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1 Introduction

Since many of business intelligence applications started to incorporate unstructured (primarily
textual) information for more context-oriented analysis and decision-making [4], database
technology has been seriously challenged to ingest, map, store, and access such text-originated
information along with the structured information in a way that two types of information can
mutually enhance information discovery and analysis capability. The most critical problems is
that most of semantics underlying the unstructured information (such as ontological hierarchy,
synonymous and antonymous relationship) cannot be effectively managed by conventional
database systems. Another significant problem is that a rigid schematic representation (and
associated queries and analytic processing) of unstructured information often suffer frequent
modifications due to updates to dictionary and ontology for adequately categorize words,
phrases, and entities included and described in the unstructured information. Therefore, it is
very important to propose a more flexible representation, which reduces the cost and workload
of frequent rebuild and re-population of the database schema.

The multidimensional database technology has been considered for the interactive analysis
of large amounts of data for decision making purposes [20, 11, 1, 2, 8, 10]. Multidimensional
data models categorize data either as facts with associated numerical measures or as dimen-
sions that characterize the facts. In a retail business, for example, a purchase transaction
would be a fact and the purchase amount and price would be measures, and the type of
purchased product, the purchase time and location would be dimensions. Queries for Online
Analytical Processing (OLAP) aggregate measures over a range of dimensional values to pro-
vide results such as the total sales per month of a given product, leading to overall trends.
An important feature of the multidimensional data model is to use hierarchical dimensions
to provide as much context as possible for the facts. Dimensions are used for selecting and
aggregating data at the desired level of detail. Most of traditional multidimensional databases
assume that the dimensional hierarchies are balanced and non-ragged trees.

The star and snowflake schemas which are representative schemas for the multidimensional
data model store data in fact tables and dimension tables. A fact table holds one row for each
fact in the database and it has a column for each measure, containing the measured value for
the particular fact, as well as a column for each dimension that contains a foreign key referring
to a dimension table for the particular dimension.

When analyzing unstructured information in a multidimensional data model, a document
would be typically represented as a fact, and categories of keywords, such as protein, gene,
or disease in the lifescience domain, would be selected as axis for the interactive analysis as
shown in Figure 1. Each cell of the cube in the figure stores the number of the corresponding
documents. Operations, such as drill down, roll up, slice, dice, pivoting or drill through, are
available for analyzing/aggregating large amounts of documents and their contextual infor-
mation to obtain insights. It is often very difficult, however, to define a set of dimensions and
their hierarchies for a huge set of keywords such as protein name, gene names' . To design a
hierarchy used in the online analytical processing, we use ontologies such as Unified Medical
Language System (UMLS)?> and the Gene Ontology (GO)® , which is a kind of a directed
acyclic graph, rather than a set of balanced and non-ragged trees. When we assume that each
node of the hierarchy corresponds to a dimension, many missing values and a set of multiple
values for the node could possibly be introduced. In addition, because the number of nodes in
the hierarchy becomes very large and a complex relationship among the nodes exists, we can-
not store the data in the star schema and efficiently aggregate the data within the hierarchy
under a straightforward implementation.

In this paper, we propose a data representation, and algebraic operations to integrate
a multidimensional model with ontologies to analyze a huge set of textual documents. This
paper describes

e how we design the data representation and its algebraic operations to realize multidi-
mensional model and to integrate with ontologies,

! The number of distinct keywords is 13,640,593.
? UMLS: http://umlsinfo.nlm.nih.gov
8 GO: http://www.geneontology.org



disea: ea;
gene <>
—

disease function of protein

dis
wn
gen
protein \
protein|

disease

gene

Drill through ﬁ
[ — L II
text
"V

Figure 1: Operations for a Multidimensional Database

e how we store very high dimensional data from text documents in a relational database,

e how we efficiently aggregate the distributions of documents for each cell in the cube
view, and

e how we can get sufficient performance to provide user interactivity.

The rest of this paper is organized as follows. Section 2 addresses a hierarchy and an on-
tology, and Section 3 defines our data representation and its algebraic operations. In Section 4,
we introduce our schemas to efficiently compute the distributions and their implementations.
Section 5 presents experimental results using about 500,000 journal abstracts, and Section 6
discusses related works. Finally, Section 7 concludes this paper.

2 Hierarchy and Ontology

In this section, we give formal definitions of a hierarchy and an ontology according to [3]. If
S is a nonempty set, and <C S x S, then (S, <) is an ordering? . If z < z for z € S, then S
is reflexive. If r < yandy <z —- x < zfor z, y, z € S, then S is transitive. If z < y and
y<z—z=yforx, y€S, then S is anti-symmetric. (S, <) is a partial ordering if S is a
reflexive, transitive, and anti-symmetric binary relation on S.

Definition 1 (better): Let (S, <1) and (S, <2) be two orderings. We say (S, <1) is better
than (S,<.) iff Vz,y € S (r <1 y = = <> y). In addition, we say that (S, <) is strictly
better than (S, <2) iff (S, <1) is better than (S, <2) and (5, <2) is not better than (S, <i).

Definition 2 (hierarchy): Let (S, <) be a partial ordering. A hierarchy of S is an ordering
(S, <) such that

1. (S, <) is better than (S, <),
2. (S, <) is the reflexive, transitive closure of (S, <), and

3. there is no other ordering (S, C) satisfying the preceding two conditions such that (S, C)
is strictly better than (S, <).

Definition 3 (ontology): Suppose X is some finite set of strings and S is some set. An ontology
w.r.t. ¥ is a partial mapping O from ¥ to hierarchies for S.

For example, when S is given as {tire, car, hubcap}, where tire is a part of car, hubcap is a
part of car, and hubcap is a part of a tire. In addition, everything is a part of itself. For the set
S, a partial order is defined as {(tire, tire), (car, car), (hubcap, hubcap), (tire, car), (hubcap, car),
(hubcap, tire)}, and only one hierarchy is defined as {(tire, car), (hubcap, tire)}, as shown in
Figure 2.

