network
traffic data flowing through the target IT system. The de-
veloped system is suitable for large scale distributed com-
puting systems, since the system can monitor performance
problems simply by connecting to the mirror port of the net-
work switch that the machines of the target IT systems are
connected to. Verification experiment results for our system
in two environments, a test environment and a commercial
production environment, show the effectiveness of the sys-
tem in detection and determination of performance prob-
lems.

1 Introduction

Autonomic Computing is a fundamental concept in man-
aging current highly complex Information Technology (IT)
systems. To realize an Autonomic Computing system, the
system should be aware of problems, determine the root
causes of the problems and take appropriate actions to solve
the problems by itself [6, 10, 9]. For performance prob-
lems, it still requires a lot of time and human efforts to de-
tect and determine the causes of performance problems and
the automation of performance problem determination has
not been realized yet.

Current IT systems are composed of hundreds of het-
erogeneous components: network devices from multiple
vendors, multiple operating systems, various vendor mid-
dleware and composite application software. In this dis-
tributed computing system, the root causes of performance
problems can be hidden anywhere from hardware failures
to middleware mis-configurations, from the client side to
the back-end server side or in the other computing system
working in concert with each other. Also, such systems are
often accessed by the general public and therefore perfor-
mance varies with individual user requests. Thus today’s
distributed computing systems make it difficult and time-
consuming to detect and determine the causes of perfor-
mance problems.

Over the past years, a considerable number of studies
have been carried out on performance diagnosis systems.
The most common approach employs artificial intelligence
methods (see references in Hellerstein [4]). More recently,
Hellerstein proposed a performance diagnosis system which
explains the impact of specific causes of problems quanti-
tatively by using a measurement navigation graph [4, 3].
While these approaches succeed in formulating the repre-
sentation of knowledge about the system to be managed,
no approach for actually using these ideas has yet emerged
due to the difficulties in the acquisition of intensive knowl-
edge. In terms of some components that organize IT sys-
tems such as database management systems and application
server software, there exist performance diagnosis systems
that are in commercial use [17, 11, 5, 2]. However, these
rule-based performance advisers work well only in compo-
nents where the architecture and behaviors are well known
and do not work for entire IT systems. Thus there have not
yet been any practical systems that can determine the root
cause of the end-to-end performance problems of IT sys-
tems.

The reasons for the failures of the previous approaches
lie in the lack of the universality of the knowledge and
difficulties in the acquisition of knowledge. To overcome
these difficulties, in this paper, we propose a model-based
approach which requires a simple but universal minimum
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model. Our idea is based on the principle that the service
demand, which represents the processing time for each ser-
vice, do not vary over time. This principle allows us to con-
clude that if the service demand value changes for a ser-
vice, some performance problem has appeared in the ser-
vice. Thus we can detect performance problems and de-
termine the root causes of the problems by observing the
service demand for each service.

Based on this idea, we provide an automated perfor-
mance problem determination system for practical use in
the real world. The strengths of our approach are twofold.
First, our model has universality and works for any IT sys-
tem. Second, the model is simple and requires no prior re-
search such as the parameter estimation of a queueing net-
work model approach. These two advantage provides an
easy implementation of our approach and help in practical
use.

This paper is organized as follows. In Section 2, we de-
scribe our model to detect and determine performance prob-
lems. Section 3 presents an implementation of our model.
We provide a system description and methods to measure
the call counts and busy times. In Section 4 and in Sec-
tion 5, we discuss the experimental results of our approach
in a test environment and a production environment, respec-
tively. Section 6 is devoted to our concluding remarks.

2 Model Formulation

Performance metrics such as response time and resource
utilization vary according as changes of traffic intensity
and of transaction mix ratios. The values of these met-
rics themselves would be meaningful for system administra-
tors, but observing these values contributes little to perfor-
mance problem detection and determination since their val-
ues change as the environment changes. Instead we adopt
a performance metric, service demand, which is defined as
a processing time for each service. This performance met-
ric has the desirable property that the value is robust against
intensity changes and transaction mix ratio changes. Thus,
we can expect that if the value changes, some performance
problem has occurred. In this section, we provide our model
based on the service demand.

