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Abstract 
Large scaled systems confront relatively frequent failures which degrade the productivity of the 

system. An occurrence of failure incurs job restart and administrator’s work like problem determination. 

Job restart deteriorates substantial performance of the system, and increase of administrator’s work will 

be reflected to maintenance cost. Further improvement in the productivity of large scaled systems 

depends on how failure is managed well. The goal of this study is to improve productivity of large 

scaled systems from the system management point of view, i.e. substantial performance and 

administration cost. Substantial performance is measured by average job slowdown and system 

utilization. 

This document describes failure prevention as a usable technique to improve substantial performance, 

and an approach for problem determination of large scaled systems as a means to lower the 

administration cost. Failure prevention is to take proactive actions based on fault prediction and anomaly 

detection. This contributes to evade performance degradation caused by faults. The cost of problem 

determination is another impact of failures. This should be lowered by advanced tools that can provide 

informative information to administrators based on the data collected from the system. In addition, this 

document describes the data analysis platform which becomes a common infrastructure for the analyses 

required by failure prevention and problem determination tools. 

 



1. Introduction 
Large scaled systems confront relatively frequent failures which degrade the productivity of the 

system. MTBF (Mean Time between Failures) of large scaled systems are reported to be just only 

a few hours or tens of hours at most [1]. Further scaled out systems will confront shorter MTBF. 

An occurrence of failure incurs job restart and administrator’s work like problem determination. 

Job restart deteriorates substantial performance which is measured by job throughput and 

utilization of the system. Increase of administrator’s work will be reflected to maintenance cost. 

Therefore, further improvement in the productivity of large scaled systems depends on how failure 

is managed well. The goal of this study is to improve productivity of large scaled systems, i.e. 

substantial performance and management cost related to failures, by means of failure prevention 

and problem determination tool. This document will focus on describing the data analysis 

platform which is required to implement these techniques and mechanisms for large scaled 

systems. 

 Failure prevention is one of the techniques to evade performance degradation caused by 

failures. It can be achieved by taking proactive actions towards predicted occurrence of faults or 

critical events. A simple example of proactive action is to detach a node when it is predicted to 

become faulty in the near future. The node may be attached to the system again when the node is 

predicted that it will not become faulty for the present. More advanced means for failure 

prevention are proposed in several literatures. Failure prevention mechanisms are based on 

fault/event prediction which can be achieved by analyzing event logs or time-series data like CPU 

load, temperatures, and fan speeds. These analyses need to be performed continuously in a 

real-time manner at high throughput to realize failure prevention for large scaled systems. 

Problem determination is one of the most time-consuming human tasks incurred by failures. 

Administrators need to inquire historical data and event logs to find the root cause of a failure 

occurred to the system. This work will become more difficult and intricate as the system scales 

more and analysis data increases. So, administrators need advanced tools that pre-process and 

analyze the large amount of data from various points of view to indicate useful information for 

finding the root cause. Although advanced data analysis on large amount of data tends to take 

longer time, they should respond immediately because they are invoked in an interactive manner 

from a tool by the administrators. 

Both failure prevention and problem determination are based on data analyses on large number 

of historical event logs and resource status data. In this study, we will develop a data analysis 

platform which enables high throughput analysis in a soft real-time manner for on-line analyses, 

and immediacy for interactive analyses in a best-effort manner. These properties are essential to 

next generation failure management systems for large scaled systems. The data analysis platform 

schedules the executions of analyses so that it meets the requirement of as many analysis tasks as 



possible with limited computing resource provided for failure management. When the analysis 

server is overloaded, the data analysis platform drops some analyses tasks which are judged to be 

unimportant or duplicated so that it can execute more important analysis tasks. Importance of each 

analysis task is determined based on the current status of the objective resource (e.g. node,) type 

of the analysis (on-line or interactive,) elapsed time since the last analysis was performed on the 

objective resource. 

In the following sections, related works are described in section 0. Failure prevention and a tool 

for problem determination are described in section 3 as the envisioned applications of the data 

analysis platform. Detail of the data analysis platform is described in section 4. Finally, outline is 

summarized in section 5. 



2. Related Work 
Several techniques and algorithms for failure prevention are proposed in the literatures. One of 

the proposed actions is fault aware job scheduler. Oliner et al. [8] proposes fault aware job 

scheduling algorithms that should improve system performance. According to their simulations 

based on actual job history and failure data collected from a large-scale computer, their algorithms 

showed noteworthy improvements in average job slowdown and system utilization. Average job 

slowdown is improved even with 10% of fault prediction confidence. System utilization is 

improved as the confidence of fault prediction increases. 

Another proposed action for failure prevention is controlling job migration and checkpointing. 