4 This paper uses < to represent a direct relation between two elements in the set S, <*
to represent its transitive closure, and <™ to represent its transitive closure or represent that
the elements are equal.
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Figure 2: Examples of a Partial Order and a Hierarchy
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Figure 3: Taxonomy of Hierarchy

Hierarchies can be classified according to their generality as shown in Figure 3 [18].
DAG: Directed acyclic graph (DAG) which is a directed graph with no directed cycles is the
general class for the taxonomy. The hierarchy introduced above to define the ontology is a
proper subclass of this class.
transitive anti-closed digraph: The transitive closure can be constructed as follows. If
there is a path from node A to node B of length 2 or more, then add an edge from A to B.
On the other hand, the anti-closure can be produced as follows. If there are an edge of length
1 and a path from node A to node B of length 2 or more, then remove the path of length 1
from A to B. The hierarchy defined above is in this class.
tree: A treeis a DAG where each node can only have one parent, except for one node which
has no parents and which is called the root.
balanced tree: An unbalanced hierarchy with levels that have a consistent parent-child
relationship but have a logically inconsistent levels. The hierarchy branches also can have in-
consistent depths. For example, an unbalanced hierarchy can represent an organization chart.
Figure 4 (a) shows a chief executive officer (CEO) on the top level of the hierarchy and at
least two of the people that might branch off below including the chief operating officer and
the executive secretary. The chief operating officer has more people branching off also, but the
executive secretary does not. The parent-child relationships on both branches of the hierarchy
are consistent. However, the levels of both branches are not logical equivalents. An executive
secretary is not the logical equivalent of a chief operating officer® .
non-ragged tree: A ragged hierarchy in which each level has a consistent meaning, but the
branches have inconsistent depths because at least one member attribute in a branch level is
unpopulated. A ragged hierarchy can represent a geographic hierarchy in which the meaning
of each level such as city or country is used consistently, but the depth of the hierarchy varies.
Figure 4 (b) shows a geographic hierarchy that has Continent, Country, State, and City levels
defined. One branch has North America as the Continent, United States as the Country, Cal-
ifornia as the State, and San Francisco as the City. However, the hierarchy becomes ragged
when some member does not have an entry at all of the levels. For example, another branch
has Europe as the Continent, Greece as the Country, and Athens as the City, but has no entry
for the State level because this level is not applicable to Greece for the business model in this

® http://publib.boulder.ibm.com /infocenter/db2luw/v8/index.jsp?topic=
/com.ibm.db2.udb.db2 olap.doc/cmdhierarchy.htm



example. In this example, the Greece and United States branches descend to different depths,
creating a ragged hierarchy.

balanced and non-ragged tree: Most of traditional multidimensional databases use hier-
archies of this class.

Chief executive officer All
Executive Chief operating Greece United States
secretary officer
Director of . California
communications \
Communication Athens San Francisco
specialist
(a) Unbalanced tree (b) Ragged tree

Figure 4: Examples of an Unbalanced Tree and a Ragged Tree

3 Data Object and Operations

In this section, we give formal definitions of our data representation and operations according
to [19].

3.1 Data Object

Given a hierarchy (or an ontology) (S, <), a fact schema is defined as S = (F,T), where F
is a fact type and 7 is a hierarchy type T = (C, <7, T7) which is strictly better than (S, <)
and the relations in (S, <) required for analyzing the documents are remaining in 7. The
hierarchy type is a three-tuple (C, <7, T), where C = {C|,| = o0,---,\} is a set of category
types of 7, and <7 is a partial order on the C’s, with T7 € C being the top element of the
ordering. The intuition is that the top element of the ordering logically contains all other
elements, that is VC, € C, ¢} <" Tr.

A hierarchy instance T of type T is a two-tuple T' = (C, <), where C is a set of categories
¢; such that Type(c;) = C|, and < is a partial order on C. Functions to give the set of
immediate predecessors and successors of a category ¢; are defined as pred : C — 2 and
succ : C — 29, That is, pred(c;) = {c' | ¢ > ¢;} and succ(c;) = {¢’ | ¢ < ¢;}, respectively.
Each category ¢ € C has an associated set dom(c) called its domain. The members of dom(c)
are called values of the category c. An element in dom(c) is represented as c : v. In addition,
a function below to give a set of values is also defined as below(c) = {dom(c') | ¢' <* c}.

For example, we have a hierarchy instance T', a part of which is depicted in Figure 5 (a).
Categories such as “Software”, “OS”, “Middleware”, “Application”, “Windows”, “Linux”,
“AIX” are contained in C. pred(OS) has only one element “Software”, and succ(OS) contains
{“Windows”, “Linux”, “AIX”}. dom(Windows) contains “Windows XP”, “Windows Me”,
“Windows 2000”7, and so on. below(All) contains all values of all categories.

Let FF = {f;,i=1,---,m} be a set of facts. A fact-hierarchy relationship between F and
Tis aset R = {(f,c:v)}, where f € F, ¢ € C, and v € dom(c). Thus, R links facts to
hierarchical values. We say that fact f is characterized by a hierarchical value ¢ : v, written
by f~c:v,if 3¢ € C((f,d :v') € RAC <* cAv=1").

Our data object is a four tuple D = {S,F, T, R}, where S = (F, T) is the fact schema, F'
is a set of facts where Type(f) = F, T = (C, <) is a hierarchy instance where Type(c;) = C
for ¢; € C and C| € C, and R is a set of fact-hierarchy relations such that (f,c:v) E R = f €
FA3dce C (v edom(c)).