2.1 Problem Determination using Service
Demand

Let us now consider a distributed computing system
which consists of a set of multiple server machinesM =
{M1, M2, . . . , Ml} and a set of multiple servicesS =
{S1, S2, . . . , Sn} which are running on server machines in
the computing system. Here we use the term “service” as
a service provided by server machines. Figure 1 shows a
schematic view of the calling relationship of the services

Web Server Web Container EJB Container DB server MQ server

URL1

URL2

URL3

Servelet1

Servelet2

Servelet3

EJB1

EJB2

EJB3

SQL1

SQL2

Message1

Figure 1. Calling relationship of services in a
typical J2EE web system.

for a typical J2EE Web system, which is composed of 5
server machines: Web server, Web container, EJB container,
database (DB) server and message queuing (MQ) server. In
this Web system, the Web server serves content identified
by a URL in responding to each client HTTP request. The
Web Application server serves servlets/JSPs and EJBs in re-
sponse to the requests from Web servers and Web contain-
ers. Similarly the DB server serves queries that are identi-
fied by SQL sentences, whereas the MQ server serves mes-
sages in response to EJB requests. Thus in this example, 12
services are running on 5 server machines, i.e.,l = 5 and
n = 12.

Now we define a performance metric, service demand
dik as the processing time for serviceSi at machineMk.
This value represents the processing time for a request for
each service from a given machine resource. The value is
of use for performance problem detection and determination
in that the value is robust to environmental changes. Since
this value does not contain any waiting time, the value is
not affected by intensity changes. Also the value is robust
to transaction mix ratio changes since the value is defined
for each service. Thus the value is constant over time and is
not affected by environmental changes.

It follows that an abrupt change of the service demand
value indicates the occurrence of some performance prob-
lem. Thus it is expected that we can detect performance
problems by observing this value. In addition, since this
value is intrinsic to server machines, we can determine
which machine is having a performance problem. In the
example of Fig. 1, if the value of service demand for the
services “SQL1” and “SQL2” changes, we can conclude
that the performance problem occurred in the DB server
machine. Thus we can isolate the machine causing a per-
formance problem from among multiple server machines.

2.2 Estimation of Service Demand Value

As discussed in the previous subsection, we can detect
and determine performance problems by observing the ser-
vice demand values. However, since the values cannot be
obtained explicitly, we have to estimate the values using
observable performance metric values. The service demand
can be estimated from busy times and call counts for each

2



service.
Let us observe performance metrics fromT until T +

∑m

t=1
∆Tt with the observation interval∆Tt. The ob-

servation interval∆Tt can be different for eacht as long
as the observed values can be regarded as statistically
steady. The observed values would be statistically unsta-
ble during the observation period if we take the observa-
tion interval ∆Tt as 24 hours, whereas the value would
be steady in a statistical sense if we take the observa-
tion interval as 1 minute. Hereafter we refer to the pe-

riod
[

T +
∑j−1

t=1
∆Tt, T +

∑j

t=1
∆Tt

]

as the observa-

tion periodTj and denote the value observed in this period
with the suffixj.

Let bjk denote the busy time of the machineMk in the
observation periodTj andajik denote the call counts for
Si called at the machineMk in the observation periodTj .
Then the utilization law [1, 13] can be expressed as

bjk =
∑

i

ajikdik.

Here we define “busy time” as the time when the machine
is busy during an observation period. The observed busy
time is considered to include the observation error. Thus
we introduce the following linear model

bjk =
∑

i

ajikdik + ǫjk, (1)

whereǫjk denotes the observation error for the busy time
bjk at the machineMk in the observation periodTj that
satisfies the following conditions:

〈ǫpq〉 = 0, 〈ǫpqǫrq〉 = σq
2δpr, N

(

0, σ2
q

)

.

