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1 IntrodutionSine many of business intelligene appliations started to inorporate unstrutured (primarilytextual) information for more ontext-oriented analysis and deision-making [4℄, databasetehnology has been seriously hallenged to ingest, map, store, and aess suh text-originatedinformation along with the strutured information in a way that two types of information anmutually enhane information disovery and analysis apability. The most ritial problems isthat most of semantis underlying the unstrutured information (suh as ontologial hierarhy,synonymous and antonymous relationship) annot be e�etively managed by onventionaldatabase systems. Another signi�ant problem is that a rigid shemati representation (andassoiated queries and analyti proessing) of unstrutured information often su�er frequentmodi�ations due to updates to ditionary and ontology for adequately ategorize words,phrases, and entities inluded and desribed in the unstrutured information. Therefore, it isvery important to propose a more exible representation, whih redues the ost and workloadof frequent rebuild and re-population of the database shema.The multidimensional database tehnology has been onsidered for the interative analysisof large amounts of data for deision making purposes [20, 11, 1, 2, 8, 10℄. Multidimensionaldata models ategorize data either as fats with assoiated numerial measures or as dimen-sions that haraterize the fats. In a retail business, for example, a purhase transationwould be a fat and the purhase amount and prie would be measures, and the type ofpurhased produt, the purhase time and loation would be dimensions. Queries for OnlineAnalytial Proessing (OLAP) aggregate measures over a range of dimensional values to pro-vide results suh as the total sales per month of a given produt, leading to overall trends.An important feature of the multidimensional data model is to use hierarhial dimensionsto provide as muh ontext as possible for the fats. Dimensions are used for seleting andaggregating data at the desired level of detail. Most of traditional multidimensional databasesassume that the dimensional hierarhies are balaned and non-ragged trees.The star and snowake shemas whih are representative shemas for the multidimensionaldata model store data in fat tables and dimension tables. A fat table holds one row for eahfat in the database and it has a olumn for eah measure, ontaining the measured value forthe partiular fat, as well as a olumn for eah dimension that ontains a foreign key referringto a dimension table for the partiular dimension.When analyzing unstrutured information in a multidimensional data model, a doumentwould be typially represented as a fat, and ategories of keywords, suh as protein, gene,or disease in the lifesiene domain, would be seleted as axis for the interative analysis asshown in Figure 1. Eah ell of the ube in the �gure stores the number of the orrespondingdouments. Operations, suh as drill down, roll up, slie, die, pivoting or drill through, areavailable for analyzing/aggregating large amounts of douments and their ontextual infor-mation to obtain insights. It is often very diÆult, however, to de�ne a set of dimensions andtheir hierarhies for a huge set of keywords suh as protein name, gene names1 . To design ahierarhy used in the online analytial proessing, we use ontologies suh as Uni�ed MedialLanguage System (UMLS)2 and the Gene Ontology (GO)3 , whih is a kind of a diretedayli graph, rather than a set of balaned and non-ragged trees. When we assume that eahnode of the hierarhy orresponds to a dimension, many missing values and a set of multiplevalues for the node ould possibly be introdued. In addition, beause the number of nodes inthe hierarhy beomes very large and a omplex relationship among the nodes exists, we an-not store the data in the star shema and eÆiently aggregate the data within the hierarhyunder a straightforward implementation.In this paper, we propose a data representation, and algebrai operations to integratea multidimensional model with ontologies to analyze a huge set of textual douments. Thispaper desribes� how we design the data representation and its algebrai operations to realize multidi-mensional model and to integrate with ontologies,1 The number of distint keywords is 13,640,593.2 UMLS: http://umlsinfo.nlm.nih.gov3 GO: http://www.geneontology.org
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Figure 1: Operations for a Multidimensional Database� how we store very high dimensional data from text douments in a relational database,� how we eÆiently aggregate the distributions of douments for eah ell in the ubeview, and� how we an get suÆient performane to provide user interativity.The rest of this paper is organized as follows. Setion 2 addresses a hierarhy and an on-tology, and Setion 3 de�nes our data representation and its algebrai operations. In Setion 4,we introdue our shemas to eÆiently ompute the distributions and their implementations.Setion 5 presents experimental results using about 500,000 journal abstrats, and Setion 6disusses related works. Finally, Setion 7 onludes this paper.2 Hierarhy and OntologyIn this setion, we give formal de�nitions of a hierarhy and an ontology aording to [3℄. IfS is a nonempty set, and �� S � S, then (S;�) is an ordering4 . If x � x for x 2 S, then Sis reexive. If x � y and y � z ! x � z for x; y; z 2 S, then S is transitive. If x � y andy � x ! x = y for x; y 2 S, then S is anti-symmetri. (S;�) is a partial ordering if S is areexive, transitive, and anti-symmetri binary relation on S.De�nition 1 (better): Let (S;�1) and (S;�2) be two orderings. We say (S;�1) is betterthan (S;�2) i� 8x; y 2 S (x �1 y ! x �2 y). In addition, we say that (S;�1) is stritlybetter than (S;�2) i� (S;�1) is better than (S;�2) and (S;�2) is not better than (S;�1).De�nition 2 (hierarhy): Let (S;�) be a partial ordering. A hierarhy of S is an ordering(S;�) suh that1. (S;�) is better than (S;�),2. (S;�) is the reexive, transitive losure of (S;�), and3. there is no other ordering (S;v) satisfying the preeding two onditions suh that (S;v)is stritly better than (S;�).De�nition 3 (ontology): Suppose � is some �nite set of strings and S is some set. An ontologyw.r.t. � is a partial mapping � from � to hierarhies for S.For example, when S is given as ftire; ar; hubapg, where tire is a part of ar, hubap is apart of ar, and hubap is a part of a tire. In addition, everything is a part of itself. For the setS, a partial order is de�ned as f(tire; tire); (ar; ar); (hubap; hubap); (tire; ar); (hubap; ar);(hubap; tire)g, and only one hierarhy is de�ned as f(tire; ar); (hubap; tire)g, as shown inFigure 2.4 This paper uses � to represent a diret relation between two elements in the set S, <�to represent its transitive losure, and �� to represent its transitive losure or represent thatthe elements are equal.
