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1 Introdu
tionSin
e many of business intelligen
e appli
ations started to in
orporate unstru
tured (primarilytextual) information for more 
ontext-oriented analysis and de
ision-making [4℄, databasete
hnology has been seriously 
hallenged to ingest, map, store, and a

ess su
h text-originatedinformation along with the stru
tured information in a way that two types of information 
anmutually enhan
e information dis
overy and analysis 
apability. The most 
riti
al problems isthat most of semanti
s underlying the unstru
tured information (su
h as ontologi
al hierar
hy,synonymous and antonymous relationship) 
annot be e�e
tively managed by 
onventionaldatabase systems. Another signi�
ant problem is that a rigid s
hemati
 representation (andasso
iated queries and analyti
 pro
essing) of unstru
tured information often su�er frequentmodi�
ations due to updates to di
tionary and ontology for adequately 
ategorize words,phrases, and entities in
luded and des
ribed in the unstru
tured information. Therefore, it isvery important to propose a more 
exible representation, whi
h redu
es the 
ost and workloadof frequent rebuild and re-population of the database s
hema.The multidimensional database te
hnology has been 
onsidered for the intera
tive analysisof large amounts of data for de
ision making purposes [20, 11, 1, 2, 8, 10℄. Multidimensionaldata models 
ategorize data either as fa
ts with asso
iated numeri
al measures or as dimen-sions that 
hara
terize the fa
ts. In a retail business, for example, a pur
hase transa
tionwould be a fa
t and the pur
hase amount and pri
e would be measures, and the type ofpur
hased produ
t, the pur
hase time and lo
ation would be dimensions. Queries for OnlineAnalyti
al Pro
essing (OLAP) aggregate measures over a range of dimensional values to pro-vide results su
h as the total sales per month of a given produ
t, leading to overall trends.An important feature of the multidimensional data model is to use hierar
hi
al dimensionsto provide as mu
h 
ontext as possible for the fa
ts. Dimensions are used for sele
ting andaggregating data at the desired level of detail. Most of traditional multidimensional databasesassume that the dimensional hierar
hies are balan
ed and non-ragged trees.The star and snow
ake s
hemas whi
h are representative s
hemas for the multidimensionaldata model store data in fa
t tables and dimension tables. A fa
t table holds one row for ea
hfa
t in the database and it has a 
olumn for ea
h measure, 
ontaining the measured value forthe parti
ular fa
t, as well as a 
olumn for ea
h dimension that 
ontains a foreign key referringto a dimension table for the parti
ular dimension.When analyzing unstru
tured information in a multidimensional data model, a do
umentwould be typi
ally represented as a fa
t, and 
ategories of keywords, su
h as protein, gene,or disease in the lifes
ien
e domain, would be sele
ted as axis for the intera
tive analysis asshown in Figure 1. Ea
h 
ell of the 
ube in the �gure stores the number of the 
orrespondingdo
uments. Operations, su
h as drill down, roll up, sli
e, di
e, pivoting or drill through, areavailable for analyzing/aggregating large amounts of do
uments and their 
ontextual infor-mation to obtain insights. It is often very diÆ
ult, however, to de�ne a set of dimensions andtheir hierar
hies for a huge set of keywords su
h as protein name, gene names1 . To design ahierar
hy used in the online analyti
al pro
essing, we use ontologies su
h as Uni�ed Medi
alLanguage System (UMLS)2 and the Gene Ontology (GO)3 , whi
h is a kind of a dire
teda
y
li
 graph, rather than a set of balan
ed and non-ragged trees. When we assume that ea
hnode of the hierar
hy 
orresponds to a dimension, many missing values and a set of multiplevalues for the node 
ould possibly be introdu
ed. In addition, be
ause the number of nodes inthe hierar
hy be
omes very large and a 
omplex relationship among the nodes exists, we 
an-not store the data in the star s
hema and eÆ
iently aggregate the data within the hierar
hyunder a straightforward implementation.In this paper, we propose a data representation, and algebrai
 operations to integratea multidimensional model with ontologies to analyze a huge set of textual do
uments. Thispaper des
ribes� how we design the data representation and its algebrai
 operations to realize multidi-mensional model and to integrate with ontologies,1 The number of distin
t keywords is 13,640,593.2 UMLS: http://umlsinfo.nlm.nih.gov3 GO: http://www.geneontology.org
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Figure 1: Operations for a Multidimensional Database� how we store very high dimensional data from text do
uments in a relational database,� how we eÆ
iently aggregate the distributions of do
uments for ea
h 
ell in the 
ubeview, and� how we 
an get suÆ
ient performan
e to provide user intera
tivity.The rest of this paper is organized as follows. Se
tion 2 addresses a hierar
hy and an on-tology, and Se
tion 3 de�nes our data representation and its algebrai
 operations. In Se
tion 4,we introdu
e our s
hemas to eÆ
iently 
ompute the distributions and their implementations.Se
tion 5 presents experimental results using about 500,000 journal abstra
ts, and Se
tion 6dis
usses related works. Finally, Se
tion 7 
on
ludes this paper.2 Hierar
hy and OntologyIn this se
tion, we give formal de�nitions of a hierar
hy and an ontology a

ording to [3℄. IfS is a nonempty set, and �� S � S, then (S;�) is an ordering4 . If x � x for x 2 S, then Sis re
exive. If x � y and y � z ! x � z for x; y; z 2 S, then S is transitive. If x � y andy � x ! x = y for x; y 2 S, then S is anti-symmetri
. (S;�) is a partial ordering if S is are
exive, transitive, and anti-symmetri
 binary relation on S.De�nition 1 (better): Let (S;�1) and (S;�2) be two orderings. We say (S;�1) is betterthan (S;�2) i� 8x; y 2 S (x �1 y ! x �2 y). In addition, we say that (S;�1) is stri
tlybetter than (S;�2) i� (S;�1) is better than (S;�2) and (S;�2) is not better than (S;�1).De�nition 2 (hierar
hy): Let (S;�) be a partial ordering. A hierar
hy of S is an ordering(S;�) su
h that1. (S;�) is better than (S;�),2. (S;�) is the re
exive, transitive 
losure of (S;�), and3. there is no other ordering (S;v) satisfying the pre
eding two 
onditions su
h that (S;v)is stri
tly better than (S;�).De�nition 3 (ontology): Suppose � is some �nite set of strings and S is some set. An ontologyw.r.t. � is a partial mapping � from � to hierar
hies for S.For example, when S is given as ftire; 
ar; hub
apg, where tire is a part of 
ar, hub
ap is apart of 
ar, and hub
ap is a part of a tire. In addition, everything is a part of itself. For the setS, a partial order is de�ned as f(tire; tire); (
ar; 
ar); (hub
ap; hub
ap); (tire; 
ar); (hub
ap; 
ar);(hub
ap; tire)g, and only one hierar
hy is de�ned as f(tire; 
ar); (hub
ap; tire)g, as shown inFigure 2.4 This paper uses � to represent a dire
t relation between two elements in the set S, <�to represent its transitive 
losure, and �� to represent its transitive 
losure or represent thatthe elements are equal.
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hyHierar
hies 
an be 
lassi�ed a