Here〈·〉 indicates the ensemble average of the metric·, σq

denotes the standard deviation of observation error at the
machineMq andδpr denotes the Kronecker delta.

For a fixed machineMk, given a set of observational
data,{b1, b2, . . . , bm} and{a1i, a2i, . . . , ami}(1 ≤ i ≤ n),
the best estimator for the service demanddi is obtained by
minimizing the error sum of squaresQ =

∑m

j=1
ǫ2j . The

suffix k is omitted since we focus on a specific machine
Mk. The best estimator̂d is given as a solution of the nor-
mal equation

A
t ·Ad̂ = A

t
b, (2)

whereA = (aji), d̂ = (d̂1, . . . , d̂n)t, b = (b1, . . . , bm)
t

and ·̂ denotes the estimator of·. Note that the infor-
mation matrixX = A

t · A of Eq. (2) can be decom-
posed to

∑m

j=1
aijaji =

∑m−1

k=1
aijaji + aimami. Simi-

larly the right-hand side of Eq. (2) can be decomposed to
∑m

j=1
aijbj =

∑m−1

j=1
aijbj + aimbm. This tells us that we

can update both the information matrix and the right-hand
side of the normal equation incrementally and thus we can

estimate the service demand online. Hence, service demand
can be estimated with higher precision as we monitor longer
times according to the law of large numbers.

Since service demand is a key parameter in performance
models such as a queueing network model, this algorithm
will also contribute to the performance parameter estima-
tion of the system performance model. The relevance of
the work by Liu et al. should be mentioned here. They
propose an approach for parameter estimation in the queue-
ing network framework using inference techniques [12]. It
is interesting that in our case we can create a performance
model without knowing the details of a system, since we
can obtain both the calling relationships of each service and
their service demands just by capturing the network traffic
data.

We note here the rank of the design matrixA. There are
two possibilities when the design matrix is not of full rank,
i.e., rank(A) = rank(At

A) < n. The first is the case when
the transaction mix ratio does not change in observation pe-
riod Tj. That is, for allp, q ∈ Z (1 ≤ p < q ≤ m), there
existsk ∈ R such that

âp = (ap1, . . . , apn)t = kâq.

In this case, the rank of the design matrix is 1 and Eq. (2)
becomes indeterminate. Although the transaction mix ra-
tios do not change in a short monitoring period, the ratio
is expected to change in a time scale like 24 hours. Thus
we can avoid this situation by observing the data for a suffi-
ciently long time. The second is the case when there exists
a service with a linear dependence relationship with each
other. For example, the number of times when the “login”
service is called is expected to coincide with the number of
times when the “logout” service is called. This problem can
be avoided by combining these linearly dependent services
into a new independent service.

2.3 Problem Detection by Residual Anal-
ysis

The point of the previous subsection is that we can esti-
mate the service demand for each service and machine with
accuracy by monitoring for a long time. This means, con-
versely, that it requires a long time to acquire the service
demand value with high accuracy and therefore requires a
long time to detect the performance problems at the service
levels. Here, we will use the term “at the service levels” to
refer to determining which service is having a performance
problem and the term “at the machine level” to refer to de-
termining which machine is having a performance problem.
The best way to detect the performance problems with short
detection delays is to abandon the problem determination at
the service level and choose instead to determine the prob-
lem at the machine level.
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Equation (1) holds regardless of intensity changes and
transaction mix ratio changes. Therefore, if Eq. (1) is
not true for a certain observation periodTj and for a spe-
cific machineMk, this indicates that in the machineMk,
there exists a service whose service demand has changed.
Thus, we can detect and determine performance problems
at the machine level by checking the validity of Eq. (1).
We can check the validity of the equation by using the
following residual analysis. First estimatêdik using the
training run period databjk, ajik, (0 ≤ j ≤ m′). Then
an estimate of the error variancêσ2