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Figure 3: Taxonomy of HierarhyHierarhies an be lassi�ed aording to their generality as shown in Figure 3 [18℄.DAG: Direted ayli graph (DAG) whih is a direted graph with no direted yles is thegeneral lass for the taxonomy. The hierarhy introdued above to de�ne the ontology is aproper sublass of this lass.transitive anti-losed digraph: The transitive losure an be onstruted as follows. Ifthere is a path from node A to node B of length 2 or more, then add an edge from A to B.On the other hand, the anti-losure an be produed as follows. If there are an edge of length1 and a path from node A to node B of length 2 or more, then remove the path of length 1from A to B. The hierarhy de�ned above is in this lass.tree: A tree is a DAG where eah node an only have one parent, exept for one node whihhas no parents and whih is alled the root.balaned tree: An unbalaned hierarhy with levels that have a onsistent parent-hildrelationship but have a logially inonsistent levels. The hierarhy branhes also an have in-onsistent depths. For example, an unbalaned hierarhy an represent an organization hart.Figure 4 (a) shows a hief exeutive oÆer (CEO) on the top level of the hierarhy and atleast two of the people that might branh o� below inluding the hief operating oÆer andthe exeutive seretary. The hief operating oÆer has more people branhing o� also, but theexeutive seretary does not. The parent-hild relationships on both branhes of the hierarhyare onsistent. However, the levels of both branhes are not logial equivalents. An exeutiveseretary is not the logial equivalent of a hief operating oÆer5 .non-ragged tree: A ragged hierarhy in whih eah level has a onsistent meaning, but thebranhes have inonsistent depths beause at least one member attribute in a branh level isunpopulated. A ragged hierarhy an represent a geographi hierarhy in whih the meaningof eah level suh as ity or ountry is used onsistently, but the depth of the hierarhy varies.Figure 4 (b) shows a geographi hierarhy that has Continent, Country, State, and City levelsde�ned. One branh has North Ameria as the Continent, United States as the Country, Cal-ifornia as the State, and San Franiso as the City. However, the hierarhy beomes raggedwhen some member does not have an entry at all of the levels. For example, another branhhas Europe as the Continent, Greee as the Country, and Athens as the City, but has no entryfor the State level beause this level is not appliable to Greee for the business model in this5 http://publib.boulder.ibm.om/infoenter/db2luw/v8/index.jsp?topi=/om.ibm.db2.udb.db2 olap.do/mdhierarhy.htm



example. In this example, the Greee and United States branhes desend to di�erent depths,reating a ragged hierarhy.balaned and non-ragged tree: Most of traditional multidimensional databases use hier-arhies of this lass.
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Figure 4: Examples of an Unbalaned Tree and a Ragged Tree3 Data Objet and OperationsIn this setion, we give formal de�nitions of our data representation and operations aordingto [19℄.3.1 Data ObjetGiven a hierarhy (or an ontology) (S;�), a fat shema is de�ned as S = (F ; T ), where Fis a fat type and T is a hierarhy type T = (C;�T ;>T ) whih is stritly better than (S;�)and the relations in (S;�) required for analyzing the douments are remaining in T . Thehierarhy type is a three-tuple (C;�T ;>T ), where C = fCj; j = 1; � � � ; ng is a set of ategorytypes of T , and �T is a partial order on the C's, with >T 2 C being the top element of theordering. The intuition is that the top element of the ordering logially ontains all otherelements, that is 8Cj 2 C; Cj �� >T .A hierarhy instane T of type T is a two-tuple T = (C;�), where C is a set of ategoriesj suh that Type(j) = Cj, and � is a partial order on C. Funtions to give the set ofimmediate predeessors and suessors of a ategory j are de�ned as pred : C ! 2C andsu : C ! 2C . That is, pred(j) = f0 j 0 > jg and su(j) = f0 j 0 < jg, respetively.Eah ategory  2 C has an assoiated set dom() alled its domain. The members of dom()are alled values of the ategory . An element in dom() is represented as  : v. In addition,a funtion below to give a set of values is also de�ned as below() = fdom(0) j 0 �� g.For example, we have a hierarhy instane T , a part of whih is depited in Figure 5 (a).Categories suh as \Software", \OS", \Middleware", \Appliation", \Windows", \Linux",\AIX" are ontained in C. pred(OS) has only one element \Software", and su(OS) ontainsf\Windows", \Linux", \AIX"g. dom(Windows) ontains \Windows XP", \Windows Me",\Windows 2000", and so on. below(All) ontains all values of all ategories.Let F = ffi; i = 1; � � � ;mg be a set of fats. A fat-hierarhy relationship between F andT is a set R = f(f;  : v)g, where f 2 F ,  2 C, and v 2 dom(). Thus, R links fats tohierarhial values. We say that fat f is haraterized by a hierarhial value  : v, writtenby f ;  : v, if 90 2 C((f; 0 : v0) 2 R ^ 0 ��  ^ v = v0).Our data objet is a four tuple D = fS;F ; T ;Rg, where S = (F ; T ) is the fat shema, Fis a set of fats where Type(f) = F , T = (C;�) is a hierarhy instane where Type(j) = Cjfor j 2 C and Cj 2 C, and R is a set of fat-hierarhy relations suh that (f;  : v) 2 R) f 2F ^ 9 2 C (v 2 dom()).For example, we have the hierarhy instane T and an analyzed doument whih is de-pited in Figure 5 (b). F ontains a set of doument identi�ers. Terms in the doument whose