For example, we have the hierarchy instance 7" and an analyzed document which is de-
picted in Figure 5 (b). F contains a set of document identifiers. Terms in the document whose



document id is 1 in Figure 5 are annotated in preprocessing, e.g., a category “windows” and
“workstation” are assigned to a term “windows 2000” and “IntelliStation 6217”, respectively,
and (1, windows : windows-2000) and (1, workstation : IntelliStation_6217) are stored in R.

Conceptually, R corresponds to a relation R’ C gdom(e1) s ... x 290m(en) which is not
a normalized relation. R’ corresponds to a fact table for a star schema, and each row and
column in R’ correspond to a document (fact) and a category (dimension value in the star
schema), respectively. Because the relation has many missing values and a set of values for
each attribute c;, the number of attributes in the relation becomes very large and a complex
relationship among the attributes (columns) exists, a naive method cannot store the data in
a relational database and efficiently aggregate the data along the hierarchy.

For example, a hierarchy instance 7' used in Section 5 is a transitive anti-closed digraph
which has more than 240,000 nodes (categories) and more than 340,000 edges and whose
depth is 24. If the hierarchy instance is a tree, V = E + 1, where V and E are the numbers of
categories and edges of the hierarchy, respectively. However, because the difference between
the numbers of the categories and edges in T is so large, the hierarchy instance T used in
Section 5 have a very complex relationship. In addition, about 36,400,000 elements in a
conceptual relation R’ have values. Since the number of attributes, n, for R’ is greater than
240,000 and R’ has more tuples than 500,000 in Section 5, most of elements in R’ are missing
values. Furthermore, more than 7,600,000 elements in R’ has a set of values, and dom(T) has
about 193,000,000 distinct values.

All
B DoclID:1
Software |
//"\ Is Windows 2000
supported for IntelliStation
OS  Middleware Application 62172
Windows Linux AIX (b) Document to be analyzed
Windows XP
Windows Me <— dom(windows)
Windows 2000
.... (1, windows:windows_2000)
(1, workstation:IntelliStation_6217)
(a) A part of hierarchy (c) Annotated word

Figure 5: Examples of a Hierarchy and Fact-Hierarchy Relations

The function g(c) is defined as a user-defined function to return a set of fact-hierarchy rela-
tions, and another function G(g(c)) is defined as G(g(c)) = {(c: v) | (f,c:v) € g(c)}. For k =
1,---,q and (cx : vr) € G(gr(ck)), we define a function Group as Group(ci : v, -+ ,¢q : Vg) =
{fIfEFA(ficr:v1) € giler) AN+ A(f,cq:vq) € gq(cq)}. These functions are used to
aggregate the distributions of documents for each keyword and category. For example, g(c) is
provided as the following functions (¥, g, ¢® (g € {g®,¢®,¢® ...},

First, (") (c) is defined as ¢V (c) = {(f,¢ :v') | (f,¢' :v') E RAc=c AV =dom(c)}.
This function is used to aggregate the distributions for keywords belonging to the specified
category c. The second function g®(c) is defined as g'® (¢) = {(f,c: ¢") | (f,¢' : v') € RAC" €
suce(c) Ac' <* " Av' € dom(c')}. This function is used to aggregate the distributions for
the immediate successors (subcategories) of the specified category c¢. The third one is defined
as g®(c) = {(f,d : V") | (f,d :v') € RAE <* ¢ Av' € dom(c')}. This function is used to
aggregate the distributions for keywords belonging to below(c). Users can define any additional
functions as required for the intended analysis of a set of documents.

3.2 Operations

This subsection defines operations on our data object.

selection ¢': Given a compound predicate P = p; or --- or p; where each atomic predicate p;
is represented in the form of ¢ : v or ¢ : *. The selection ¢ is defined as o (D) = (S, F,T,R'),
where F' = {f | f € FA(f~p1V---V f~p)},and R = {(f',c:v) € R| f € F'}. For



example, a set of documents having any keywords belonging to a category ’software’ is given

bY 07, frwarer: (D). Other examples 07, namersprrce (D) and ol (0%, (D)) represent a

set of documents having a term 'BIKE’ belonging to a category ’gene_name’ and a set of
documents having a term v; and v2 belonging to a category c, respectively.

difference —: Given two data objects D1 = (Seo, Foo, Too; Roo) and Do = (Se, Fe, Te, Re)

such that Soo = Sc¢ = S, the difference is defined as (S, Foo, Too, Reo) — (8, Fe, Te, Re) =

(8, F,Tw,R'), where F/ = F; — F», and R' = {(f,c:v) | f' € F', (f,c:v) € R}.

For example, a set of documents which have a term v; and does not have the term w2 is

0.0, (D) = 0", (D).

projection 7': The projection is defined as m,y..ve, (D) = (S,F,T,R'), where R' =
{(fc:v)ER|fEFAN(fr~ciixV---V o)}

aggregation a: Given a set of categories and functions T = (c1,---,¢q, 91, -, gq), the ag-

gregation « is defined as o[T, count’|(D) = (S',F',T',R'), where §' = (F,T"), F = €”,

T = (', <%, TH), ¢ = cu{ U}, <m=<7 UW(count', T)}, T = Ty, F' =

{Group(ci i v1,---,cq 1 vg) | (€11 01, -, Cq 2 vg) € Glgr(c1)) X+ - XG(gq(cq))AGroup(cs : v1, -+, cq : V) #
0y, T = (C', <), C" = C" U {'count'}, <'=<r U{(count’,T)}, " = R UR;, R} =

(3¢ 0) [ 3er s 01,000 0 04) € Glga(er)x- - -xGlgaleq)) (f = Group(er : v1, -+ cq : vg)A
feF ATk (cr:vpe=c :v))},and R, = U(qwl,___,cqmq)ec(gl(q))x___xc(gq(cq)){(s,'count' 2 s]) |

s = Group(ci : v1,--+,¢q : vg) As # 0}. (‘count’, T) represents a partial relation 'count’ < T.