k is obtained aŝσ2
k =

∑m′

j=1
(bjk −

∑

i ajik d̂ik)2/m′. Next calculate the residual

rjk = bjk −
∑

i ajik d̂ik using the datâdik and the data
bjk, ajik(m′ < j ≤ m) observed after the training period.
The validity of Eq. (1) is checked by comparing the residual
rjk and the estimate of the error varianceσ̂2

k for each obser-
vation periodTj . Thus we can conclude that at a certain ob-
servation periodTj , the performance problem has occurred
in the machineMk if the absolute value of the residualrjk

exceeds a control limit such as 3×σ̂k for example, i.e.,

|rjk| > 3× σ̂k. (3)

The geometric interpretation of Eq. (1) should be com-
mented on here. Eq. (1) denotes that for a certaink, the
observed values(aj1k, aj2k, . . . , ajnk, bjk) plot on the hy-
perplane inR

n+1 with the “thickness” ofσ̂k in a normal
period. Eq. (3) denotes that in an abnormal time period, the
observed values are off the “plate” of the hyperplane.

3 Implementation

Based on the ideas described in the previous section, we
implemented our approach and developed a system which
detects and determines performance problems using net-
work traffic data. This network-based system is dominant
over an agent system in that the system is suitable for large
scale computing systems. Also our approach has the advan-
tage that it has the smallest possible monitoring impact on
a target computing system. In this section we describe the
proposed system in detail.

3.1 System Description

Figure 2 shows a block diagram of the proposed sys-
tem. The system outputs an event log after analyzing the
input data, the network traffic data flowing through the tar-
get server machines. The system is connected to the mirror
port of the network switch to which the target server ma-
chinesM1, M2, · · · , Ml are connected and the packet mon-
itor subcomponent captures the network traffic data which
flows through the machines from the mirror port. Then
the packet analyzer subcomponent measuresajik and bjk

Machine Ml

Machine M1

Machine M2

.

.

.

Network Switch

Performance Problem Determination System

Mirror 
Port

CBE

packet m
onitor

service dem
and estim

ator

residual analyzer

CBE

LAN/WAN

Client Client Client...

Autonomic
Manager

packet analyzer

Figure 2. Block diagram of the proposed sys-
tem. The dashed lines denote the network
connectivity between machines and the dot-
ted lines denote the flow of data. The system
is composed of four subcomponents: packet
monitor, packet analyzer, service demand es-
timator and residual analyzer.

by analyzing the captured network traffic data with the al-
gorithms described in Subsection 3.2 and Subsection 3.3.
Based on this data, the service demand estimator subcom-
ponent estimates the service demanddik for each serviceSi

and machineMk by solving the normal equation (2). For
each observation periodTj , the residual analyzer subcom-
ponent compares the residualrjk with the estimate of the
error variancêσk. When the calculated residual exceeds
the control limit, the analyzer creates an event in the Com-
mon Base Event (CBE) format [8], which is a common log
format based on the Web Services Distributed Management
(WSDM) event format [15]. Finally the Autonomic Man-
ager gives a diagnosis based on the CBE and proposes an
appropriate remedy for the problem.

Here we briefly summarize the data flow of our system.
The system captures packet data and measures call counts
and busy times as described in the following subsections.
Then the service demand values for each service as well
as estimates of the errors are calculated by the least square
method described in Subsection 2.2. Finally the residual
analyzer subcomponent calculates the residual and detects
performance problems by comparing the residuals and the
estimates of the error variances.