doument id is 1 in Figure 5 are annotated in preproessing, e.g., a ategory \windows" and\workstation" are assigned to a term \windows 2000" and \IntelliStation 6217", respetively,and (1; windows : windows 2000) and (1; workstation : IntelliStation 6217) are stored in R.Coneptually, R orresponds to a relation R0 � 2dom(1) � � � � � 2dom(n) whih is nota normalized relation. R0 orresponds to a fat table for a star shema, and eah row andolumn in R0 orrespond to a doument (fat) and a ategory (dimension value in the starshema), respetively. Beause the relation has many missing values and a set of values foreah attribute j , the number of attributes in the relation beomes very large and a omplexrelationship among the attributes (olumns) exists, a naive method annot store the data ina relational database and eÆiently aggregate the data along the hierarhy.For example, a hierarhy instane T used in Setion 5 is a transitive anti-losed digraphwhih has more than 240,000 nodes (ategories) and more than 340,000 edges and whosedepth is 24. If the hierarhy instane is a tree, V = E+1, where V and E are the numbers ofategories and edges of the hierarhy, respetively. However, beause the di�erene betweenthe numbers of the ategories and edges in T is so large, the hierarhy instane T used inSetion 5 have a very omplex relationship. In addition, about 36,400,000 elements in aoneptual relation R0 have values. Sine the number of attributes, n, for R0 is greater than240,000 and R0 has more tuples than 500,000 in Setion 5, most of elements in R0 are missingvalues. Furthermore, more than 7,600,000 elements in R0 has a set of values, and dom(>) hasabout 193,000,000 distint values.
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(1, workstation:IntelliStation_6217)Figure 5: Examples of a Hierarhy and Fat-Hierarhy RelationsThe funtion g() is de�ned as a user-de�ned funtion to return a set of fat-hierarhy rela-tions, and another funtion G(g()) is de�ned as G(g()) = f( : v) j (f;  : v) 2 g()g. For k =1; � � � ; q and (k : vk) 2 G(gk(k)), we de�ne a funtion Group as Group(1 : v1; � � � ; q : vq) =ff j f 2 F ^ (f; 1 : v1) 2 g1(1) ^ � � � ^ (f; q : vq) 2 gq(q)g. These funtions are used toaggregate the distributions of douments for eah keyword and ategory. For example, g() isprovided as the following funtions g(1); g(2); g(3) (g 2 fg(1); g(2); g(3); � � �g).First, g(1)() is de�ned as g(1)() = f(f; 0 : v0) j (f; 0 : v0) 2 R ^  = 0 ^ v0 = dom(0)g.This funtion is used to aggregate the distributions for keywords belonging to the spei�edategory . The seond funtion g(2)() is de�ned as g(2)() = f(f;  : 00) j (f; 0 : v0) 2 R^00 2su() ^ 0 �� 00 ^ v0 2 dom(0)g. This funtion is used to aggregate the distributions forthe immediate suessors (subategories) of the spei�ed ategory . The third one is de�nedas g(3)() = f(f; 0 : v0) j (f; 0 : v0) 2 R ^ 0 ��  ^ v0 2 dom(0)g. This funtion is used toaggregate the distributions for keywords belonging to below(). Users an de�ne any additionalfuntions as required for the intended analysis of a set of douments.3.2 OperationsThis subsetion de�nes operations on our data objet.seletion �0: Given a ompound prediate P = p1 or � � � or pl where eah atomi prediate piis represented in the form of  : v or  : �. The seletion �0 is de�ned as �0P (D) = (S;F 0; T ;R0),where F 0 = ff j f 2 F ^ (f ; p1 _ � � � _ f ; pl)g, and R0 = f(f 0;  : v) 2 R j f 0 2 F 0g. For



example, a set of douments having any keywords belonging to a ategory 'software' is givenby �00software0:�(D). Other examples �00gene name0:0BIKE0 (D) and �0:v1(�0:v2(D)) represent aset of douments having a term 'BIKE' belonging to a ategory 'gene name' and a set ofdouments having a term v1 and v2 belonging to a ategory , respetively.di�erene �: Given two data objets D1 = (S1;F1; T1;R1) and D2 = (S2;F2; T2;R2)suh that S1 = S2 = S, the di�erene is de�ned as (S;F1; T1;R1) � (S;F2; T2;R2) =(S;F 0; T1;R0), where F 0 = F1 � F2 and R0 = f(f;  : v) j f 0 2 F 0; (f 0;  : v) 2 Rg.For example, a set of douments whih have a term v1 and does not have the term v2 is�0>:v1(D)� �0>:v2(D).projetion �0: The projetion is de�ned as �01_���_l(D) = (S;F ; T ;R0), where R0 =f(f;  : v) 2 R j f 2 F ^ (f ; 1 : � _ � � � _ f ; l : �)g.aggregation �: Given a set of ategories and funtions T = (1; � � � ; q; g1; � � � ; gq), the ag-gregation � is de�ned as �[T;0 ount0℄(D) = (S 0;F 0; T 0;R0), where S 0 = (F 0; T 0), F 0 = 2F ,T 0 = (C0; <0T 0 ;>0T 0), C0 = C [ f0ount0g, <0T 0=<T [f(0ount0;>)g, >0T 0 = >T , F 0 =fGroup(1 : v1; � � � ; q : vq) j (1 : v1; � � � ; q : vq) 2 G(g1(1))�� � ��G(gq(q))^Group(1 : v1; � � � ; q : vq) 6=;g, T 0 = (C0; <0), C0 = C0 [ f0ount0g, <0=<T [f(0ount0;>)g, R0 = R01 [ R02, R01 =f(f 0; 0 : v0) j 9(1 : v1; � � � ; q : vq) 2 G(g1(1))�� � ��G(gq(q)) (f 0 = Group(1 : v1; � � � ; q : vq)^f 0 2 F 0^9k (k : vk = 0 : v0))g, andR02 = S(1:v1;���;q :vq)2G(g1(1))�����G(gq(q))f(s; 0ount0 : jsj) js = Group(1 : v1; � � � ; q : vq)^ s 6= ;g. (0ount0;>) represents a partial relation 0ount0 < >.For example, Table 1 shows the results for a query �[0protein0; g; 0ount10℄(�00disease0:0diabetes0(D))for a set of biomedial douments. The results orrespond to a top N ranking for the tra-ditional multidimensional analysis. The result lists the names of proteins relevant to dia-betes. Table 2 shows the results for a query �[0ompany0; 0GeneSymbol0; g1; g2; 0ount20℄(D).If the result is analyzed for a set of patent douments, a strategist for a pharmaeuti-al ompany might be able to �nd assoiations between ompanies and genes. A query�[0protein0; 0protein0; g1; g2; 0ount30℄(D) may be useful to �nd interations between proteins.It represents that we an selet the same ategories as ube's axes unlike the traditionalmultidimensional database. Table 1: Top N rankingprotein # of doumentsFlavohemoprotein 347Lamin L 240Insulin 151nterferon gamma preursor 97� � � � � �
Table 2: 2 Dimensional MapLEPR TM4SF2 INS ADAM2 � � �ompany1 x11 x12 x13 x14 � � �ompany2 x21 x22 x23 x24 � � �ompany3 x31 x32 x33 x34 � � �� � � � � � � � � � � � � � � � � �By using above operators, we will show how ommon OLAP operators an be de�ned.roll-up & drill-down: In the traditional multidimensional database, there are two typesof rolling up operation, one is dimensional rolling up and the other is hierarhial rollingup. For example, let S be the fat table S(produt; ity; time; sale), where sale is a mea-sure, and L(ity; state; ountry) be one of the dimension tables. The dimensional rollingup is represented as produt;ity�produt;ity;SUM(sale)(S) in the ase of one dimension being



dropped, and ity�ity;SUM(sale)(S) in the ase of two dimensions being dropped6 . The hi-erarhial rolling up is represented as produt;state;time�produt;state;time;SUM(sale)(S 1ity L).It is possible to de�ne more than 2k roll-up queries for the k dimensions of the traditionalmultidimensional database. In our ase, the dimensional rolling up orresponds to moving from�[1; � � � ; q ; g1; � � � ; gq; 0ount0℄(D) into �[1; � � � ; h; h+2; � � � ; q ; g1; � � � ; gh; gh+2; � � � ; gq; 0ount0℄(D)for the ase of one dimension being dropped, and the hierarhial rolling up orresponds tomoving from �[1; � � � ; q ; g(1)1 ; � � � ; g(1)q ;0 ount0℄(D) to�[1; � � � ; h; 0h+1; h+2; � � � ; q; g(1)1 ; � � � ; g(1)h ; g(2)h+1; g(1)h+2; � � � ; g(1)q ; 0ount0℄(D), where 0h+1 2 pred(h+1).slie & die: The slie operation performs a seletion on one dimension of the givenube, resulting in a subube, and the die operation de�nes a subube by performing a sele-tion on two or more dimension. For example, in the traditional multidimensional database,slie and die operations are represented as ity;time�ity;time;SUM(sale)(�produt=p1(S)) andprodut;ity;time�produt;ity;time;SUM(sale)(�P (S)), where P = (produt 2 fp1; p2g and ity 2f3; 4g). In our ase, the slie is represented as �[T; 0ount0℄(�0p(D)), and the die is repre-sented as �[T; 0ount0℄(�0p1 or p2(�0p3 or p4(D))).pivot: The pivot operation is a visualization operation that rotates the data axes in view inorder to provide an alternative presentation of the data, whih orresponds to moving from�[1; 2; g1; g2;0 ount0℄ into �[2; 1; g2; g1;0 ount0℄.4 ImplementationA key strategy for speeding up ube view proessing for the traditional multidimensionaldatabase is to use pre-omputed ube views. The pre-omputation makes it possible forresponse times to queries potentially involving huge amounts of data to be fast enough toallow interative data analysis in the traditional approahes. However, it is impossible to pre-ompute or pre-aggregate in advane of reeiving queries for all of the ombinations of valuesin our situation, beause the situation where eah doument has many values and there are alot of ategories is ombinatorially explosive. For example, the average number of annotatedterms whih eah douments have is about 380 and the number of ategories is more than240,000 for the data used in Setion 5.In this setion, we design table shemas and data strutures to ahieve query responsetimes that are as fast as possible. Sine a hierarhy for analyzed douments onstitutes atransitive anti-losed digraph rather than a set of balaned and non-ragged trees, it annot bestored in a star shema or snowake shema. For omputation eÆieny in aggregating thedistributions of douments, the hierarhy is indexed as follows. A depth �rst searh traversesthe hierarhy from root ategory root whose type Type(root) is equal to >T assigning apreorder, postorder, and depth to eah ategory, and it baktraks if and only if it reahesleaf nodes. This means that it does not baktrak when it reahes any internal nodes whihit has already visited.The assigned preorders and postorders make it possible to handle anestor-desendentontainment in the hierarhy [7℄. In other words, it an hek the ontainment by assigninga preorder and a postorder to eah node in a hierarhy and omparing the numbers assignedto the two nodes. If a node A is an anestor of a node B,A0s preorder < B0s preorder &A0s postorder > B0s postorder: (1)For example, the hierarhy in Figure 6 (a) is traversed to return the tree shown in Figure 6 (b)where eah node has a ategory, an assigned preorder, postorder, and depth. In this �gure, alldesendents of a ategory 2 have preorders whih are greater than the preorder of 2 and havepostorders whih are less than the postorder of 2. We all a tree in Figure 6 (b) a traversedtree.We de�ne two tables, CATEGORY H and KEYWORD V , to store the traversed tree and fat-hierarhy relations asCATEGORY (CATEGORYNAME CHARCTER,6 a�a;sum(b) represents an SQL query \SELECT a, SUM(b) FROM ... GROUP BY a".