ording to their generality as shown in Figure 3 [18℄.DAG: Dire
ted a
y
li
 graph (DAG) whi
h is a dire
ted graph with no dire
ted 
y
les is thegeneral 
lass for the taxonomy. The hierar
hy introdu
ed above to de�ne the ontology is aproper sub
lass of this 
lass.transitive anti-
losed digraph: The transitive 
losure 
an be 
onstru
ted as follows. Ifthere is a path from node A to node B of length 2 or more, then add an edge from A to B.On the other hand, the anti-
losure 
an be produ
ed as follows. If there are an edge of length1 and a path from node A to node B of length 2 or more, then remove the path of length 1from A to B. The hierar
hy de�ned above is in this 
lass.tree: A tree is a DAG where ea
h node 
an only have one parent, ex
ept for one node whi
hhas no parents and whi
h is 
alled the root.balan
ed tree: An unbalan
ed hierar
hy with levels that have a 
onsistent parent-
hildrelationship but have a logi
ally in
onsistent levels. The hierar
hy bran
hes also 
an have in-
onsistent depths. For example, an unbalan
ed hierar
hy 
an represent an organization 
hart.Figure 4 (a) shows a 
hief exe
utive oÆ
er (CEO) on the top level of the hierar
hy and atleast two of the people that might bran
h o� below in
luding the 
hief operating oÆ
er andthe exe
utive se
retary. The 
hief operating oÆ
er has more people bran
hing o� also, but theexe
utive se
retary does not. The parent-
hild relationships on both bran
hes of the hierar
hyare 
onsistent. However, the levels of both bran
hes are not logi
al equivalents. An exe
utivese
retary is not the logi
al equivalent of a 
hief operating oÆ
er5 .non-ragged tree: A ragged hierar
hy in whi
h ea
h level has a 
onsistent meaning, but thebran
hes have in
onsistent depths be
ause at least one member attribute in a bran
h level isunpopulated. A ragged hierar
hy 
an represent a geographi
 hierar
hy in whi
h the meaningof ea
h level su
h as 
ity or 
ountry is used 
onsistently, but the depth of the hierar
hy varies.Figure 4 (b) shows a geographi
 hierar
hy that has Continent, Country, State, and City levelsde�ned. One bran
h has North Ameri
a as the Continent, United States as the Country, Cal-ifornia as the State, and San Fran
is
o as the City. However, the hierar
hy be
omes raggedwhen some member does not have an entry at all of the levels. For example, another bran
hhas Europe as the Continent, Gree
e as the Country, and Athens as the City, but has no entryfor the State level be
ause this level is not appli
able to Gree
e for the business model in this5 http://publib.boulder.ibm.
om/info
enter/db2luw/v8/index.jsp?topi
=/
om.ibm.db2.udb.db2 olap.do
/
mdhierar
hy.htm



example. In this example, the Gree
e and United States bran
hes des
end to di�erent depths,
reating a ragged hierar
hy.balan
ed and non-ragged tree: Most of traditional multidimensional databases use hier-ar
hies of this 
lass.
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Figure 4: Examples of an Unbalan
ed Tree and a Ragged Tree3 Data Obje
t and OperationsIn this se
tion, we give formal de�nitions of our data representation and operations a

ordingto [19℄.3.1 Data Obje
tGiven a hierar
hy (or an ontology) (S;�), a fa
t s
hema is de�ned as S = (F ; T ), where Fis a fa
t type and T is a hierar
hy type T = (C;�T ;>T ) whi
h is stri
tly better than (S;�)and the relations in (S;�) required for analyzing the do
uments are remaining in T . Thehierar
hy type is a three-tuple (C;�T ;>T ), where C = fCj; j = 1; � � � ; ng is a set of 
ategorytypes of T , and �T is a partial order on the C's, with >T 2 C being the top element of theordering. The intuition is that the top element of the ordering logi
ally 
ontains all otherelements, that is 8Cj 2 C; Cj �� >T .A hierar
hy instan
e T of type T is a two-tuple T = (C;�), where C is a set of 
ategories
j su
h that Type(
j) = Cj, and � is a partial order on C. Fun
tions to give the set ofimmediate prede
essors and su

essors of a 
ategory 
j are de�ned as pred : C ! 2C andsu

 : C ! 2C . That is, pred(
j) = f
0 j 
0 > 
jg and su

(
j) = f
0 j 
0 < 
jg, respe
tively.Ea
h 
ategory 
 2 C has an asso
iated set dom(
) 
alled its domain. The members of dom(
)are 
alled values of the 
ategory 
. An element in dom(
) is represented as 
 : v. In addition,a fun
tion below to give a set of values is also de�ned as below(
) = fdom(
0) j 
0 �� 
g.For example, we have a hierar
hy instan
e T , a part of whi
h is depi
ted in Figure 5 (a).Categories su
h as \Software", \OS", \Middleware", \Appli
ation", \Windows", \Linux",\AIX" are 
ontained in C. pred(OS) has only one element \Software", and su

(OS) 
ontainsf\Windows", \Linux", \AIX"g. dom(Windows) 
ontains \Windows XP", \Windows Me",\Windows 2000", and so on. below(All) 
ontains all values of all 
ategories.Let F = ffi; i = 1; � � � ;mg be a set of fa
ts. A fa
t-hierar
hy relationship between F andT is a set R = f(f; 
 : v)g, where f 2 F , 
 2 C, and v 2 dom(
). Thus, R links fa
ts tohierar
hi
al values. We say that fa
t f is 
hara
terized by a hierar
hi
al value 
 : v, writtenby f ; 
 : v, if 9
0 2 C((f; 
0 : v0) 2 R ^ 
0 �� 
 ^ v = v0).Our data obje
t is a four tuple D = fS;F ; T ;Rg, where S = (F ; T ) is the fa
t s
hema, Fis a set of fa
ts where Type(f) = F , T = (C;�) is a hierar
hy instan
e where Type(
j) = Cjfor 
j 2 C and Cj 2 C, and R is a set of fa
t-hierar
hy relations su
h that (f; 
 : v) 2 R) f 2F ^ 9
 2 C (v 2 dom(
)).For example, we have the hierar
hy instan
e T and an analyzed do
ument whi
h is de-pi
ted in Figure 5 (b). F 
ontains a set of do
ument identi�ers. Terms in the do
ument whose