Li and Lan [9] proposes a mechanism that optimally chooses migration, checkpointing or no 

action to reduce the execution time. Like the fault aware job scheduling proposed in [8], their 

mechanism uses fault detection. According to their experiment based on a real failure log captured 

from a supercomputer, their algorithm showed steady improvement in the mean execution time 

compared to traditional checkpointing/restart strategy. 

Every failure prevention mechanism depends on fault prediction or anomaly detection. Sahoo et 

al. [6] proposes techniques and methods to predict critical events. They evaluated time-series 

analyses, rule-based classification algorithms, and Bayesian network models using event logs and 

system performance logs collected from a system consists of 350 nodes. The results suggest that 

rule-based classification algorithms can be used to predict critical rare events up to 70% accuracy 

at 400 seconds of time window before predictions. Brandt et al. [5] proposes a monitoring and 

analysis tool incorporated with a Bayesian inference scheme to indicate aberrant nodes. As an 

example, they applied the method to find aberrant node whose temperature is different 

significantly from others. Such aberration can be considered as an early indicator of future 

problems. 

Failure management systems need to monitor event logs and system status like temperatures, 

fan speeds, and voltages. The captured data can be filtered and alerted on each managed node, or 

they can be collected and stored in a central location so that it can be used by various purposes 

like displaying the system status, retrieving RAS (reliability, availability, and serviceability) 

information about the system [2], finding the root cause of a failure, and data analyses such as 

anomaly detection [5] and failure/event prediction [6].                                                                                                            

Monitoring systems like RMC (Resource Monitoring and Control) of RSCT/CSM, Ganglia 

[2], and Supermon [3] provide scalable monitoring function. However, they are mainly used only 

to present the system status on per-node basis, or to alert events based on a fixed threshold. 

Monitoring systems should be integrated with on-line data analyses to implement proactive fault 

management. The integration portion controls analyses and monitoring behaviors to achieve 

scalable analysis and low perturbation for the monitored nodes.



3. Applications of the Data Analysis Platform 

3.1. Failure Prevention 

Failure prevention is to take proactive actions to avoid job interruption based on fault prediction 

or anomaly detection. Although all failures cannot be prevented without perfect fault prediction, 

possibility of job interruptions can be lowered by taking appropriate actions based on existing 

anomaly detection or fault prediction techniques. Several techniques have been proposed, but 

further research is still needed to make them widely adopted. 

One of the required researches is the runtime mechanism for fault predictions and anomaly 

detections. The runtime enables to deploy fault prediction and anomaly detection mechanisms to 

large scaled systems by several functions for scalable on-line analysis: data collection, data 

management, and analysis scheduling. The data collection function should achieve low 

perturbation so that the system performance will not be degraded because of the failure prevention. 

The data management function manages the life cycle of the collected data, and it provides a data 

access method required for on-line analysis. The analysis scheduling function is required to 

perform various kinds of analysis on large number of resources. 

One important requirement of the analyses for failure prevention is soft real-time. Analysis must 

be completed before when the system can take proactive actions to prevent failures. Otherwise, 

the analysis result becomes useless for proactive fault management. This seems easy if the system 

can provide a powerful analysis server which is capable of complete every analysis request within 

a fixed delay. However, this will not be feasible because large scaled systems have numerous 

resources to be monitored and the total analysis workload exceeds the capacity of an analysis 

server. Another requirement is to achieve as higher analysis throughput as possible. 

Suppose that a system consists of 10,000 nodes, analyzers monitors 10 variables per node, and 

analysis is performed on each variable at intervals of 10 minutes (600 seconds,) each analysis is 

given only 6 mili-seconds. This is too short to perform various data analyses for fault predictions 

or anomaly detections. When we implemented anomaly detection algorithms derived from [11], a 

simple algorithm took 20-40 mili-seconds and another complex algorithm took about 1,500 

mili-seconds. 

Moreover, we cannot assume that analysis workload is fixed to a specific amount. Some 

additional analyses may be programmed to filter false alarms emitted by preceding 

lightweight-but-sensitive analysis. Sometimes the analysis workload will exceed the capacity of 

an analysis server if too many false positive alarms are emitted simultaneously. The runtime 

should manage the execution of analyses to solve these problems. 

3.2. Problem Determination 

When a failure occurred to a system, administrators are required to inquire historical data to find 



the root cause of the failure. However, historical data increases as the system scales, and it 

becomes too intricate to extract useful or important information from large amount of data. This 

will be reflected to management cost of the system. Administrators should have advanced tools 

that extract useful information by pre-processing and analyzing the historical data. 

Tools are required to respond as fast as possible because they are used in an interactive manner. 

On the other hand, analyzers of problem determination are expected to take much longer time as 

the system becomes larger and the number of subject data increases. The data analysis runtime 

should provide a parallel execution mechanism for this type of analyses aiming to achieve short 

response time. 