PATH CHARCTER,PREORDER1 INTEGER,PREORDER2 INTEGER,PARENT INTEGER), andKEYWORD (ID INTEGER,PREORDER INTEGER,VALUE CHARCTER),respetively. Eah reord in the table H orresponds to a node in the traversed tree andCATEGORYNAME, PATH, PREORDER1, PREORDER2, and PARENT in the table H are a name of theategory, a path from root node to the orresponding node, a preorder, a value for a postorderplus a depth, and a preorder of its parent of the orresponding node. The reason why we usePREORDER2 instead of the postorder is that we an hek anestor-desendent ontainment inthe hierarhy as A0s preorder1 (= A0s preorder) < B0s preorder� A0s preorder2 = A0s postorder+A0s depth (2)instead of using ondition (1), and it an redue the spae to store the tables and theirindexes. Eah reord in the table V orresponds to (f;  : v) in R, and ID, PREORDER, andVALUE in the table V are a doument ID f , a preorder of the ategory , and a value v indom(), respetively.By using these tables, we an implement the operations introdued in Setion 3.2 as fol-lows. In the following de�nitions,  is provided as input. Although there are multiple reordswhose values of CATEGORYNAME in the table H are , a reord arbitrarily hosen from the reordsis used in the following operations. In other words, \�P (H)" for P = (ategoryname = ) isreplaed into \�P (H) FETCH FIRST 1 ROWS ONLY", denoted as H. The hoie has no inu-ene on its result.seletion �0: The seletion is de�ned as �0:v(D) = (H;V 0), where V 0 = �id in I(V ),I = �id(V 1P H) and P = (preorder1 � preorder � preorder2 and value = v). Al-though this alulation needs to join H with V , this alulation runs as fast as the seletionof V , sine only one reord is returned from H.di�erene �: The di�erene is de�ned as (H;V1)�(H;V2) = (H;V 0), where V 0 = �id in (�id(V1)��id(V2))(V1).projetion �0: The projetion is de�ned as �0(D) = (H;V 0), where V 0 = �id;preorder;value(V 1PH) and P = (preorder1 � preorder � preorder2).aggregation �: The aggregation is de�ned as �[(1; � � � ; q ; g1; � � � ; gq);0 ount0℄(D)= value1;���;valueq�value1;���;valueq ;ount(distint id)(X), where X = g1(1) 1id=id � � � 1id=idgq(q). The user-de�ned funtions g(1)(), g(2)(), and g(3)() are de�ned as g(1)() = �id;preorder;value(V 1PH), where P = (preorder1 = preorder), g(2)() = �id;H:preorder1;H:ategoryname((H 1P1H) 1P2 V ), where P1 = (H:parent = H:preorder1) and P2 = (H:preorder1 � V:preorder �H:preorder2), and g(3)() = �id;preorder;value(V 1P H), where P = (preorder1 � preorder �preorder2).
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5 Experiments5.1 Data and PreproessFor testing, we used biomedial douments from MEDLINE7 . Life siene researhers typi-ally use MEDLINE, a bibliography database that overs the biomedial area. MEDLINE isadministered by the National Center for Biotehnology Information (NCBI)8 of the UnitedStates National Library of Mediine (NLM)9 . It ontains approximately 13 million biomedi-al itations, dating from the mid-1960s up to the present time. Citations in MEDLINE areolleted from over 4,600 biomedial journals published worldwide. Biomedial itations inMEDLINE are available to the general publi at the PubMed10 . We seleted 503,989 ab-strats from Medline whih ontain strutured information suh as authors and Mesh Termsand unstrutured information suh as titles and abstrats.To prepare a fat-hierarhy relation from the douments, the douments written in Englishare parsed by CCAT [5℄, a shallow syntati parser. Beause this is a general-purpose parserthat has not been trained for biomedial douments, it is diÆult to obtain optimized resultsby parsing douments from various domains . We solve this problem by �rst annotating thetext with domain ditionaries as shown in Figure 7. The annotations failitate the parsing ofthe douments even when the parser has not been spei�ally trained for the domains.In the �rst step of the preproessing, the term annotator �nds words in the input text usingthe term ditionary and identi�es these words with their anonial forms. The term ditionaryontains pairs of surfae forms and anonial forms. Fox example, most of the tehnial termsin the medial domain are ompound words. The ompound noun \repetitive sequene-basedpolymerase hain reation" onsists of an adjetive (repetitive), a past partiiple of a verb(sequene-based) and three nouns (polymerase, hain, reation). Thus, biomedial terms tendto onsist of a ombination of numerals, symbols, and verbs, making it very diÆult to �ndterm boundaries. In addition, there an be multiple expressions that are synonymous witha partiular tehnial term. These an arise from abbreviations or aronyms as well as fromspelling variations. If these variations are reognized as di�erent entities, it an often auseproblems for aggregating douments. For instane, \DNA" and \deoxyribonulei aid" aresynonyms. The ditionary ontains spelling and abbreviation variants and their anonialforms. By reduing these variants to a single anonial form, we treat them as the sameentity.In the seond step, the text annotated with a tehnial term ditionary is passed to thesyntati parser. The parser outputs segments of phrases labeled with their syntati roles,for example NP (noun phrase) or VG (verb group). In the third step, the ategory annotatorassigns ategories to the terms in these segments and phrases. The ategory ditionary onsistsof a set of anonial forms and their ategories, whih also indiate the node labels in theategory hierarhy (ontology). A ategory assigned to eah term is an internal node or leaf inthe hierarhy.Figure 8 shows an example of the preproessing of a sentene. When \Repetitive sequene-based polymerase hain reation e�ets deoxyribonulei aids" is given as input, an anno-tator assigns \DNA" as anonial and \proper noun" as part-of-speeh to \deoxyribonuleiaids". After parsing the annotated text, ategories are assigned to eah term. In Figure 8,