do
ument id is 1 in Figure 5 are annotated in prepro
essing, e.g., a 
ategory \windows" and\workstation" are assigned to a term \windows 2000" and \IntelliStation 6217", respe
tively,and (1; windows : windows 2000) and (1; workstation : IntelliStation 6217) are stored in R.Con
eptually, R 
orresponds to a relation R0 � 2dom(
1) � � � � � 2dom(
n) whi
h is nota normalized relation. R0 
orresponds to a fa
t table for a star s
hema, and ea
h row and
olumn in R0 
orrespond to a do
ument (fa
t) and a 
ategory (dimension value in the stars
hema), respe
tively. Be
ause the relation has many missing values and a set of values forea
h attribute 
j , the number of attributes in the relation be
omes very large and a 
omplexrelationship among the attributes (
olumns) exists, a naive method 
annot store the data ina relational database and eÆ
iently aggregate the data along the hierar
hy.For example, a hierar
hy instan
e T used in Se
tion 5 is a transitive anti-
losed digraphwhi
h has more than 240,000 nodes (
ategories) and more than 340,000 edges and whosedepth is 24. If the hierar
hy instan
e is a tree, V = E+1, where V and E are the numbers of
ategories and edges of the hierar
hy, respe
tively. However, be
ause the di�eren
e betweenthe numbers of the 
ategories and edges in T is so large, the hierar
hy instan
e T used inSe
tion 5 have a very 
omplex relationship. In addition, about 36,400,000 elements in a
on
eptual relation R0 have values. Sin
e the number of attributes, n, for R0 is greater than240,000 and R0 has more tuples than 500,000 in Se
tion 5, most of elements in R0 are missingvalues. Furthermore, more than 7,600,000 elements in R0 has a set of values, and dom(>) hasabout 193,000,000 distin
t values.
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hy and Fa
t-Hierar
hy RelationsThe fun
tion g(
) is de�ned as a user-de�ned fun
tion to return a set of fa
t-hierar
hy rela-tions, and another fun
tion G(g(
)) is de�ned as G(g(
)) = f(
 : v) j (f; 
 : v) 2 g(
)g. For k =1; � � � ; q and (
k : vk) 2 G(gk(
k)), we de�ne a fun
tion Group as Group(
1 : v1; � � � ; 
q : vq) =ff j f 2 F ^ (f; 
1 : v1) 2 g1(
1) ^ � � � ^ (f; 
q : vq) 2 gq(
q)g. These fun
tions are used toaggregate the distributions of do
uments for ea
h keyword and 
ategory. For example, g(
) isprovided as the following fun
tions g(1); g(2); g(3) (g 2 fg(1); g(2); g(3); � � �g).First, g(1)(
) is de�ned as g(1)(
) = f(f; 
0 : v0) j (f; 
0 : v0) 2 R ^ 
 = 
0 ^ v0 = dom(
0)g.This fun
tion is used to aggregate the distributions for keywords belonging to the spe
i�ed
ategory 
. The se
ond fun
tion g(2)(
) is de�ned as g(2)(
) = f(f; 
 : 
00) j (f; 
0 : v0) 2 R^
00 2su

(
) ^ 
0 �� 
00 ^ v0 2 dom(
0)g. This fun
tion is used to aggregate the distributions forthe immediate su

essors (sub
ategories) of the spe
i�ed 
ategory 
. The third one is de�nedas g(3)(
) = f(f; 
0 : v0) j (f; 
0 : v0) 2 R ^ 
0 �� 
 ^ v0 2 dom(
0)g. This fun
tion is used toaggregate the distributions for keywords belonging to below(
). Users 
an de�ne any additionalfun
tions as required for the intended analysis of a set of do
uments.3.2 OperationsThis subse
tion de�nes operations on our data obje
t.sele
tion �0: Given a 
ompound predi
ate P = p1 or � � � or pl where ea
h atomi
 predi
ate piis represented in the form of 
 : v or 
 : �. The sele
tion �0 is de�ned as �0P (D) = (S;F 0; T ;R0),where F 0 = ff j f 2 F ^ (f ; p1 _ � � � _ f ; pl)g, and R0 = f(f 0; 
 : v) 2 R j f 0 2 F 0g. For



example, a set of do
uments having any keywords belonging to a 
ategory 'software' is givenby �00software0:�(D). Other examples �00gene name0:0BIKE0 (D) and �0
:v1(�0
:v2(D)) represent aset of do
uments having a term 'BIKE' belonging to a 
ategory 'gene name' and a set ofdo
uments having a term v1 and v2 belonging to a 
ategory 
, respe
tively.di�eren
e �: Given two data obje
ts D1 = (S1;F1; T1;R1) and D2 = (S2;F2; T2;R2)su
h that S1 = S2 = S, the di�eren
e is de�ned as (S;F1; T1;R1) � (S;F2; T2;R2) =(S;F 0; T1;R0), where F 0 = F1 � F2 and R0 = f(f; 
 : v) j f 0 2 F 0; (f 0; 
 : v) 2 Rg.For example, a set of do
uments whi
h have a term v1 and does not have the term v2 is�0>:v1(D)� �0>:v2(D).proje
tion �0: The proje
tion is de�ned as �0
1_���_
l(D) = (S;F ; T ;R0), where R0 =f(f; 
 : v) 2 R j f 2 F ^ (f ; 
1 : � _ � � � _ f ; 
l : �)g.aggregation �: Given a set of 
ategories and fun
tions T = (
1; � � � ; 
q; g1; � � � ; gq), the ag-gregation � is de�ned as �[T;0 
ount0℄(D) = (S 0;F 0; T 0;R0), where S 0 = (F 0; T 0), F 0 = 2F ,T 0 = (C0; <0T 0 ;>0T 0), C0 = C [ f0
ount0g, <0T 0=<T [f(0
ount0;>)g, >0T 0 = >T , F 0 =fGroup(
1 : v1; � � � ; 
q : vq) j (
1 : v1; � � � ; 
q : vq) 2 G(g1(
1))�� � ��G(gq(
q))^Group(
1 : v1; � � � ; 
q : vq) 6=;g, T 0 = (C0; <0), C0 = C0 [ f0
ount0g, <0=<T [f(0
ount0;>)g, R0 = R01 [ R02, R01 =f(f 0; 
0 : v0) j 9(
1 : v1; � � � ; 
q : vq) 2 G(g1(
1))�� � ��G(gq(
q)) (f 0 = Group(
1 : v1; � � � ; 
q : vq)^f 0 2 F 0^9k (
k : vk = 
0 : v0))g, andR02 = S(
1:v1;���;
q :vq)2G(g1(
1))�����G(gq(
q))f(s; 0
ount0 : jsj) js = Group(
1 : v1; � � � ; 
q : vq)^ s 6= ;g. (0
ount0;>) represents a partial relation 0
ount0 < >.For example, Table 1 shows the results for a query �[0protein0; g; 0
ount10℄(�00disease0:0diabetes0(D))for a set of biomedi
al do
uments. The results 
orrespond to a top N ranking for the tra-ditional multidimensional analysis. The result lists the names of proteins relevant to dia-betes. Table 2 shows the results for a query �[0
ompany0; 0GeneSymbol0; g1; g2; 0
ount20℄(D).If the result is analyzed for a set of patent do
uments, a strategist for a pharma
euti-
al 
ompany might be able to �nd asso
iations between 
ompanies and genes. A query�[0protein0; 0protein0; g1; g2; 0
ount30℄(D) may be useful to �nd intera
tions between proteins.It represents that we 
an sele
t the same 
ategories as 
ube's axes unlike the traditionalmultidimensional database. Table 1: Top N rankingprotein # of do
umentsFlavohemoprotein 347Lamin L 240Insulin 151nterferon gamma pre
ursor 97� � � � � �
Table 2: 2 Dimensional MapLEPR TM4SF2 INS ADAM2 � � �
ompany1 x11 x12 x13 x14 � � �
ompany2 x21 x22 x23 x24 � � �
ompany3 x31 x32 x33 x34 � � �� � � � � � � � � � � � � � � � � �By using above operators, we will show how 
ommon OLAP operators 
an be de�ned.roll-up & drill-down: In the traditional multidimensional database, there are two typesof rolling up operation, one is dimensional rolling up and the other is hierar
hi
al rollingup. For example, let S be the fa
t table S(produ
t; 
ity; time; sale), where sale is a mea-sure, and L(
ity; state; 
ountry) be one of the dimension tables. The dimensional rollingup is represented as produ
t;
ity�produ
t;
ity;SUM(sale)(S) in the 
ase of one dimension being