For example, Table 1 shows the results for a query o[ protein’, g,’ count1'1(67 j;scase’ + diavetes' (D))

for a set of biomedical documents. The results correspond to a top N ranking for the tra-
ditional multidimensional analysis. The result lists the names of proteins relevant to dia-
betes. Table 2 shows the results for a query a[ company’,’ GeneSymbol', g1, g2, count2'|(D).
If the result is analyzed for a set of patent documents, a strategist for a pharmaceuti-
cal company might be able to find associations between companies and genes. A query
af' protein’,'protein’, g1, g2,  count3'](D) may be useful to find interactions between proteins.
It represents that we can select the same categories as cube’s axes unlike the traditional
multidimensional database.

Table 1: Top N ranking

| protein | # of documents |
Flavohemoprotein 347
Lamin L 240
Insulin 151
nterferon gamma precursor 97

Table 2: 2 Dimensional Map
| LEPR | TM4SF2 [ INS | ADAM2 | --- |

companyl T11 T12 T13 Tia
company?2 a1 T22 T23 T24
company3 31 32 33 T34

By using above operators, we will show how common OLAP operators can be defined.
roll-up & drill-down: In the traditional multidimensional database, there are two types
of rolling up operation, one is dimensional rolling up and the other is hierarchical rolling
up. For example, let S be the fact table S(product, city,time, sale), where sale is a mea-
sure, and L(city, state,country) be one of the dimension tables. The dimensional rolling
up is represented as product,cityXproduct,city,SUM(sale)(S) in the case of one dimension being



dropped, and city Xeity,sUM(sale)(S) in the case of two dimensions being dropped® . The hi-
erarchical rolling up is represented as product,state,timeXproduct,state,time,SUM(sale) (S Meity L).

It is possible to define more than 2* roll-up queries for the k dimensions of the traditional
multidimensional database. In our case, the dimensional rolling up corresponds to moving from

aler, ¢4, 91, 5 gq, count’](D) into alc1,  ++, Chy Chg2, 5 Cqs G1y " s Ghy Ght2y*** Gq, count’](D)
for the case of one dimension being dropped, and the hierarchical rolling up corresponds to
moving from afc1, -, cq, g\", -+, g8 count'](D) to

oz[(n, ©ty Ch, cﬁm, Ch42," ", Cq, gil), ce 791(11)7 gffll, 9,522, ) gcgl)y ’count'](D), where C;hLl € pred(ch+1).

slice & dice: The slice operation performs a selection on one dimension of the given
cube, resulting in a subcube, and the dice operation defines a subcube by performing a selec-
tion on two or more dimension. For example, in the traditional multidimensional database,
slice and dice operations are represented as city,timeXeity,time,SUM (sale)(Tproduct=p; (S)) and
product city,timeXproduct,city,time,SUM(sale) (0P (S)), where P = (product € {p1,p2} and city €
{e3,ca}). In our case, the slice is represented as [T, count’](c,, (D)), and the dice is repre-
sented as a[T, count'|(0,, or py(Ths or ps(D)))-

pivot: The pivot operation is a visualization operation that rotates the data axes in view in
order to provide an alternative presentation of the data, which corresponds to moving from
afe1, e2, g1, g2, count’] into afes, c1, g2, g1, count'].

4 Implementation

A key strategy for speeding up cube view processing for the traditional multidimensional
database is to use pre-computed cube views. The pre-computation makes it possible for
response times to queries potentially involving huge amounts of data to be fast enough to
allow interactive data analysis in the traditional approaches. However, it is impossible to pre-
compute or pre-aggregate in advance of receiving queries for all of the combinations of values
in our situation, because the situation where each document has many values and there are a
lot of categories is combinatorially explosive. For example, the average number of annotated
terms which each documents have is about 380 and the number of categories is more than
240,000 for the data used in Section 5.

In this section, we design table schemas and data structures to achieve query response
times that are as fast as possible. Since a hierarchy for analyzed documents constitutes a
transitive anti-closed digraph rather than a set of balanced and non-ragged trees, it cannot be
stored in a star schema or snowflake schema. For computation efficiency in aggregating the
distributions of documents, the hierarchy is indexed as follows. A depth first search traverses
the hierarchy from root category c.o.o: whose type Type(croot) is equal to T assigning a
preorder, postorder, and depth to each category, and it backtracks if and only if it reaches
leaf nodes. This means that it does not backtrack when it reaches any internal nodes which
it has already visited.

The assigned preorders and postorders make it possible to handle ancestor-descendent
containment in the hierarchy [7]. In other words, it can check the containment by assigning
a preorder and a postorder to each node in a hierarchy and comparing the numbers assigned
to the two nodes. If a node A is an ancestor of a node B,

A's preorder < B's preorder &
A's postorder > B's postorder. (1)

For example, the hierarchy in Figure 6 (a) is traversed to return the tree shown in Figure 6 (b)
where each node has a category, an assigned preorder, postorder, and depth. In this figure, all
descendents of a category c» have preorders which are greater than the preorder of c» and have
postorders which are less than the postorder of co. We call a tree in Figure 6 (b) a traversed
tree.

We define two tables, CATEGORY H and KEYWORD V, to store the traversed tree and fact-
hierarchy relations as
CATEGORY (CATEGORYNAME CHARCTER,

6 aXa,sum(b) Tepresents an SQL query “SELECT a, SUM(b) FROM ... GROUP BY a”.