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\.A.1.2.23.4" represents a path from a root node to the orresponding node in a ategoryhierarhy.After preproessing the 503,989 abstrats, the numbers of (f;  : v), reords in the tableH, and di�erent terms were 193185919, 340154, and 13640593, respetively. The ategoriesontain ategories for publiation dates, authors, aÆliations for the authors, and so on.5.2 Implementation using a Doument-Term MatrixTo ompare with the method mentioned in Setion 4, we used a straightforward method with aDoument-Term Matrix (DTM) as a proprietary method. In general, a proprietary algorithmand index an ompute faster than a method with a persistent store, e.g., the method inSetion 4, although it is more diÆult to add some funtions into the proprietary methodand to integrate the proprietary method with other systems ompared to the persistent-storemethod. This subsetion explains the method using the proprietary algorithm and index, andthe next subsetion will explain that the method using the persistent store is omparable tothe proprietary method.This subsetion fouses how to ompute �[; g; ount℄(�0P (D)) by a DTM using a simpleexample, beause this is the most fundamental method. Let the sets of terms and doumentsbe T = ft1; t2; : : : ; tng and D = fd1; d2; : : : ; dmg, respetively. A DTM is a matrixM = (mij)of m�n, and an elementsmij represents how many times the term tj appears in the doumentdi. Although storing the whole matrix requires a lot of memory, it an be ompressed bystoring a pair for eah element that is not zero and its orresponding index in eah row orolumn, beause the matrix is very sparse.As mentioned in the previous setion, sine some ategories are assigned to eah term, weuse a modi�ed DTM. Rows in our DTM orrespond to a set of douments D = fd1; : : : ; dmgsimilar to the onventional DTM, and olumns orrespond to a set of pairs of ategories andterms P = fj : vjk j vjk 2 dom(j); j = 1; � � � ; ng [ fj : � j j = 1; � � � ; ng. The value j : � isused to failitate aggregating the number of douments for eah subategory, and an elementfor di and j : � is not zero when di ; j : �.Figure 9 presents how the method using DTM omputes the results for �[3; g(1);0 ount0℄(�01:v11(D)),when a user has spei�ed the ategory 3 after narrowing down to the douments ontain-ing the term v11 whose ategory is 1. First, the method narrows the searh down to thedoument set fd2; d6; d10g ontaining (1 : v11) (1). In parallel with this Proess 1, a set ofterms f3 : v31; 3 : v32; 3 : v33; 3 : v34; 3 : v35g whose ategories are 3 is output (2). AfterProesses 1 and 2, the distribution of the douments for the terms appearing in the doumentsfd2; d6; d10g is returned as f(3 : v31) : 2; (3 : v35) : 1g (3). Proess 3 requires muh more om-putation time than Proesses 1 and 2. For example, when the user selets a \ommonnoun"ategory, Proess 2 returns 340,154 terms for the dataset used in the experiments desribedin Setion 5.3.When the user spei�ed a ategory whih is an internal node in the ategory tree, it alsoomputes the distribution of the douments for eah subategory of the spei�ed ategory,whih orresponds to �[3; g(2);0 ount0℄(�0P (D)). In this ase, a set of ategories f03 : � j 03 2
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1Figure 9: Implementation using a DTMsu(3)g is returned in Proess 2.5.3 Experimental ComparisonThe method in Setion 4 was implemented in Java. It generates SQL queries and aesses arelational database via JDBC (Java Database Connetivity). The method in Setion 5.2 wasimplemented in C++ to ompare with the above method. For the evaluation experiments, anIBM IntelliStation with Windows XP was used, with an Opteron-2.2 GHz CPU and 2 GB ofmain memory installed. The eÆieny of our approah has been on�rmed with respet tothe omputation time.Figure 10 shows the results of the response time for a query �[; g;0 ount0℄(D) for all the340,154 ategories. The DB and DTM in the �gure orrespond to implementations of themethods mentioned in Setion 4 and Setion 5.2, respetively. KW and SUB represents theases where g(1) and g(2) as g in �[; g;0 ount0℄(D) were used, respetively. \DTM SUB 1k"shows the results for 1,000 douments sampled randomly from all of the douments. Themethod of the DB does not ompute for the sampled douments but for all of the douments.Eah point (x; y) in the �gure means that the method returns the result within x seonds fory% of all of the 340,154 ategories. The ideal method is at the upper left orner. Although DBould return the result for about 89% of the ategories within 0.1 seond, DTM ould returnresults for about 60% of the ategories for 1,000 sampled douments, and for about 0.01% ofategories for 10,000 sampled douments for KW. In addition, �[; g;0 ount0℄(�>:0aner0(D))was alulated for the various ategories, and the results for 11,914 douments ontaining\aner" were similar to Figure 10. As shown in Figure 10, DB is superior to DTM for mostof the ategories.