dropped, and 
ity�
ity;SUM(sale)(S) in the 
ase of two dimensions being dropped6 . The hi-erar
hi
al rolling up is represented as produ
t;state;time�produ
t;state;time;SUM(sale)(S 1
ity L).It is possible to de�ne more than 2k roll-up queries for the k dimensions of the traditionalmultidimensional database. In our 
ase, the dimensional rolling up 
orresponds to moving from�[
1; � � � ; 
q ; g1; � � � ; gq; 0
ount0℄(D) into �[
1; � � � ; 
h; 
h+2; � � � ; 
q ; g1; � � � ; gh; gh+2; � � � ; gq; 0
ount0℄(D)for the 
ase of one dimension being dropped, and the hierar
hi
al rolling up 
orresponds tomoving from �[
1; � � � ; 
q ; g(1)1 ; � � � ; g(1)q ;0 
ount0℄(D) to�[
1; � � � ; 
h; 
0h+1; 
h+2; � � � ; 
q; g(1)1 ; � � � ; g(1)h ; g(2)h+1; g(1)h+2; � � � ; g(1)q ; 0
ount0℄(D), where 
0h+1 2 pred(
h+1).sli
e & di
e: The sli
e operation performs a sele
tion on one dimension of the given
ube, resulting in a sub
ube, and the di
e operation de�nes a sub
ube by performing a sele
-tion on two or more dimension. For example, in the traditional multidimensional database,sli
e and di
e operations are represented as 
ity;time�
ity;time;SUM(sale)(�produ
t=p1(S)) andprodu
t;
ity;time�produ
t;
ity;time;SUM(sale)(�P (S)), where P = (produ
t 2 fp1; p2g and 
ity 2f
3; 
4g). In our 
ase, the sli
e is represented as �[T; 0
ount0℄(�0p(D)), and the di
e is repre-sented as �[T; 0
ount0℄(�0p1 or p2(�0p3 or p4(D))).pivot: The pivot operation is a visualization operation that rotates the data axes in view inorder to provide an alternative presentation of the data, whi
h 
orresponds to moving from�[
1; 
2; g1; g2;0 
ount0℄ into �[
2; 
1; g2; g1;0 
ount0℄.4 ImplementationA key strategy for speeding up 
ube view pro
essing for the traditional multidimensionaldatabase is to use pre-
omputed 
ube views. The pre-
omputation makes it possible forresponse times to queries potentially involving huge amounts of data to be fast enough toallow intera
tive data analysis in the traditional approa
hes. However, it is impossible to pre-
ompute or pre-aggregate in advan
e of re
eiving queries for all of the 
ombinations of valuesin our situation, be
ause the situation where ea
h do
ument has many values and there are alot of 
ategories is 
ombinatorially explosive. For example, the average number of annotatedterms whi
h ea
h do
uments have is about 380 and the number of 
ategories is more than240,000 for the data used in Se
tion 5.In this se
tion, we design table s
hemas and data stru
tures to a
hieve query responsetimes that are as fast as possible. Sin
e a hierar
hy for analyzed do
uments 
onstitutes atransitive anti-
losed digraph rather than a set of balan
ed and non-ragged trees, it 
annot bestored in a star s
hema or snow
ake s
hema. For 
omputation eÆ
ien
y in aggregating thedistributions of do
uments, the hierar
hy is indexed as follows. A depth �rst sear
h traversesthe hierar
hy from root 
ategory 
root whose type Type(
root) is equal to >T assigning apreorder, postorder, and depth to ea
h 
ategory, and it ba
ktra
ks if and only if it rea
hesleaf nodes. This means that it does not ba
ktra
k when it rea
hes any internal nodes whi
hit has already visited.The assigned preorders and postorders make it possible to handle an
estor-des
endent
ontainment in the hierar
hy [7℄. In other words, it 
an 
he
k the 
ontainment by assigninga preorder and a postorder to ea
h node in a hierar
hy and 
omparing the numbers assignedto the two nodes. If a node A is an an
estor of a node B,A0s preorder < B0s preorder &A0s postorder > B0s postorder: (1)For example, the hierar
hy in Figure 6 (a) is traversed to return the tree shown in Figure 6 (b)where ea
h node has a 
ategory, an assigned preorder, postorder, and depth. In this �gure, alldes
endents of a 
ategory 
2 have preorders whi
h are greater than the preorder of 
2 and havepostorders whi
h are less than the postorder of 
2. We 
all a tree in Figure 6 (b) a traversedtree.We de�ne two tables, CATEGORY H and KEYWORD V , to store the traversed tree and fa
t-hierar
hy relations asCATEGORY (CATEGORYNAME CHARCTER,6 a�a;sum(b) represents an SQL query \SELECT a, SUM(b) FROM ... GROUP BY a".