PATH CHARCTER,

PREORDER1 INTEGER,
PREORDER2 INTEGER,
PARENT INTEGER), and
KEYWORD (ID INTEGER,
PREORDER  INTEGER,
VALUE CHARCTER),

respectively. Each record in the table H corresponds to a node in the traversed tree and
CATEGORYNAME, PATH, PREORDER1, PREORDER2, and PARENT in the table H are a name of the
category, a path from root node to the corresponding node, a preorder, a value for a postorder
plus a depth, and a preorder of its parent of the corresponding node. The reason why we use
PREORDER2 instead of the postorder is that we can check ancestor-descendent containment in
the hierarchy as

A's preorderl (= A's preorder) < B's preorder
< A's preorder2 = A's postorder + A's depth (2)

instead of using condition (1), and it can reduce the space to store the tables and their
indexes. Each record in the table V' corresponds to (f,c:v) in R, and ID, PREORDER, and
VALUE in the table V are a document ID f, a preorder of the category ¢, and a value v in
dom(c), respectively.

By using these tables, we can implement the operations introduced in Section 3.2 as fol-
lows. In the following definitions, c is provided as input. Although there are multiple records
whose values of CATEGORYNAME in the table H are ¢, a record arbitrarily chosen from the records
is used in the following operations. In other words, “op(H)” for P = (categoryname = c) is
replaced into “op(H) FETCH FIRST 1 ROWS ONLY”, denoted as H.. The choice has no influ-
ence on its result.
selection o': The selection is defined as o(.,(D) = (H,V'), where V' = 0,4 in 1(V),
I = mq(V Xp H.) and P = (preorderl < preorder < preorder2 and value = v). Al-
though this calculation needs to join H with V| this calculation runs as fast as the selection
of V, since only one record is returned from H..
difference —: The difference is defined as (H, V1)—(H,V2) = (H, V'), where V' = 054 in (r;50v1)—mi10(va)) (V1)-
projection 7': The projection is defined as 7. (D) = (H, V"), where V' = 4 preorder,vatue(V Xp
H.) and P = (preorderl < preorder < preorder?2).
aggregation a: The aggregation is defined as a(c1,--+,¢q, 91, +, gq), count'](D)
= waluer,walueg Xvaluer - valueg,count(distinct id)(X), where X = gi(c1) Wia=ia -+ Mig=ia
gq(cq). The user-defined functions g™ (c), g (c), and g® (¢) are defined as g™ (¢) = Tid preorder.vatue(V Xp
H.), where P = (preorderl = preorder), g 2)(c) = Tid,H.preorderl,H.categoryname((He Mp;
H) XMp, V), where P, = (H.parent = H..preorderl) and P> = (H.preorderl < V.preorder <
H.preorder2), and g(?’)(c) = Tid,preorder,value(V Xp H.), where P = (preorderl < preorder <
preorder2).

(a) hierarchy (b) traversed tree

Figure 6: A hierarchy and a Traversed Tree



5 Experiments

5.1 Data and Preprocess

For testing, we used biomedical documents from MEDLINE? . Life science researchers typi-
cally use MEDLINE, a bibliography database that covers the biomedical area. MEDLINE is
administered by the National Center for Biotechnology Information (NCBI)® of the United
States National Library of Medicine (NLM)? . It contains approximately 13 million biomedi-
cal citations, dating from the mid-1960s up to the present time. Citations in MEDLINE are
collected from over 4,600 biomedical journals published worldwide. Biomedical citations in
MEDLINE are available to the general public at the PubMed'® . We selected 503,989 ab-
stracts from Medline which contain structured information such as authors and Mesh Terms
and unstructured information such as titles and abstracts.

To prepare a fact-hierarchy relation from the documents, the documents written in English
are parsed by CCAT [5], a shallow syntactic parser. Because this is a general-purpose parser
that has not been trained for biomedical documents, it is difficult to obtain optimized results
by parsing documents from various domains . We solve this problem by first annotating the
text with domain dictionaries as shown in Figure 7. The annotations facilitate the parsing of
the documents even when the parser has not been specifically trained for the domains.

In the first step of the preprocessing, the term annotator finds words in the input text using
the term dictionary and identifies these words with their canonical forms. The term dictionary
contains pairs of surface forms and canonical forms. Fox example, most of the technical terms
in the medical domain are compound words. The compound noun “repetitive sequence-based
polymerase chain reaction” consists of an adjective (repetitive), a past participle of a verb
(sequence-based) and three nouns (polymerase, chain, reaction). Thus, biomedical terms tend
to consist of a combination of numerals, symbols, and verbs, making it very difficult to find
term boundaries. In addition, there can be multiple expressions that are synonymous with
a particular technical term. These can arise from abbreviations or acronyms as well as from
spelling variations. If these variations are recognized as different entities, it can often cause
problems for aggregating documents. For instance, “DNA” and “deoxyribonucleic acid” are
synonyms. The dictionary contains spelling and abbreviation variants and their canonical
forms. By reducing these variants to a single canonical form, we treat them as the same
entity.

In the second step, the text annotated with a technical term dictionary is passed to the
syntactic parser. The parser outputs segments of phrases labeled with their syntactic roles,
for example NP (noun phrase) or VG (verb group). In the third step, the category annotator
assigns categories to the terms in these segments and phrases. The category dictionary consists
of a set of canonical forms and their categories, which also indicate the node labels in the
category hierarchy (ontology). A category assigned to each term is an internal node or leaf in
the hierarchy.

Figure 8 shows an example of the preprocessing of a sentence. When “Repetitive sequence-
based polymerase chain reaction effects deoxyribonucleic acids” is given as input, an anno-
tator assigns “DNA” as canonical and “proper noun” as part-of-speech to “deoxyribonucleic
acids”. After parsing the annotated text, categories are assigned to each term. In Figure 8,

-5 Step 1 ———_—
Data &
Text Term Annotator Step 2 Step 3
(Term boundary identification, Parser Category Annotator Indexes

oo for OLAP
[S—
- Hierarchy
Terminology (Ontology)

Figure 7: Preprocessing Documents

" MEDLINE: http://www.nlm.nih.gov/databases/databases_medline.html
8 NCBI: http://www.ncbi.nlm.nih.gov

? NLM: http://www.nlm.nih.gov/

10 pubMed http://www.ncbi.nlm.nih.gov/entrez



“A.1.2.23.4” represents a path from a root node to the corresponding node in a category
hierarchy.