3.2 Measurement of Call Counts

As seen in the previous subsection, the proposed system
estimates service demand values using both call counts and
busy times, which are measured from network packet data.
In this subsection we see how the packet analyzer subcom-
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ponent measures call counts from network packet data.
In a distributed computing system, user requests are pro-

cessed as a parent transaction on a server machine calls a
child transaction on another server machine. Here we refer
the term “transaction” as an instantiation of each service.
The schematic view of a sample transaction flow is shown
in Fig. 3. The server machineM2 receives a processing re-
quest for the transactionX2 from a parent transactionX1 on
the server machineM1 at timeTreceive,2 and then the ma-
chineM2 starts processing the transactionX2 or the trans-
action is queued. After processing, the transaction sends a
processing request for the child transactionX3 to the server
machineM3 at timeTreceive,3. After the transactionX3 has
been processed at the machineM3, the server machineM2

receives the reply message for the transactionX3 at time
Tsend,3 and then sends a reply message forX2 to machine
M1 at timeTsend,2. Note that the network delay is negli-
gible since the messages are transmitted to machines con-
nected to the same network switch. By capturing and ana-
lyzing the packet data on these transactions, we can obtain
the following four data for each transactionXp(1 ≤ p ≤ s):

• request message receive timeTreceive,p,

• request message send timeTsend,p,

• the serviceS(p) to which the transactionXp belongs
and

• the server machineM(p) at which the transactionXp

is processed.

With this definition, the call count for each service during
the observation periodTj is evaluated as

ajik = #
{

p|S(p) = Si, M(p) = Mk,

T +

j−1
∑

t=1

∆Tt ≤ Treceive,p < T +

j
∑

t=1

∆Tt,

T +

j−1
∑

t=1

∆Tt ≤ Tsend,p < T +

j
∑

t=1

∆Tt

}

.

Thus the packet analyzer subcomponent measures call
counts for each serviceSi and for each machineMk by
counting the transactions that are processed during the ob-
servation periodTj.

3.3 Measurement of Busy Time

Besides the call countsajik, the packet analyzer subcom-
ponent measures the busy timebjk of each machineMk in
an observation periodTj . In this subsection, we describe
how the subcomponent measures busy times using network
traffic data.

population

0

1

0

1

0

time M2

X2

Treceive,2

Tsend,2

Treceive,3

Tsend,3

M1 M3

X1

X1

X2

X3

Treceive,1

Tsend,1

Figure 3. Schematic view of a sample trans-
action flow. The transaction X1 calls the
child transaction X2 and the transaction X3

is called from the parent transaction X2. The
heavy lines denote the periods when each
machine is busy. The time evolution of the
customer population of the machine M2 is
shown on the right vertical axis.

The server machine is expected to be busy if at least one
transaction is being processed on the server machine. Thus
we can measure the busy timebjk in a machineMk in an
observation periodTj by summing up the periods when at
least one transaction remains in the machine. We can ex-
amine these conditions by examining the customer popu-
lation of each machine. Customer population in a sample
transaction flow is shown on the right of Fig. 3. In this
example, the customer population of the machineM2 in-
creases to 1 when the machine receives s processing re-
quest for transactionX2 from the machineM1 and de-
creases to 0 when the server machineM2 sends the pro-
cessing request of transactionX3 to machineM3. Like-
wise, the customer population of the machineM2 increases
to 1 when the machine receives the processing completion
for transactionX3 from the machineM3 and decreases to
0 when the server machineM2 sends the processing com-
pletion of transactionX2 to machineM1. The busy time
of the server machineM2 in this example is calculated as
Treceive,3− Treceive,2 + Tsend,2− Tsend,3. Thus busy time
is measured by summing up the periods when the customer
population is one ore more. The pseudo-code for this algo-
rithm is shown in Algorithm 3.1.

Note that this algorithm works even in a multi-thread en-
vironment and regardless of such service disciplines as pro-
cessor sharing (PS) and first-in-first-out (FIFO). The advan-
tage of the method is that we can obtain busy times from
network traffic data even when there exist multiple transac-
tions in process and even when we do not know in detail
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about the service disciplines of the computer resources.
Some exception handling will be needed when we use

this algorithm in a real environment. The customer pop-
ulation could be negative when a transaction sends multi-
ple processing requests for child transactions and when an
orphan transaction that has no parent transaction is called
spontaneously. In the transaction fork case, the request
completed message should not be sent until all replies of
the forked transactions are received. Therefore, in this case,
we can address the situation by allowing negative values for
the customer population. The orphan transaction case oc-
curs when an administrative server sends a heartbeat mes-
sages to cluster machines that are controlled and monitored
by the administrative server. Our system estimates the call-
ing relationships between transactions and therefore can de-
tect these orphan transactions as those without parent trans-
actions. Thus we can solve this problem by not counting
these transactions in the customer population.