PATH CHARCTER,PREORDER1 INTEGER,PREORDER2 INTEGER,PARENT INTEGER), andKEYWORD (ID INTEGER,PREORDER INTEGER,VALUE CHARCTER),respe
tively. Ea
h re
ord in the table H 
orresponds to a node in the traversed tree andCATEGORYNAME, PATH, PREORDER1, PREORDER2, and PARENT in the table H are a name of the
ategory, a path from root node to the 
orresponding node, a preorder, a value for a postorderplus a depth, and a preorder of its parent of the 
orresponding node. The reason why we usePREORDER2 instead of the postorder is that we 
an 
he
k an
estor-des
endent 
ontainment inthe hierar
hy as A0s preorder1 (= A0s preorder) < B0s preorder� A0s preorder2 = A0s postorder+A0s depth (2)instead of using 
ondition (1), and it 
an redu
e the spa
e to store the tables and theirindexes. Ea
h re
ord in the table V 
orresponds to (f; 
 : v) in R, and ID, PREORDER, andVALUE in the table V are a do
ument ID f , a preorder of the 
ategory 
, and a value v indom(
), respe
tively.By using these tables, we 
an implement the operations introdu
ed in Se
tion 3.2 as fol-lows. In the following de�nitions, 
 is provided as input. Although there are multiple re
ordswhose values of CATEGORYNAME in the table H are 
, a re
ord arbitrarily 
hosen from the re
ordsis used in the following operations. In other words, \�P (H)" for P = (
ategoryname = 
) isrepla
ed into \�P (H) FETCH FIRST 1 ROWS ONLY", denoted as H
. The 
hoi
e has no in
u-en
e on its result.sele
tion �0: The sele
tion is de�ned as �0
:v(D) = (H;V 0), where V 0 = �id in I(V ),I = �id(V 1P H
) and P = (preorder1 � preorder � preorder2 and value = v). Al-though this 
al
ulation needs to join H with V , this 
al
ulation runs as fast as the sele
tionof V , sin
e only one re
ord is returned from H
.di�eren
e �: The di�eren
e is de�ned as (H;V1)�(H;V2) = (H;V 0), where V 0 = �id in (�id(V1)��id(V2))(V1).proje
tion �0: The proje
tion is de�ned as �0
(D) = (H;V 0), where V 0 = �id;preorder;value(V 1PH
) and P = (preorder1 � preorder � preorder2).aggregation �: The aggregation is de�ned as �[(
1; � � � ; 
q ; g1; � � � ; gq);0 
ount0℄(D)= value1;���;valueq�value1;���;valueq ;
ount(distin
t id)(X), where X = g1(
1) 1id=id � � � 1id=idgq(
q). The user-de�ned fun
tions g(1)(
), g(2)(
), and g(3)(
) are de�ned as g(1)(
) = �id;preorder;value(V 1PH
), where P = (preorder1 = preorder), g(2)(
) = �id;H:preorder1;H:
ategoryname((H
 1P1H) 1P2 V ), where P1 = (H:parent = H
:preorder1) and P2 = (H:preorder1 � V:preorder �H:preorder2), and g(3)(
) = �id;preorder;value(V 1P H
), where P = (preorder1 � preorder �preorder2).
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5 Experiments5.1 Data and Prepro
essFor testing, we used biomedi
al do
uments from MEDLINE7 . Life s
ien
e resear
hers typi-
ally use MEDLINE, a bibliography database that 
overs the biomedi
al area. MEDLINE isadministered by the National Center for Biote
hnology Information (NCBI)8 of the UnitedStates National Library of Medi
ine (NLM)9 . It 
ontains approximately 13 million biomedi-
al 
itations, dating from the mid-1960s up to the present time. Citations in MEDLINE are
olle
ted from over 4,600 biomedi
al journals published worldwide. Biomedi
al 
itations inMEDLINE are available to the general publi
 at the PubMed10 . We sele
ted 503,989 ab-stra
ts from Medline whi
h 
ontain stru
tured information su
h as authors and Mesh Termsand unstru
tured information su
h as titles and abstra
ts.To prepare a fa
t-hierar
hy relation from the do
uments, the do
uments written in Englishare parsed by CCAT [5℄, a shallow synta
ti
 parser. Be
ause this is a general-purpose parserthat has not been trained for biomedi
al do
uments, it is diÆ
ult to obtain optimized resultsby parsing do
uments from various domains . We solve this problem by �rst annotating thetext with domain di
tionaries as shown in Figure 7. The annotations fa
ilitate the parsing ofthe do
uments even when the parser has not been spe
i�
ally trained for the domains.In the �rst step of the prepro
essing, the term annotator �nds words in the input text usingthe term di
tionary and identi�es these words with their 
anoni
al forms. The term di
tionary
ontains pairs of surfa
e forms and 
anoni
al forms. Fox example, most of the te
hni
al termsin the medi
al domain are 
ompound words. The 
ompound noun \repetitive sequen
e-basedpolymerase 
hain rea
tion" 
onsists of an adje
tive (repetitive), a past parti
iple of a verb(sequen
e-based) and three nouns (polymerase, 
hain, rea
tion). Thus, biomedi
al terms tendto 
onsist of a 
ombination of numerals, symbols, and verbs, making it very diÆ
ult to �ndterm boundaries. In addition, there 
an be multiple expressions that are synonymous witha parti
ular te
hni
al term. These 
an arise from abbreviations or a
ronyms as well as fromspelling variations. If these variations are re
ognized as di�erent entities, it 
an often 
auseproblems for aggregating do
uments. For instan
e, \DNA" and \deoxyribonu
lei
 a
id" aresynonyms. The di
tionary 
ontains spelling and abbreviation variants and their 
anoni
alforms. By redu
ing these variants to a single 
anoni
al form, we treat them as the sameentity.In the se
ond step, the text annotated with a te
hni
al term di
tionary is passed to thesynta
ti
 parser. The parser outputs segments of phrases labeled with their synta
ti
 roles,for example NP (noun phrase) or VG (verb group). In the third step, the 
ategory annotatorassigns 
ategories to the terms in these segments and phrases. The 
ategory di
tionary 
onsistsof a set of 
anoni
al forms and their 
ategories, whi
h also indi
ate the node labels in the
ategory hierar
hy (ontology). A 
ategory assigned to ea
h term is an internal node or leaf inthe hierar
hy.Figure 8 shows an example of the prepro
essing of a senten
e. When \Repetitive sequen
e-based polymerase 
hain rea
tion e�e
ts deoxyribonu
lei
 a
ids" is given as input, an anno-tator assigns \DNA" as 
anoni
al and \proper noun" as part-of-spee
h to \deoxyribonu
lei
a
ids". After parsing the annotated text, 
ategories are assigned to ea
h term. In Figure 8,
Text 
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Term Annotator
(Term boundary identification, 

synonym identification)