After preprocessing the 503,989 abstracts, the numbers of (f,c: v), records in the table
H, and different terms were 193185919, 340154, and 13640593, respectively. The categories
contain categories for publication dates, authors, affiliations for the authors, and so on.

5.2 Implementation using a Document-Term Matrix

To compare with the method mentioned in Section 4, we used a straightforward method with a
Document-Term Matrix (DTM) as a proprietary method. In general, a proprietary algorithm
and index can compute faster than a method with a persistent store, e.g., the method in
Section 4, although it is more difficult to add some functions into the proprietary method
and to integrate the proprietary method with other systems compared to the persistent-store
method. This subsection explains the method using the proprietary algorithm and index, and
the next subsection will explain that the method using the persistent store is comparable to
the proprietary method.

This subsection focuses how to compute «fc, g, count](c’p (D)) by a DTM using a simple
example, because this is the most fundamental method. Let the sets of terms and documents
be T = {t1,t2,...,tn} and D = {d1,d>,...,dn}, respectively. A DTM is a matrix M = (m;;)
of m xn, and an elements m;; represents how many times the term ¢; appears in the document
d;. Although storing the whole matrix requires a lot of memory, it can be compressed by
storing a pair for each element that is not zero and its corresponding index in each row or
column, because the matrix is very sparse.

As mentioned in the previous section, since some categories are assigned to each term, we
use a modified DTM. Rows in our DTM correspond to a set of documents D = {d,...,dm}
similar to the conventional DTM, and columns correspond to a set of pairs of categories and
terms P = {c; : vjr | vjx € dom(c;), j=1,---,n}U{c; :*%|j=1,---,n}. The value ¢; : * is
used to facilitate aggregating the number of documents for each subcategory, and an element
for d; and c; : * is not zero when d; ~ ¢; : *.

Figure 9 presents how the method using DTM computes the results for alcs, g'*) count’)(al, ..., (D)),
when a user has specified the category cs after narrowing down to the documents contain-
ing the term wvi; whose category is c¢i. First, the method narrows the search down to the
document set {d2,ds,d10} containing (c1 : v11) (1). In parallel with this Process 1, a set of
terms {cs : vs1,C3 : V32, C3 t Uss, C3 : Usa, C3 : Uss} whose categories are cz is output (2). After
Processes 1 and 2, the distribution of the documents for the terms appearing in the documents
{d2,ds,d10} is returned as {(c3 : v31) : 2, (c3 : v35) : 1} (3). Process 3 requires much more com-
putation time than Processes 1 and 2. For example, when the user selects a “commonnoun”
category, Process 2 returns 340,154 terms for the dataset used in the experiments described
in Section 5.3.

When the user specified a category which is an internal node in the category tree, it also
computes the distribution of the documents for each subcategory of the specified category,
which corresponds to afcs, g®, count'](a’>(D)). In this case, a set of categories {cj : % | cj €

Input: petiti based poly chain reaction effects deoxyribonucleic acids.
Step 1: p based chain reaction effects deoxyribonucleic acids
(&
repetitive sequence-based polymerase chain reaction = Proper Noun DNA  Proper Noun
Step 3: petit based chain reaction effects deoxyribonucleic acids
.verb
repetitive sequence-based polymerase chain reaction DNA —~REEE
.propernoun
.propernoun
OUtPUt repetitive based chain reaction
A1.2.234 DNA
.propernoun DNA
.verb effect

Figure 8: Example of the Preprocessing
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Vit |p12|v21|va1|va2|v33|va4|vas5|vat|va2 @
di 1 1 - P
Aggregation of the distribution of
d2 1 1 1 documents for keywords in
ds 1 selected documents.
d4 1 1 2 (c3wvat): 2
ds 1 (c3:v3s): 1
a1l i)
dz T 1
ds 1 -
2 Keyword whose categories are c3.
do 1 {v31, v32, v33, v34,v35}
dio 1 1 1

Figure 9: Implementation using a DTM

succ(cs)} is returned in Process 2.

5.3 Experimental Comparison

The method in Section 4 was implemented in Java. It generates SQL queries and accesses a
relational database via JDBC (Java Database Connectivity). The method in Section 5.2 was
implemented in C++ to compare with the above method. For the evaluation experiments, an
IBM IntelliStation with Windows XP was used, with an Opteron-2.2 GHz CPU and 2 GB of
main memory installed. The efficiency of our approach has been confirmed with respect to
the computation time.

Figure 10 shows the results of the response time for a query afc, g,’ count’](D) for all the
340,154 categories. The DB and DTM in the figure correspond to implementations of the
methods mentioned in Section 4 and Section 5.2, respectively. KW and SUB represents the
cases where (" and ¢® as g in ofc, g, count’](D) were used, respectively. “DTM SUB 1k”
shows the results for 1,000 documents sampled randomly from all of the documents. The
method of the DB does not compute for the sampled documents but for all of the documents.
Each point (z,y) in the figure means that the method returns the result within = seconds for
y% of all of the 340,154 categories. The ideal method is at the upper left corner. Although DB
could return the result for about 89% of the categories within 0.1 second, DTM could return
results for about 60% of the categories for 1,000 sampled documents, and for about 0.01% of
categories for 10,000 sampled documents for KW. In addition, afe, g, count'](o 1. cancer’ (D))
was calculated for the various categories, and the results for 11,914 documents containing
“cancer” were similar to Figure 10. As shown in Figure 10, DB is superior to DTM for most
of the categories.
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Figure 10: Results for All Documents

From another viewpoint of the empirical 8-second rule saying that a webpage should be



loaded within 8 seconds of a request, we can conclude that the better method is the one
whose coverage rate in about 10 seconds is better. Figure 11 focuses from 5 seconds to 10
seconds for the response time and from 99.97% to 100% for the coverage rates for the result
ale, g, count'| (011 cancer (D)). Figure 11 shows that DB is inferior to DTM within 8-second
constraint. Tables 3 and 4 summarize the experimental results for alc,g,’ count’](D) and
afe, g," count’|(o1 s cancerr (D)), respectively. Although the average computation time of DB is
lower than for DTM, the number of categories for which DB cannot return within 10 seconds
may become greater than for DTM.
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09999 #

0.99985 —-DTM SUB1k F—
/ -B-DTM KW1k
’ —A-DTM SUB10k
0.0998 —%-DTM KW10k
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*xThe coverage rate for “DB SUB” was about 0.99775.