Algorithm 3.1: BUSYTIME(PacketData)

comment: N : customer population

comment: B: busy time

comment: T : time stamp

procedure DIFF(a, b)
return (b− a)

main
N ← 0
B ← 0.0
while in an observation period

do







































































































































if is received a processing request
from the parent transaction

then N ← N + 1
else if is sent a processing completion

to the parent transaction
then N ← N − 1
else if is sent a processing request

to the child transaction
then N ← N − 1
else if is received a processing completion

from the child transaction
then N ← N + 1
else do nothing

if N increases from 0 to 1
then T ← current time
else if N decreases from 1 to 0
then B ← B + DIFF(T, current time)
else do nothing

return (B)

4 Experimental Results in a Test Environ-
ment

We examined the effectiveness of our system in two envi-
ronments: a test environment and a real production environ-
ment at a commercial site. In Section 4 and in Section 5, we
discuss the experimental results in these two environments.

4.1 Experimental Settings

To verify whether the system can correctly detect a per-
formance problem and localize the machine causing the
problem, we carried out fault injection tests.

The machine configuration for the test environment is
shown in Fig. 4. The system for the test consists of five ma-
chines, which are the workload generator, Web server, Web
application server, database server and performance prob-
lem determination system. The target IT system is a typical
three-tier Web system which consists of Web server, Web
application server and database server. The online stock
brokerage application named Trade3 [7], which is a sample
benchmark application for the IBM WebSphere Application
Server, is running on the application server. The workload
is generated by creating pseudo-client requests using Web
Performance Tools [14]. The services for the Web server are
’/trade/app?action=login’, ’/trade/app?action=quote’and so
forth. The services for the Web application server are
’/trade/app?action=buy’, ’/trade/register.jsp’ etc. Those for
database server are such SQL sentences as ’select * from
DB2INST1.CUSTOMER where CUSTOMERID =?’ and
’select q1.”PRICE”,q1.”COMPANYNAME” from QUO-
TEEJB q1’ (abbreviated) and so on.

The machines for the target Web system and the work-
load generator are the IBM eServer xSeries 330 with 1
GB main memory and 1.4 GHz dual CPUs (Intel Pen-
tium III) running Linux (RedHat Linux V8.0) and the ma-
chine for performance problem determination system is an
IBM IntelliStation M Pro with 500 MB main memory and
a 2.0 GHz CPU (Intel Pentium 4) running Linux (Cen-
tOS 4.3). Three of the four Linux machines run a Web
server (IBM HTTP Server V1.3), a Web application server
(IBM WebSphere Application Server V5.0) and a database
server (IBM DB2 Universal Database V8.1), respectively,
and these constitute the test Web system.

The machine for the performance problem determination
system is connected to the mirror port of a Cisco Catalyst
4006 switch and copies packet data flowing through the four
machines. The packet data is dumped using the tcpdump
command and analyzed to obtain receive and send times
for each transaction, the service to which the transaction
belongs and the destination machine of the transaction. The
performance problem determination system then calculates
the busy times and call counts based on this data. Finally
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Figure 4. Test environment configuration. A
workload generator and three servers are
connected to a network switch. The pro-
posed performance problem determination
system is connected to the mirror port of the
switch.

performance problems are detected and determined by the
residual analysis.

In this experiment, the workload is generated by request-
ing a fixed page transition scenario. Therefore, the transac-
tion mix ratio is constant over time. We redefine the services
which are running on the Web server as a single service.
Similarly, we redefine the services on the Web application
and database servers as a single service. Thus in this exper-
iment,l = 3 andn = 3; each three serviceS1, S2 andS3 is
running on the Web serverM1, the Web application server
M2 and the database serverM3, respectively.