Step 2 

Parser
Step 3

Category Annotator

Data &

Indexes 

for OLAP

Terminology
Hierarchy

(Ontology) Figure 7: Prepro
essing Do
uments7 MEDLINE: http://www.nlm.nih.gov/databases/databases medline.html8 NCBI: http://www.n
bi.nlm.nih.gov9 NLM: http://www.nlm.nih.gov/10 PubMed http://www.n
bi.nlm.nih.gov/entrez



\.A.1.2.23.4" represents a path from a root node to the 
orresponding node in a 
ategoryhierar
hy.After prepro
essing the 503,989 abstra
ts, the numbers of (f; 
 : v), re
ords in the tableH, and di�erent terms were 193185919, 340154, and 13640593, respe
tively. The 
ategories
ontain 
ategories for publi
ation dates, authors, aÆliations for the authors, and so on.5.2 Implementation using a Do
ument-Term MatrixTo 
ompare with the method mentioned in Se
tion 4, we used a straightforward method with aDo
ument-Term Matrix (DTM) as a proprietary method. In general, a proprietary algorithmand index 
an 
ompute faster than a method with a persistent store, e.g., the method inSe
tion 4, although it is more diÆ
ult to add some fun
tions into the proprietary methodand to integrate the proprietary method with other systems 
ompared to the persistent-storemethod. This subse
tion explains the method using the proprietary algorithm and index, andthe next subse
tion will explain that the method using the persistent store is 
omparable tothe proprietary method.This subse
tion fo
uses how to 
ompute �[
; g; 
ount℄(�0P (D)) by a DTM using a simpleexample, be
ause this is the most fundamental method. Let the sets of terms and do
umentsbe T = ft1; t2; : : : ; tng and D = fd1; d2; : : : ; dmg, respe
tively. A DTM is a matrixM = (mij)of m�n, and an elementsmij represents how many times the term tj appears in the do
umentdi. Although storing the whole matrix requires a lot of memory, it 
an be 
ompressed bystoring a pair for ea
h element that is not zero and its 
orresponding index in ea
h row or
olumn, be
ause the matrix is very sparse.As mentioned in the previous se
tion, sin
e some 
ategories are assigned to ea
h term, weuse a modi�ed DTM. Rows in our DTM 
orrespond to a set of do
uments D = fd1; : : : ; dmgsimilar to the 
onventional DTM, and 
olumns 
orrespond to a set of pairs of 
ategories andterms P = f
j : vjk j vjk 2 dom(
j); j = 1; � � � ; ng [ f
j : � j j = 1; � � � ; ng. The value 
j : � isused to fa
ilitate aggregating the number of do
uments for ea
h sub
ategory, and an elementfor di and 
j : � is not zero when di ; 
j : �.Figure 9 presents how the method using DTM 
omputes the results for �[
3; g(1);0 
ount0℄(�0
1:v11(D)),when a user has spe
i�ed the 
ategory 
3 after narrowing down to the do
uments 
ontain-ing the term v11 whose 
ategory is 
1. First, the method narrows the sear
h down to thedo
ument set fd2; d6; d10g 
ontaining (
1 : v11) (1). In parallel with this Pro
ess 1, a set ofterms f
3 : v31; 
3 : v32; 
3 : v33; 
3 : v34; 
3 : v35g whose 
ategories are 
3 is output (2). AfterPro
esses 1 and 2, the distribution of the do
uments for the terms appearing in the do
umentsfd2; d6; d10g is returned as f(
3 : v31) : 2; (
3 : v35) : 1g (3). Pro
ess 3 requires mu
h more 
om-putation time than Pro
esses 1 and 2. For example, when the user sele
ts a \
ommonnoun"
ategory, Pro
ess 2 returns 340,154 terms for the dataset used in the experiments des
ribedin Se
tion 5.3.When the user spe
i�ed a 
ategory whi
h is an internal node in the 
ategory tree, it also
omputes the distribution of the do
uments for ea
h sub
ategory of the spe
i�ed 
ategory,whi
h 
orresponds to �[
3; g(2);0 
ount0℄(�0P (D)). In this 
ase, a set of 
ategories f
03 : � j 
03 2
Repetitive sequence-based polymerase chain reaction effects deoxyribonucleic acids. 

deoxyribonucleic acidsRepetitive sequence-based polymerase chain reaction effects .

repetitive sequence-based polymerase chain reaction DNAProper Noun Proper Noun

Input:

Step 1:

deoxyribonucleic acidsRepetitive sequence-based polymerase chain reaction effects

repetitive sequence-based polymerase chain reaction
DNA

.propernoun
.propernoun

.A.1.2.23.4

Step 3 :

Output: repetitive sequence-based polymerase chain reaction

DNA.A.1.2.23.4

.propernoun

effect

.verb

.verb

DNA.propernounFigure 8: Example of the Prepro
essing
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(
3)g is returned in Pro
ess 2.5.3 Experimental ComparisonThe method in Se
tion 4 was implemented in Java. It generates SQL queries and a

esses arelational database via JDBC (Java Database Conne
tivity). The method in Se
tion 5.2 wasimplemented in C++ to 
ompare with the above method. For the evaluation experiments, anIBM IntelliStation with Windows XP was used, with an Opteron-2.2 GHz CPU and 2 GB ofmain memory installed. The eÆ
ien
y of our approa
h has been 
on�rmed with respe
t tothe 
omputation time.Figure 10 shows the results of the response time for a query �[
; g;0 
ount0℄(D) for all the340,154 
ategories. The DB and DTM in the �gure 
orrespond to implementations of themethods mentioned in Se
tion 4 and Se
tion 5.2, respe
tively. KW and SUB represents the
ases where g(1) and g(2) as g in �[
; g;0 
ount0℄(D) were used, respe
tively. \DTM SUB 1k"shows the results for 1,000 do
uments sampled randomly from all of the do
uments. Themethod of the DB does not 
ompute for the sampled do
uments but for all of the do
uments.Ea
h point (x; y) in the �gure means that the method returns the result within x se
onds fory% of all of the 340,154 
ategories. The ideal method is at the upper left 
orner. Although DB
ould return the result for about 89% of the 
ategories within 0.1 se
ond, DTM 
ould returnresults for about 60% of the 
ategories for 1,000 sampled do
uments, and for about 0.01% of
ategories for 10,000 sampled do
uments for KW. In addition, �[
; g;0 
ount0℄(�>:0
an
er0(D))was 
al
ulated for the various 
ategories, and the results for 11,914 do
uments 
ontaining\
an
er" were similar to Figure 10. As shown in Figure 10, DB is superior to DTM for mostof the 
ategories.
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umentsFrom another viewpoint of the empiri
al 8-se
ond rule saying that a webpage should be