Figure 11: Experimental Results for Documents Containing “cancer”

Table 3: Comp. Times for All Documents

Method avg. comp. | 10 sec. | 100 sec.

time [sec] T i
DTM KW 1k 0.143 1 0
DTM KW 5k 0.284 26 0
DTM KW 10k 0.526 16 0
DTM KW 50k 4.293 75 0
DB KW 0.185 10 0
DTM SUB 1k 0.138 2 1
DTM SUB 5k 0.176 2 0
DTM SUB 10k 0.405 5 1
DTM SUB 50k 2.091 33 0
DB SUB 0.137 20 2

1 The number of categories for which the results is not returned within 10 seconds. { The
number of categories for which the results is not returned within 100 seconds.

As shown in Table 4 and Figure 11, the averages of the computation times for DB are
superior to DTM. However, the number of categories for which DB cannot respond within 10
seconds is greater than for DTM. When documents containing “cancer” are selected, an SQL
query to obtain V' for o, (D) = (H, V") is represented as

Vi = g 1(V)
= V@ }p, VO 3
Trid,V(b).preorder,V(b).value( Py )’ ( )
where I = m;q(V Xp, H.), Pi = (value = 'cancer’), P, = (V) .id = V® .id and V) value =

‘cancer’), and V = V@ = V®)_ The query (3) is represented as
SELECT Vb.ID, Vb.PREORDER, Vb.VALUE



Table 4: Computation Times for Documents Containing “cancer”

Method avg. comp. | 10 sec. | 100 sec.

time [sec] T i
DTM KW 1k 0.177 24 5
DTM KW 5k 0.355 116 5
DTM KW 10k 0.511 28 7
DTM KW 12k 0.594 27 7
DB KW 0.267 23 0
DTM SUB 1k 0.195 13 1
DTM SUB 5k 0.352 65 0
DTM SUB 10k 0.484 18 1
DTM SUB 12k 0.534 24 2
DB SUB 0.413 706 5

FROM V AS Va, V AS Vb

WHERE Va.ID=Vb.ID AND Va.VALUE=’cancer’.
The reason why DB requires so much computation time for certain categories is the self-join
of the table KEYWORD V' which contains 193,185,919 records. Therefore, we divided the table
into multiple tables as follows. Let ¢d(V') be a function which returns a set of document
IDs in a table V. We divide V' into multiple tables V; which satisfies id(V) = |J, id(Vi) and
id(V;) Nid(V;) = 0 for i # j. Since the SQL query (3) contains V(*).id = V® id in its
WHERE phase, the following SQL query can avoid joining tables that do not contain the
same documents IDs.

(1),’ Count,](UT:’cancer’ (D))

= valueralue,sum(count)(U Rl); (4)

k3

ale, g

where Ri = yatue Xvalue,count(distinet id) count(Vi), | represents UNION ALL operation, and each
Vi is calculated by the SQL query (3). The SQL query (4) is represented as
SELECT VALUE, SUM(COUNT)
FROM (
SELECT Vb.VALUE, COUNT(DISTINCT Vb.ID)
FROM V_O AS Va, V_O AS Vb
WHERE Vb.PREORDER=pre AND
Va.ID=Vb.ID AND Va.VALUE=’cancer’
GROUP BY VALUE
UNION ALL
UNION ALL
SELECT Vb.VALUE, COUNT(DISTINCT Vb.ID)
FROM V_k AS Va, V_k AS Vb
WHERE Vb.PREORDER=pre AND
Va.ID=Vb.ID AND Va.VALUE=’cancer’
GROUP BY VALUE
) A

GROUP BY VALUE,
where pre is a preorder of c.

Figure 12 shows the experimental results when we compared the aggregation with KEYWORD
divided into 10 tables with DTM and the aggregation using a single table for KEYWORD. By
dividing the table, the coverage rate within 10 seconds rises from 99.993% to 99.999% for
KW, and from 99.79% to 99.93% for SUB. Although these experiments were run with a
single computer, we can easily run on multiple computers, because such commercial database
systems support parallelization.
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Figure 13: Average Computation Time for the Number of Documents

Figure 13 shows the average computation time for the number of documents for all of the
categories. The computation time is observed to be proportional to the number of documents.
The high scalability of our method has been confirmed for the amount of data.

Table 5 shows the computation times for afe, g, count'|(o T cancer (D)), where each se-
lected category has many different terms in its domain dom(c). This shows that the proposed
method can more quickly compute the results for a category compared to the conventional
method.