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loaded within 8 seonds of a request, we an onlude that the better method is the onewhose overage rate in about 10 seonds is better. Figure 11 fouses from 5 seonds to 10seonds for the response time and from 99.97% to 100% for the overage rates for the result�[; g;0 ount0℄(�>:0aner0(D)). Figure 11 shows that DB is inferior to DTM within 8-seondonstraint. Tables 3 and 4 summarize the experimental results for �[; g;0 ount0℄(D) and�[; g;0 ount0℄(�>:0aner0(D)), respetively. Although the average omputation time of DB islower than for DTM, the number of ategories for whih DB annot return within 10 seondsmay beome greater than for DTM.
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DB KW�The overage rate for \DB SUB" was about 0.99775.Figure 11: Experimental Results for Douments Containing \aner"Table 3: Comp. Times for All DoumentsMethod avg. omp. 10 se. 100 se.time [se℄ y zDTM KW 1k 0.143 1 0DTM KW 5k 0.284 26 0DTM KW 10k 0.526 16 0DTM KW 50k 4.293 75 0DB KW 0.185 10 0DTM SUB 1k 0.138 2 1DTM SUB 5k 0.176 2 0DTM SUB 10k 0.405 5 1DTM SUB 50k 2.091 33 0DB SUB 0.137 20 2y The number of ategories for whih the results is not returned within 10 seonds. z Thenumber of ategories for whih the results is not returned within 100 seonds.As shown in Table 4 and Figure 11, the averages of the omputation times for DB aresuperior to DTM. However, the number of ategories for whih DB annot respond within 10seonds is greater than for DTM. When douments ontaining \aner" are seleted, an SQLquery to obtain V 0 for �0>:0aner0(D) = (H;V 0) is represented asV 0 = �id in I (V )= �id;V (b):preorder;V (b):value(V (a) 1P2 V (b)); (3)where I = �id(V 1P1 H), P1 = (value = 0aner0), P2 = (V (a):id = V (b):id and V (a):value =0aner0), and V = V (a) = V (b). The query (3) is represented asSELECT Vb.ID, Vb.PREORDER, Vb.VALUE



Table 4: Computation Times for Douments Containing \aner"Method avg. omp. 10 se. 100 se.time [se℄ y zDTM KW 1k 0.177 24 5DTM KW 5k 0.355 116 5DTM KW 10k 0.511 28 7DTM KW 12k 0.594 27 7DB KW 0.267 23 0DTM SUB 1k 0.195 13 1DTM SUB 5k 0.352 65 0DTM SUB 10k 0.484 18 1DTM SUB 12k 0.534 24 2DB SUB 0.413 706 5FROM V AS Va, V AS VbWHERE Va.ID=Vb.ID AND Va.VALUE='aner'.The reason why DB requires so muh omputation time for ertain ategories is the self-joinof the table KEYWORD V whih ontains 193,185,919 reords. Therefore, we divided the tableinto multiple tables as follows. Let id(V ) be a funtion whih returns a set of doumentIDs in a table V . We divide V into multiple tables Vi whih satis�es id(V ) = Si id(Vi) andid(Vi) \ id(Vj) = ; for i 6= j. Sine the SQL query (3) ontains V (a):id = V (b):id in itsWHERE phase, the following SQL query an avoid joining tables that do not ontain thesame douments IDs. �[; g(1);0 ount0℄(�>:0aner0(D))= value�value;sum(ount)([i Ri); (4)where Ri = value�value;ount(distint id) ount(V 0i ),S represents UNION ALL operation, and eahV 0i is alulated by the SQL query (3). The SQL query (4) is represented asSELECT VALUE, SUM(COUNT)FROM (SELECT Vb.VALUE, COUNT(DISTINCT Vb.ID)FROM V_0 AS Va, V_0 AS VbWHERE Vb.PREORDER=pre ANDVa.ID=Vb.ID AND Va.VALUE='aner'GROUP BY VALUEUNION ALL...UNION ALLSELECT Vb.VALUE, COUNT(DISTINCT Vb.ID)FROM V_k AS Va, V_k AS VbWHERE Vb.PREORDER=pre ANDVa.ID=Vb.ID AND Va.VALUE='aner'GROUP BY VALUE) AGROUP BY VALUE,where pre is a preorder of .Figure 12 shows the experimental results when we ompared the aggregation with KEYWORDdivided into 10 tables with DTM and the aggregation using a single table for KEYWORD. Bydividing the table, the overage rate within 10 seonds rises from 99.993% to 99.999% forKW, and from 99.79% to 99.93% for SUB. Although these experiments were run with asingle omputer, we an easily run on multiple omputers, beause suh ommerial databasesystems support parallelization.