loaded within 8 se
onds of a request, we 
an 
on
lude that the better method is the onewhose 
overage rate in about 10 se
onds is better. Figure 11 fo
uses from 5 se
onds to 10se
onds for the response time and from 99.97% to 100% for the 
overage rates for the result�[
; g;0 
ount0℄(�>:0
an
er0(D)). Figure 11 shows that DB is inferior to DTM within 8-se
ond
onstraint. Tables 3 and 4 summarize the experimental results for �[
; g;0 
ount0℄(D) and�[
; g;0 
ount0℄(�>:0
an
er0(D)), respe
tively. Although the average 
omputation time of DB islower than for DTM, the number of 
ategories for whi
h DB 
annot return within 10 se
ondsmay be
ome greater than for DTM.
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DB KW�The 
overage rate for \DB SUB" was about 0.99775.Figure 11: Experimental Results for Do
uments Containing \
an
er"Table 3: Comp. Times for All Do
umentsMethod avg. 
omp. 10 se
. 100 se
.time [se
℄ y zDTM KW 1k 0.143 1 0DTM KW 5k 0.284 26 0DTM KW 10k 0.526 16 0DTM KW 50k 4.293 75 0DB KW 0.185 10 0DTM SUB 1k 0.138 2 1DTM SUB 5k 0.176 2 0DTM SUB 10k 0.405 5 1DTM SUB 50k 2.091 33 0DB SUB 0.137 20 2y The number of 
ategories for whi
h the results is not returned within 10 se
onds. z Thenumber of 
ategories for whi
h the results is not returned within 100 se
onds.As shown in Table 4 and Figure 11, the averages of the 
omputation times for DB aresuperior to DTM. However, the number of 
ategories for whi
h DB 
annot respond within 10se
onds is greater than for DTM. When do
uments 
ontaining \
an
er" are sele
ted, an SQLquery to obtain V 0 for �0>:0
an
er0(D) = (H;V 0) is represented asV 0 = �id in I (V )= �id;V (b):preorder;V (b):value(V (a) 1P2 V (b)); (3)where I = �id(V 1P1 H
), P1 = (value = 0
an
er0), P2 = (V (a):id = V (b):id and V (a):value =0
an
er0), and V = V (a) = V (b). The query (3) is represented asSELECT Vb.ID, Vb.PREORDER, Vb.VALUE



Table 4: Computation Times for Do
uments Containing \
an
er"Method avg. 
omp. 10 se
. 100 se
.time [se
℄ y zDTM KW 1k 0.177 24 5DTM KW 5k 0.355 116 5DTM KW 10k 0.511 28 7DTM KW 12k 0.594 27 7DB KW 0.267 23 0DTM SUB 1k 0.195 13 1DTM SUB 5k 0.352 65 0DTM SUB 10k 0.484 18 1DTM SUB 12k 0.534 24 2DB SUB 0.413 706 5FROM V AS Va, V AS VbWHERE Va.ID=Vb.ID AND Va.VALUE='
an
er'.The reason why DB requires so mu
h 
omputation time for 
ertain 
ategories is the self-joinof the table KEYWORD V whi
h 
ontains 193,185,919 re
ords. Therefore, we divided the tableinto multiple tables as follows. Let id(V ) be a fun
tion whi
h returns a set of do
umentIDs in a table V . We divide V into multiple tables Vi whi
h satis�es id(V ) = Si id(Vi) andid(Vi) \ id(Vj) = ; for i 6= j. Sin
e the SQL query (3) 
ontains V (a):id = V (b):id in itsWHERE phase, the following SQL query 
an avoid joining tables that do not 
ontain thesame do
uments IDs. �[
; g(1);0 
ount0℄(�>:0
an
er0(D))= value�value;sum(
ount)([i Ri); (4)where Ri = value�value;
ount(distin
t id) 
ount(V 0i ),S represents UNION ALL operation, and ea
hV 0i is 
al
ulated by the SQL query (3). The SQL query (4) is represented asSELECT VALUE, SUM(COUNT)FROM (SELECT Vb.VALUE, COUNT(DISTINCT Vb.ID)FROM V_0 AS Va, V_0 AS VbWHERE Vb.PREORDER=pre ANDVa.ID=Vb.ID AND Va.VALUE='
an
er'GROUP BY VALUEUNION ALL...UNION ALLSELECT Vb.VALUE, COUNT(DISTINCT Vb.ID)FROM V_k AS Va, V_k AS VbWHERE Vb.PREORDER=pre ANDVa.ID=Vb.ID AND Va.VALUE='
an
er'GROUP BY VALUE) AGROUP BY VALUE,where pre is a preorder of 
.Figure 12 shows the experimental results when we 
ompared the aggregation with KEYWORDdivided into 10 tables with DTM and the aggregation using a single table for KEYWORD. Bydividing the table, the 
overage rate within 10 se
onds rises from 99.993% to 99.999% forKW, and from 99.79% to 99.93% for SUB. Although these experiments were run with asingle 
omputer, we 
an easily run on multiple 
omputers, be
ause su
h 
ommer
ial databasesystems support parallelization.
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Figure 13: Average Computation Time for the Number of Do
umentsFigure 13 shows the average 
omputation time for the number of do
uments for all of the
ategories. The 
omputation time is observed to be proportional to the number of do
uments.The high s
alability of our method has been 
on�rmed for the amount of data.Table 5 shows the 
omputation times for �[
; g;0 
ount0℄(�>:0
an
er0(D)), where ea
h se-le
ted 
ategory has many di�erent terms in its domain dom(
). This shows that the proposedmethod 
an more qui
kly 
ompute the results for a 
ategory 
ompared to the 
onventionalmethod.6 Dis
ussionA top N ranking query often returns a trivial result whi
h 
ontains terms frequently appearingin the do
uments. To measure 
hara
teristi
 terms, the following relative frequen
y is used.This measure 
ompares the 
urrent do
ument subset to the initial do
ument set. Assume Dis the initial do
ument set. A sele
tion operation due to query 
 : v returns Ds. The relativefrequen
y for a term pjk = (
j : vjk) in the do
ument set Ds is 
al
ulated asrelative frequen
y(pjk; Ds) = 
(pjk ;Ds)jDsj
(pjk ;D)jDj ;where 
(pjk; D) is the number of do
uments that 
ontain the term pjk in the set D. Forexample in Figure 9 in Se
tion 5.2, relative frequen
y((
3 : v31); Ds) is 23410 = 53 , where Ds isfd2; d6; d10g.It is very 
riti
al to a
hieve query response times that are as fast as possible to analysisintera
tively a huge mount of text data. A key strategy for speeding up to aggregate the data