In Fig. 5, we plot the points(ajkk , bjk) for each server
machineMk (k = 1, 2, 3) and for each observation period
Tj while varying the workloads. Here we use the notation
ajkk instead ofajik since only one service is running on
each server machine. In this experiment, the number of
clients increases from 10 to 60 in increments of 10. The
think time for the clients is fixed at 1 second. Although there
exist some outliers in the busy time data of the database
server, which occur because of packet loss, the busy time
for each machine is proportional to the call counts. Thus
we can see that the linear model works regardless of work-
load changes.

4.2 Fault Injection Test Results

To examine the ability of our system to detect and to de-
termine performance problems, the following two fault in-
jection tests were done. In both tests, the workload is steady
over time with the fixed page transaction scenario.
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Figure 5. The relationship between busy
times and call counts for the Web server
(+), Web application server ( ×) and database
server ( ∗). Data points ( ajkk, bjk) for each
server machine Mk (k = 1, 2, 3) and for each
observation period Tj while varying the work-
load are plotted. The top and bottom hori-
zontal axes show the call counts for the Web
server (top), Web application server (top) and
database server (bottom). The left and right
vertical axes show the busy times for the Web
server (left), Web application server (left) and
database server (right).

The first fault injection test is to delete the database in-
dexes online 16 minutes after the start of monitoring. A
database index is defined for each table object to access the
table data rapidly. The creation of a database index elimi-
nates the need for full queries of all of the data stored in the
table objects. Thus deleting the database indexes decreases
search time performance.

The second test is to decrease the database buffer pool
size from 2,000 to 50 pages online 10 minutes after the start
of monitoring. A buffer pool is a finite area in memory that
DB2 uses as a caching area for data for transactional pro-
cessing, and for reading and writing data to and from disk.
DB2 improves performance by minimizing the number of
times a database has to retrieve data from disk. The size of
DB2 buffer pool can be changed online and the decrease of
the buffer pool size causes a performance degradation.

These experimental results are shown in Fig. 6. To detect
the change points, we took 3-sigma as a control limit of a
Shewhart control chart [16]. In the figures, the horizontal
lines denote the upper control limit (UCL) for each server
machine. The estimate of the error variance is calculated by
using data0 ≤ j ≤ 10 for the first test and0 ≤ j ≤ 5 for
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the second test, respectively. The robustness of the change
point detection is assured by issuing alarms only when the
residual values exceed the control limit three times in a row.
Here the observation interval∆Tj equals one minute and
therefore the alarm delay is three minutes.

We see that, in both tests, only the residual of the
database server exceeds the UCL after the fault injection,
whereas the others stay within the UCL. These results agree
with our expectation in that only the residual of the database
server into which the fault was injected exceeds the UCL.
Thus the system localizes the machine with the performance
problem correctly. After detection, this system triggers
an alarm that a performance problem has appeared in the
database server. These results show that the system can
correctly detect the performance problem with a short de-
lay and correctly localize the machine in which the perfor-
mance problem has occurred.

5 Experimental Results in a Production En-
vironment

To show the effectiveness of our system in a real produc-
tion environment, our system was installed in a commer-
cial system and monitored for performance problems for a
week. In this section, we describe the health check test re-
sults in the production environment.

5.1 Test Configuration

The target system consists of five application servers and
one database server. Our performance problem determina-
tion system, which is running on a ThinkPad R51 was con-
nected to a network switch of the target system and captures
the packet data flowing through the target Web system for
one week. The observation interval∆Tj was five minutes
and thus we obtained about 2,000 data samples. On each
Web application server, about 80 services were running.