4. Data Analysis Platform 
The data analysis platform provides an infrastructure to collect, store, and perform on-line 

analyses on resource status data of a large scaled system. As we described in section 0, the data 

analysis platform should achieve soft real-time and high analysis throughput for on-line data 

analyses, and it should also achieve short analysis response time for interactive data analyses. In 

addition, the data analysis platform should be scalable so that it can host large number of analyses 

on time-series data collected from a large scaled system. It schedules the executions of analyses 

and controls multiple analysis servers. It also controls the activity of sensors on each node to 

minimize the monitoring overhead. Analysis results, e.g. failure predictions and anomaly 

detections, are expected to be used for proactive fault management. 

4.1. Architecture 

Figure 1 describes the overall architecture of the data analysis platform. It consists of a master 

server and a set of analysis servers each of which takes charge of hundreds or thousands of 

managed nodes. The master server runs a database management system (DBMS) and provides 

database connections to the analysis servers. There are three kinds of databases on the master 

server. The first database is used for storing configuration of the analysis servers. The second 

database is used for storing collected resource status data. The third database is used for storing 

analysis results. All analysis servers share the same configuration so that they collect the same 

types of data and perform the same analyses. The master server is responsible for dealing with 

failures occur to the analysis servers. The master server watches the analysis servers and replaces 

faulty analysis server with a backup server if available. If no backup server is available, the master 

server tries to add the managed nodes under the faulty analysis server to another managed node if 

possible. Otherwise, the master server updates the status of the managed nodes to unknown, and 

leaves the managed nodes as they stand until any analysis server becomes available for them. 
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Figure 1: Overall Architecture of the Data Analysis Platform 

4.2. Analysis Utility 

Analysis utility is the unit of a data analysis module like fault prediction and anomaly detection. 

Several analysis utilities can be plugged into an analysis server. The data analysis platform 

provides a programming model and a framework for the analysis utilities which are explained in 

section 4.5 below. An analysis utility consists of analysis triggers and analyzers. An analysis 

trigger is responsible for filtering data, accumulating data, and triggering an analysis execution. It 

listens to one or more channels and accumulates data required for performing an analysis. The 

accumulated data is packed as an analysis task object, and put into the queue of the execution 

manager. The analysis utility receives the analysis result when the execution manager finished the 

analysis, and stores the analysis result to the database. 

4.3. Channel 

A channel defined at an analysis server is related to a specific type of data to be captured at 

managed nodes, and provides a series of data to the analysis utilities. For example, a channel will 

receive CPU temperatures from the managed nodes at a regular interval. Another channel will 

receive error logs from the managed nodes. Analysis utility listens to one or more channels which 

provide the required data. Analysis utility can suspend receiving data from channels when the 



analysis need not be performed. A channel is deactivated if it is not listened by any analysis utility. 

The analysis server notifies the managed nodes of the deactivation of a channel, and the managed 

nodes stop monitoring the data. 

4.4. Execution Manager 

The execution manager is the core of the runtime of the data analysis platform. It is responsible 

for executing analyzers. It schedules the analysis tasks based on their attributes as below. 

1 Required time 

2 Deadline 

3 Importance 

Required time of an analysis task is the estimated average execution time of the analyzer on a 

single server. Deadline of an analysis task is calculated by the execution manager based on the 

execution policy of the analysis. For example, execution policy of a fault predictor will be 

specified as “the analysis should be completed within 60 seconds since the data is captured.” 

Importance of an analysis task is calculated by the execution manager based on the type of the 

analyzer, the state of the node with which the task concerns, estimated reliability of the node, and 

elapsed time since the node was analyzed. An analysis task concerning the node which has been 

detached from the system because it was analyzed as unreliable will be assigned the lowest 

priority. An analysis task concerning the node which has been analyzed just before will be 

assigned a lower priority than the node which has not been analyzed for a longer time. An analysis 

task concerning the node whose estimated unreliability or anomaly has exceeded a threshold will 

be assigned a higher priority. The execution manager may discard low-prioritized analysis tasks to 

complete important analysis tasks in time. 

Basically each analysis task is executed on a single node. In case an analyzer takes longer time 

by nature, the execution manager tries to execute such kind of analysis in parallel using multiple 

analysis servers if available. In case the analysis server becomes overloaded, the execution 

manager dispatches analysis tasks to other analysis servers. 

4.5. Programming Model 

Programming model of the data analysis platform is designed aiming to achieve scalable 

execution of analyzers without requiring deep knowledge of parallel programming to the 

developer of analyzer. 

Figure 2 describes the data flow of an example analyzer. This analyzer calculates the difference 

of two input data from a statistical point of view. The analysis data contains a set of channel data 

which contains time series data collected just before from a resource for a specific interval. The 

reference data also contains a set of channel data. But they are extracted from a historical database. 