Table 5: Computation Times for Categories to whi
h Many Di�erent TermsBelong
ategory # of di�erent terms DTM KW 5k DTM KW 12k DB KW.
ommonnoun 340,154 231.2 se
. 238.7 se
. 53.0 se
..propernoun 7,903 11.8 se
. 10.8 se
. 2.8 se
..verb 32,826 73.9 se
. 74.4 se
. 9.7 se
..adj 23,629 61.6 se
. 62.4 se
. 7.2 se
..rel vn 1,337,891 171.3 se
. 177.7 se
. 7.6 se
..rel nv 601,256 85.7 se
. 85.3 se
. 3.6 se
..rel vnn 5,439,810 145.6 se
. 162.9 se
. 9.8 se
..rel nvn 2,294,012 99.3 se
. 101.2 se
. 4.4 se
..rel nnv 1,812,501 90.7 se
. 89.5 se
. 3.8 se
..aÆliation 282,729 53.7 se
. 55.3 se
. 3.2 se
..pnsubstan
e 48,512 66.2 se
. 68.0 se
. 4.3 se
..majormesh 89,275 83.6 se
. 85.1 se
. 3.1 se
..minormesh 111,761 126.2 se
. 128.5 se
. 7.8 se
..
hemi
al 10,146 17.9 se
. 18.2 se
. 3.1 se
..genesymbol 15,310 48.1 se
. 48.8 se
. 7.3 se
..protein 15,562 57.1 se
. 58.2 se
. 6.7 se
..biomedi
alterms 91,670 133.7 se
. 137.8 se
. 21.1 se
.is to use indexing te
hnology. As mentioned in Se
tion 4, we use the preorders and postordersto 
he
k an
estor-des
endent 
ontainment in a 
ategory hierar
hy. If we do not use preordersand postorders in a traversed tree, we need to join the table CATEGORY n times to 
he
k wherea node A is an an
estor of a node B, where n is the length of a path from the A to theB. However, we do not need any join operations to an
estor-des
endent 
ontainment in thehierar
hy.The method to index the tree was proposed in 1982, and it re
ently draws attention as themethod to index XML (eXtensible Markup Language) database and to map XML data into therelational database [9℄, sin
e ea
h XML do
ument is modeled as a DOM (Do
ument Obje
tModel) tree. Several Methods su
h as pre�x label [6℄, Dewey order [23℄, prime label [24℄,VLEI 
ode [12℄, embedding into a k-ary tree [13℄ are used to index XML. A disadvantage ofthe methods su
h as preorder-postorder method and prime label is to need to re-assignment ofpreorders and postorders of nodes when inserting some nodes into a tree. Sin
e ea
h node hasthe same label as a pre�x of its 
hildren in the methods su
h as pre�x label and Dewey order,they do not need to reassign the labels when inserting some nodes. However, be
ause theyneed to 
ompute fun
tions to pro
ess string to 
he
k an
estor-des
endent 
ontainment, theyneed more 
omputations time than the preorder-postorder method. Sin
e we assume that a
ategory hierar
hy is rarely updated and re
ords in the table KEYWORD V are often inserted,we used the preorder-postorder method to index the 
ategory hierar
hy.Our data representation is similar to the bag-of-words approa
h [14℄, although ea
h termis assigned 
ategories. In the bag-of-words approa
h, the following senten
es are treated asthe same 
ontent,:� \(a) X did fail",� \(b) X did not fail", and� \(
) Did X fail?" [17℄.Besides the negation and interrogative mood, some auxiliary verbs su
h as \
an" and someverbs su
h as \want" often indi
ate the author's 
ommuni
ative intentions. It is importantto asso
iate 
ommuni
ative intentions with predi
ates by analyzing grammati
al features andlexi
al information. \fail" in the previous examples (a) to (
) are assigned 
ategories andrestored in R as (a) 
omplaint:fail, (b) 
ommendation:not fail, and (
) question:fail. These



extra
tions are instrumental in fa
ilitating problem dete
tion and workload redu
tion foranalysts at 
ustomer help 
enters.Some papers su
h as [15℄ and [16℄ proposed OLAP systems to analyze a set of do
uments.The following MDX (Multi-Dimensional eXpression) query whi
h was used in [15℄ �nds all thedo
uments whi
h 
ontain a term \forests" and are published in New York in the �rst quarterof 1998.SELECT not empty [Do
Id℄.members on rows,{[Measure℄.[Tf℄℄ on 
olumnsFROM do
InfoWHERE ([Term℄.[forest℄,[1998℄[quarter 1℄,[lo
ation℄.[New York℄)In the query, [Term℄.[forest℄ means that a depth of a hierar
hy in a TERM dimension is 2,and term \forests" is a 
hild node of \TERM" 
orresponding to > in the TERM dimension.Hierar
hies that the existing OLAP systems for texts assume is so simple that it is diÆ
ultto integrate the hierar
hies with a 
omplex ontology with a huge set of nodes.Other papers proposed an OLAP system to analyze a set of do
uments [22, 21℄. Sin
e asales written in multiple do
uments (newspapers) would be a fa
t in the papers, operationsin the system is similar to the 
onventional OLAP system for stru
tured data. An exampleoperation in the system is to analyze the average sales per produ
t and year. In our 
ase,sin
e a do
ument would be a fa
t, we 
an �nd a 
hange in the number of do
uments withtime. For example, in a 
all 
enter in a 
ompany, 
all takers make reports of ea
h 
all bytyping in 
ustomer information su
h as name and phone number, sele
ting 
all 
ategoriessu
h as \te
hni
al QA" and typing in brief des
riptions of questions or messages from the
ustomer and brief des
riptions of answers and/or a
tions taken. The brief des
riptions arewrittin in natural language. The manager of the 
all 
enter wants to improve produ
tivity,redu
e 
ost, improve 
ustomer satisfa
tion, et
. For example, in a large number of do
umentsrelated to 
ustomers' 
alls, we want to �nd what kinds of topi
s have re
ently been in
reasinglymentioned and whi
h produ
t is asso
iated with spe
i�
 topi
s, so that we 
an take appropriatea
tions for the improvement of 
all 
enter produ
tivity and produ
t quality, or 
reate a FAQ(frequently asked question) database.7 Con
lusionIn this paper, we proposed a data model, and a relational algebra to integrate ontologieswith OLAP systems to analyze a huge set of textual do
uments. The proposed methodwas implemented with a persistent store using preorders and postorders in a hierar
hy. TheeÆ
ien
y of our approa
h has been 
on�rmed with respe
t to the 
omputation time.Referen
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