6 Discussion

A top N ranking query often returns a trivial result which contains terms frequently appearing
in the documents. To measure characteristic terms, the following relative frequency is used.
This measure compares the current document subset to the initial document set. Assume D
is the initial document set. A selection operation due to query c: v returns D,. The relative
frequency for a term p;r = (¢; : vj) in the document set D, is calculated as
c(pjr,Ds)

IDs|

c(pjr,D) ’
ID|

relative_frequency(pjr, Ds) =

where ¢(pjk, D) is the number of documents that contain the term p;; in the set D. For

|>J>-|w|m

example in Figure 9 in Section 5.2, relative_frequency((cs : vs1), Ds) is

{dg, de, dlo}.
It is very critical to achieve query response times that are as fast as possible to analysis
interactively a huge mount of text data. A key strategy for speeding up to aggregate the data

= 2, where D, is

|
ol



Table 5: Computation Times for Categories to which Many Different Terms

Belong
category # of different terms | DTM KW 5k | DTM KW 12k | DB KW
.commonnoun 340,154 231.2 sec. 238.7 sec. | 53.0 sec.
.propernoun 7,903 11.8 sec. 10.8 sec. 2.8 sec.
.verb 32,826 73.9 sec. 74.4 sec. 9.7 sec.
.adj 23,629 61.6 sec. 62.4 sec. 7.2 sec.
.rel_vn 1,337,891 171.3 sec. 177.7 sec. 7.6 sec.
rel_nv 601,256 85.7 sec. 85.3 sec. 3.6 sec.
.rel_vnn 5,439,810 145.6 sec. 162.9 sec. 9.8 sec.
.rel_nvn 2,294,012 99.3 sec. 101.2 sec. 4.4 sec.
rel_nnv 1,812,501 90.7 sec. 89.5 sec. 3.8 sec.
.affiliation 282,729 53.7 sec. 55.3 sec. 3.2 sec.
.pnsubstance 48,512 66.2 sec. 68.0 sec. 4.3 sec.
.majormesh 89,275 83.6 sec. 85.1 sec. 3.1 sec.
.minormesh 111,761 126.2 sec. 128.5 sec. 7.8 sec.
.chemical 10,146 17.9 sec. 18.2 sec. 3.1 sec.
.genesymbol 15,310 48.1 sec. 48.8 sec. 7.3 sec.
.protein 15,562 57.1 sec. 58.2 sec. 6.7 sec.
.biomedicalterms 91,670 133.7 sec. 137.8 sec. | 21.1 sec.

is to use indexing technology. As mentioned in Section 4, we use the preorders and postorders
to check ancestor-descendent containment in a category hierarchy. If we do not use preorders
and postorders in a traversed tree, we need to join the table CATEGORY n times to check where
a node A is an ancestor of a node B, where n is the length of a path from the A to the
B. However, we do not need any join operations to ancestor-descendent containment in the
hierarchy.

The method to index the tree was proposed in 1982, and it recently draws attention as the
method to index XML (eXtensible Markup Language) database and to map XML data into the
relational database [9], since each XML document is modeled as a DOM (Document Object
Model) tree. Several Methods such as prefix label [6], Dewey order [23], prime label [24],
VLEI code [12], embedding into a k-ary tree [13] are used to index XML. A disadvantage of
the methods such as preorder-postorder method and prime label is to need to re-assignment of
preorders and postorders of nodes when inserting some nodes into a tree. Since each node has
the same label as a prefix of its children in the methods such as prefix label and Dewey order,
they do not need to reassign the labels when inserting some nodes. However, because they
need to compute functions to process string to check ancestor-descendent containment, they
need more computations time than the preorder-postorder method. Since we assume that a
category hierarchy is rarely updated and records in the table KEYWORD V' are often inserted,
we used the preorder-postorder method to index the category hierarchy.

Our data representation is similar to the bag-of-words approach [14], although each term
is assigned categories. In the bag-of-words approach, the following sentences are treated as
the same content,:

e “(a) X did fail”,

e “(b) X did not fail”, and

e “(c) Did X fail?” [17].
Besides the negation and interrogative mood, some auxiliary verbs such as “can” and some
verbs such as “want” often indicate the author’s communicative intentions. It is important
to associate communicative intentions with predicates by analyzing grammatical features and

lexical information. “fail” in the previous examples (a) to (c) are assigned categories and
restored in R as (a) complaint:fail, (b) commendation:not_fail, and (c) question:fail. These



extractions are instrumental in facilitating problem detection and workload reduction for
analysts at customer help centers.

Some papers such as [15] and [16] proposed OLAP systems to analyze a set of documents.
The following MDX (Multi-Dimensional eXpression) query which was used in [15] finds all the
documents which contain a term “forests” and are published in New York in the first quarter
of 1998.

SELECT not empty [DocId].members on rows,

{[Measure] . [Tf]] on columns
FROM docInfo
WHERE ([Term].[forest],[1998] [quarter 1],
[location] . [New York])

In the query, [Term] . [forest] means that a depth of a hierarchy in a TERM dimension is 2,
and term “forests” is a child node of “TERM” corresponding to T in the TERM dimension.
Hierarchies that the existing OLAP systems for texts assume is so simple that it is difficult
to integrate the hierarchies with a complex ontology with a huge set of nodes.

Other papers proposed an OLAP system to analyze a set of documents [22, 21]. Since a
sales written in multiple documents (newspapers) would be a fact in the papers, operations
in the system is similar to the conventional OLAP system for structured data. An example
operation in the system is to analyze the average sales per product and year. In our case,
since a document would be a fact, we can find a change in the number of documents with
time. For example, in a call center in a company, call takers make reports of each call by
typing in customer information such as name and phone number, selecting call categories
such as “technical QA” and typing in brief descriptions of questions or messages from the
customer and brief descriptions of answers and/or actions taken. The brief descriptions are
writtin in natural language. The manager of the call center wants to improve productivity,
reduce cost, improve customer satisfaction, etc. For example, in a large number of documents
related to customers’ calls, we want to find what kinds of topics have recently been increasingly
mentioned and which product is associated with specific topics, so that we can take appropriate
actions for the improvement of call center productivity and product quality, or create a FAQ
(frequently asked question) database.

7 Conclusion

In this paper, we proposed a data model, and a relational algebra to integrate ontologies
with OLAP systems to analyze a huge set of textual documents. The proposed method
was implemented with a persistent store using preorders and postorders in a hierarchy. The
efficiency of our approach has been confirmed with respect to the computation time.
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