First, both the analysis data and the reference data are processed by the “resampling” module. The 



“resampling” module takes a set of channel data and outputs the same number of channel data. 

Next, the output of the “resampling” module is splitted into individual channel data, and passed to 

the “preprocess” module. The “preprocess” module preprocesses a channel data for the following 

modules. The “Calc-A” module calculates a statistical value like average and mean value and 

outputs a scalar value. Finally, the “Calc-B” module combines each pair of scalar values and 

outputs them as an array of double. Each value of this array represents the difference of each 

channel data in the analysis data and the reference data. This array becomes the output of this 

analyzer. 
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Figure 2: Data Flow of an Analyzer 

Module is the smallest execution unit defined by the programming model. Users implement data 

transformations and data filters as a subclass of the module. The programming model provides 

some pre-defined modules which express parallel skeletons as below. 

l Pipeline 

l Parallel 

l Map 
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Figure 3: Pipeline Skeleton 

Figure 3 describes the program notation and execution model of the “pipeline” skeleton. A 

“pipeline” skeleton contains sub modules as its children. It denotes that its children can be 

executed in parallel on a sequence of data stream. Output data of the last child becomes the output 

data of the parent pipeline. 
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Figure 4: Parallel Skeleton 

Figure 4 describes the program notation and execution model of the “parallel” skeleton. A 

“parallel” skeleton contains a sub module as its child. It denotes that input data is mapped to 

multiple sub-data, and they may be processed in parallel by the child module. A mapper defines 

how the input data is mapped to multiple sub-data. Users can use predefined mappers or they may 

define a mapper by themselves. Multiple data outputted by the child module are combined to an 

array, and it becomes the output data of the “parallel” skeleton. 

Map
child-1

child-N child-2

subtask#Nsubtask#2subtask#1

child-1 child-N

Mapper

taskInData

OutData[N]

SubData

(N)
SubData-1

OutData-1

SubData-N

OutData-N

Program Execution

 

Figure 5: Map Skeleton 



Figure 5 describes the program notation and execution model of the “map” skeleton. A “map” 

skeleton contains a sub module as its child. Its execution model is similar to the “parallel” 

skeleton. The “parallel” skeleton has only one child module and the splitted sub-data are 

processed by the same child module. On the other hand, the “map” module has multiple types of 

child modules so that the splitted sub-data can be processed differently by each child module. 

Children’s output data are combined to an array, and it becomes the output of the “map” skeleton. 
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Figure 6: Program Notation of an Analyzer 

Figure 6 describes the program of the example analyzer depicted in Figure 2 in a graphical 

notation. This program consists of 2 types of parallel skeletons (“pipeline” and “parallel”), and 4 

types of user defined modules (“Resampling”, “Preprocess”, “Calc-A”, and “Calc-B”.) The 

“pipeline” skeleton at the top left is the root of this analysis program. This analyzer takes 2 sets of 

data each of which contains an array of channel data (“ChData[N]”,) and outputs an array of 

double. Each element of the array indicates the difference of each channel data. The first child of 

the top “pipeline” skeleton is a “parallel” skeleton. The “parallel” skeleton takes the same input 

data as the top “pipeline” skeleton and split the data into 2 sets of data which containing an array 

of channel data. The splitted data are passed to its child “pipeline” skeleton, and processed by 

descendant modules (“Resampling”, “Preprocess”, and “Calc-A”.) The first “parallel” skeleton 

under the top “pipeline” skeleton combines the data outputted by its child “pipeline” skeleton as a 

matrix of double. This array is passed to the sibling “parallel” skeleton. The sibling “parallel” 

skeleton transposes the array and splits into N sets of arrays of double. Each splitted data (array of 

double) is passed to child “Calc-B” module. The outputs of the “Calc-B” module are combined to 

an array, and it becomes the result of this analysis. 

5. Summary 
Failure management takes an important role for further advancement of productivity of large 

scaled systems. Failure prevention is one of the effective techniques to improve substantial 

performance and system utilization in the presence of failures. It takes proactive actions based on 



fault predictions or anomaly detections. The data analysis platform provides a scalable 

infrastructure for the data analyzers for fault predictions and anomaly detections. The platform 

integrates scalable data collection mechanism and an analysis execution runtime aiming to achieve 

scalable execution of analyses using multiple servers in a soft real-time manner. 

Problem determination becomes more difficult and intricate as the system scales more, thus 

administrator will require advanced tool that can indicate useful information from large number of 

historical data. The data analysis platform will also become an infrastructure for the data analyzers 

for problem determination. It enables to execute data analyses for problem determination on 

multiple servers so that analyses finish as fast as possible. 

This study aims to establish a scalable data analysis platform for failure management, and 

contribute to further improvement of productivity of large scaled systems. 
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