5.2 Health Check Test Results

There were no performance problems in the monitoring
period of one week. Now we show that our system success-
fully reported on the soundness of the monitored system.
Our approach has two steps: first, the system estimates the
service demand values and estimates of the error variances
using the captured packet data during a training period; and
second, it monitors for performance problems by compar-
ing the residuals and the estimates of the error variances.

First, the system estimated the service demand values
and the estimates of the error variances using the data cap-
tured in the training period. We used the first day as the
training period during the week. In Fig. 7, we display
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Figure 8. Time evolution of transaction mix
ratios for six major services running on the
machine M1 during the training period. One-
hour moving average lines are plotted.

the time evolution of the busy timebjk and the total call
count cjk for each of the three Web application servers
Mk(k = 1, 2, 3) in the training period. Herecjk denotes the
sum of the call counts for the services, i.e.,cjk =

∑

i ajik.
The three Web application servers are equivalent in spec-
ification and the client requests are dispatched to the five
Web application servers in round-robin order. As expected,
we see that the busy times and call counts for each machine
tend to have same values, although there are some outliers
in the busy time data for the machineM3. Fig. 7 also reveals
that the call counts and busy times have a proportional re-
lationship. This result suggests that Eq. (2) holds in this
system.

To see the behavior in more detail, we show the time
evolution of the transaction mix ratios in Fig. 8. In the fig-
ure, the lines show the one-hour moving averages for six
major services running on a Web application server. The
transaction mix ratiomjik for the serviceSi is calculated
asmjik = ajik/cjk. In accord with our expectations, we
find that the transaction mix ratios for each service vary to
some extent over time. The maximal variation in the one-
hour moving average is up to 5.0 points.

The result of the transaction mix ratio changes over time
enables us to estimate the service demand for each ser-
vice using the least square fit method described in Subsec-
tion 2.2. Now we can calculate the service demand values
for each of the six services and for each of the three ma-
chines using the call counts and busy time data from the
training period.

Second, the system monitored for the performance prob-
lems in the monitoring period by comparing the residual and
the estimated values during the training period. In Fig. 9,
the time evolution of residual for each server in the monitor-
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Figure 6. Time series graph of residuals for each fault injec tion test: (a) the index of the database is
deleted at time j = 15; (b) the buffer pool sized is decreased at time j = 9. The solid line denotes
values for the Web server, the broken line is for values of the Web application server and the dotted
line is for values of the database server. The horizontal lin es denote corresponding upper control
limits.
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Figure 7. Time evolution of busy time (a) and call count (b) fo r each three web application server M1,
M2 and M3 in the production environment during the training period.
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Figure 9. Time evolution of the residuals for
each of the three server machines in the mon-
itoring period. The corresponding horizon-
tal lines denote the control limits for each
server.

ing period is displayed. The corresponding horizontal lines
denote the upper and lower control limits, which are taken
as three times the estimate of the error variance. Although
some data points exceed the lower control limit, there are no
points which exceed the limit three times in a row and the
system reports no errors. Thus we see the system success-
fully reports the soundness of the target commercial system.

6 Conclusion

In conclusion, we propose a new approach to detect and
determine performance problems in a distributed comput-
ing system. This approach is based on the principle that
an abrupt change of the service demand value suggests the
appearance of performance problem. Therefore, observing
the values of service demand enables us to detect and de-
termine any performance problems. We developed an auto-
mated performance problem determination system that lo-
calizes the machine with a performance problem by captur-
ing the network traffic data which flows through the target
distributed computing system. Test results in two environ-
ments, a test environment and a production environment,
show the effectiveness of the system in detection and de-
termination of performance problems. Fault injection tests
in the test environment test show that the system detects
performance problem with only a short delay and correctly
localizes the machine of cause. A health check test in a pro-
duction environment succeeded in reporting on the sound-
ness of that system. Verification experiments in a more
complex computing system are now underway and those re-
sults will be reported elsewhere.

The authors would like to thank Hiroaki Etoh for his

valuable comments. The first author is also grateful to the
members of the IBM System Technical Service Center for
their support.
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