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Table 5: Computation Times for Categories to whih Many Di�erent TermsBelongategory # of di�erent terms DTM KW 5k DTM KW 12k DB KW.ommonnoun 340,154 231.2 se. 238.7 se. 53.0 se..propernoun 7,903 11.8 se. 10.8 se. 2.8 se..verb 32,826 73.9 se. 74.4 se. 9.7 se..adj 23,629 61.6 se. 62.4 se. 7.2 se..rel vn 1,337,891 171.3 se. 177.7 se. 7.6 se..rel nv 601,256 85.7 se. 85.3 se. 3.6 se..rel vnn 5,439,810 145.6 se. 162.9 se. 9.8 se..rel nvn 2,294,012 99.3 se. 101.2 se. 4.4 se..rel nnv 1,812,501 90.7 se. 89.5 se. 3.8 se..aÆliation 282,729 53.7 se. 55.3 se. 3.2 se..pnsubstane 48,512 66.2 se. 68.0 se. 4.3 se..majormesh 89,275 83.6 se. 85.1 se. 3.1 se..minormesh 111,761 126.2 se. 128.5 se. 7.8 se..hemial 10,146 17.9 se. 18.2 se. 3.1 se..genesymbol 15,310 48.1 se. 48.8 se. 7.3 se..protein 15,562 57.1 se. 58.2 se. 6.7 se..biomedialterms 91,670 133.7 se. 137.8 se. 21.1 se.is to use indexing tehnology. As mentioned in Setion 4, we use the preorders and postordersto hek anestor-desendent ontainment in a ategory hierarhy. If we do not use preordersand postorders in a traversed tree, we need to join the table CATEGORY n times to hek wherea node A is an anestor of a node B, where n is the length of a path from the A to theB. However, we do not need any join operations to anestor-desendent ontainment in thehierarhy.The method to index the tree was proposed in 1982, and it reently draws attention as themethod to index XML (eXtensible Markup Language) database and to map XML data into therelational database [9℄, sine eah XML doument is modeled as a DOM (Doument ObjetModel) tree. Several Methods suh as pre�x label [6℄, Dewey order [23℄, prime label [24℄,VLEI ode [12℄, embedding into a k-ary tree [13℄ are used to index XML. A disadvantage ofthe methods suh as preorder-postorder method and prime label is to need to re-assignment ofpreorders and postorders of nodes when inserting some nodes into a tree. Sine eah node hasthe same label as a pre�x of its hildren in the methods suh as pre�x label and Dewey order,they do not need to reassign the labels when inserting some nodes. However, beause theyneed to ompute funtions to proess string to hek anestor-desendent ontainment, theyneed more omputations time than the preorder-postorder method. Sine we assume that aategory hierarhy is rarely updated and reords in the table KEYWORD V are often inserted,we used the preorder-postorder method to index the ategory hierarhy.Our data representation is similar to the bag-of-words approah [14℄, although eah termis assigned ategories. In the bag-of-words approah, the following sentenes are treated asthe same ontent,:� \(a) X did fail",� \(b) X did not fail", and� \() Did X fail?" [17℄.Besides the negation and interrogative mood, some auxiliary verbs suh as \an" and someverbs suh as \want" often indiate the author's ommuniative intentions. It is importantto assoiate ommuniative intentions with prediates by analyzing grammatial features andlexial information. \fail" in the previous examples (a) to () are assigned ategories andrestored in R as (a) omplaint:fail, (b) ommendation:not fail, and () question:fail. These



extrations are instrumental in failitating problem detetion and workload redution foranalysts at ustomer help enters.Some papers suh as [15℄ and [16℄ proposed OLAP systems to analyze a set of douments.The following MDX (Multi-Dimensional eXpression) query whih was used in [15℄ �nds all thedouments whih ontain a term \forests" and are published in New York in the �rst quarterof 1998.SELECT not empty [DoId℄.members on rows,{[Measure℄.[Tf℄℄ on olumnsFROM doInfoWHERE ([Term℄.[forest℄,[1998℄[quarter 1℄,[loation℄.[New York℄)In the query, [Term℄.[forest℄ means that a depth of a hierarhy in a TERM dimension is 2,and term \forests" is a hild node of \TERM" orresponding to > in the TERM dimension.Hierarhies that the existing OLAP systems for texts assume is so simple that it is diÆultto integrate the hierarhies with a omplex ontology with a huge set of nodes.Other papers proposed an OLAP system to analyze a set of douments [22, 21℄. Sine asales written in multiple douments (newspapers) would be a fat in the papers, operationsin the system is similar to the onventional OLAP system for strutured data. An exampleoperation in the system is to analyze the average sales per produt and year. In our ase,sine a doument would be a fat, we an �nd a hange in the number of douments withtime. For example, in a all enter in a ompany, all takers make reports of eah all bytyping in ustomer information suh as name and phone number, seleting all ategoriessuh as \tehnial QA" and typing in brief desriptions of questions or messages from theustomer and brief desriptions of answers and/or ations taken. The brief desriptions arewrittin in natural language. The manager of the all enter wants to improve produtivity,redue ost, improve ustomer satisfation, et. For example, in a large number of doumentsrelated to ustomers' alls, we want to �nd what kinds of topis have reently been inreasinglymentioned and whih produt is assoiated with spei� topis, so that we an take appropriateations for the improvement of all enter produtivity and produt quality, or reate a FAQ(frequently asked question) database.7 ConlusionIn this paper, we proposed a data model, and a relational algebra to integrate ontologieswith OLAP systems to analyze a huge set of textual douments. The proposed methodwas implemented with a persistent store using preorders and postorders in a hierarhy. TheeÆieny of our approah has been on�rmed with respet to the omputation time.Referenes[1℄ S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan,and S. Sarawagi. On the omputation of multidimensional aggregates. In Proeedings of22th International Conferene on Very Large Data Bases, pages 506{521, 1996.[2℄ P. Baumann, A. Dehmel, P. Furtado, R. Ritsh, and N. Widmann. Spatio-temporalretrieval with rasdaman. In Proeedings of 25th International Conferene on Very LargeData Bases, pages 746{749, 1999.[3℄ P. A. Bonatti, Y. Deng, and V. S. Subrahmanian. An ontology-extended relationalalgebra. In Proeedings of the 2003 IEEE International Conferene on Information Reuseand Integration, pages 192{199, 2003.[4℄ V. T. Chakaravarthy, H. Gupta, P. Roy, and M. K. Mohania. EÆiently linking textdouments with relevant strutured information. In Proeedings of the 32nd InternationalConferene on Very Large Data Bases, pages 667{678, 2006.[5℄ E. Charniak. Statistial Language Learning. The MIT Press, Cambridge, Massahusetts,1996.
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