
February 20, 2007
RT0709
Computer Science 21 pages

Research Report
A Data Partitioning Method Using Dynamic Data
Dependence Graphs

Ryo Neyama and Mikio Takeuchi
IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

A Data Partitioning Method Using Dynamic Data
Dependence Graphs

Ryo Neyama and Mikio Takeuchi

IBM Research, Tokyo Research Laboratory
1623-14 Shimotsuruma, Yamato, Kanagawa, 242-8502, Japan

{neyama,mtake }@jp.ibm.com

Abstract. While data partitioning significantly improves the scalability of mul-
tithreaded and clustered transaction processing (TP) systems, selecting a correct
and effective partitioning criterion (i.e. how to partition data) requires deep insight
into the target TP systems. In this paper, we propose a novel analysis method to
find even non-intuitive partitioning criteria for TP systems using our tracing tool
that generatesdynamic data dependence graphs (dynamic DDGs). Analyzing the
exact behavior of a TP system from its dynamic DDG, our method can also gen-
erate a routing function of transaction requests for each partitioning criterion.
We have demonstrated that our method could find the candidates of partitioning
criteria and their routing functions, with a non-trivial TP system scenario.

1 Introduction

Demands on high performance of transaction processing middleware and its applica-
tions (transaction processing (TP) systems) [1] have been accelerated in recent years
as more businesses in the World rely on computer systems. As Gordon Moore recently
suggested [2], the speed of current CMOS processors is not guaranteed to keep expo-
nential growth, therefore the future TP systems may meet CPU bottleneck depending
on their workloads.

Recent trend in the enterprise server arena to overcome such CPU bottleneck is
moving toward the scaling-out and the scaling-up approaches. The scaling-out approaches
are represented by cluster servers and more recently blade servers [3], both of which
offer high performance and fault tolerance at reasonable hardware cost. The scaling-
up approaches are represented by symmetric multiprocessing (SMP) systems, which
have been commoditized in these days, and multi-core processors. Major micropro-
cessor vendors, such as Intel, IBM, Sun and AMD, are planning to release multi-core
processors with many cores [4–7].

TP systems cannot always benefit from the recent scaling-out and scaling-up efforts
by enterprise servers for free. Most TP systems are already multithreaded and already
have a clustering capability for scalability. Even though, there are some cases in which
increased number of servers or processors does not contribute to better performance. To
make things worse, a TP system may even slow down with more servers or processors
depending on their design.

Data contention is one of the major reasons why TP systems do not scale. This
is because most TP systems must handle data with atomicity, consistency, isolation

and durability (ACID) properties [8]. On the other hand, a recent high performance TP
system usually caches data both at the server and the processor levels. Such a TP system
also needs to guarantee cache consistency among servers as well as among processors.

Sharing updated data among servers causes a data synchronization overhead across
local area network (LAN). Frequent data synchronization heavily consumes processor
power and network bandwidth due to significant locking, cache invalidation and repli-
cation costs. Also, some TP systems may not be able to sufficiently use their processor
power due to lock waiting time. Similarly, there is a data synchronization overhead
among processors across processor interconnect along with locking and invalidation.

Data contention can be removed or reduced by appropriately applyingdata parti-
tioning technique at the server level andCPU affinity technique at the processor level.
With these techniques, frequently updated data can be localized to a server or a proces-
sor, while read-only or read-most data can be replicated among servers and/or can be
accessed by multiple processors without or with less synchronization overhead.

For appropriate data partitioning, TP system developers need to carefully design TP
systems, considering their characteristics of data access patterns. Namely, it is impor-
tant to exploit the data locality based on their data access patterns. Performing such
characterization, however, is not always straightforward especially in a complicated TP
system that handles many types of data simultaneously. Furthermore, there can be a
trade-off among partitioning criteria. For example, localizing customer data may result
in sharing product data. In such case, how to partition data is not very clear.

Our work aims to make clear the data access patterns of TP systems, allowing TP
system developer to easily definepartitioning criteria. In addition, our future goal is to
eventually automate such task. In this paper, we propose a novel analysis method to find
even non-intuitive partitioning criteria for Java-based TP systems using our tracing tool,
calledSamsara, that generatesdynamic data dependence graphs (dynamic DDGs). Our
method can also generate arouting functionof transaction requests for each partitioning
criterion. Partitioning criteria, dynamic DDGs and routing functions are described later
in Section 2.

The rest of this paper is organized as follows. Section 2 discusses why we can benefit
from tracing dynamic DDGs of TP systems. Section 3 gives the details of Samsara.
Section 4 demonstrates data partitioning with a TP system scenario. Section 5 presents
related work, and Section 6 offers conclusions.

2 Data Partitioning Using Dynamic Data Dependence Graphs

In this section, we first define a TP system model that uses data partitioning in Sec-
tion 2.1. We also define a taxonomy of Java objects (objects, for short) based on dy-
namic DDGs, which is useful for data partitioning. We then describe the details of
dynamic DDGs, by which we can generate routing functions as well as non-intuitive
partitioning criteria, in Section 2.2. We finally consider how to find the candidates of
partitioning criteria and their routing functions using the dynamic DDGs and the taxon-
omy in Section 2.3.

2.1 A Model of a Transaction Processing System That Uses Data Partitioning

Figure 1 depicts a model of a clustered TP system that uses data partitioning. Two
types of data, shared data and partitioned (non-shared) data, are treated in this model. A
TP system developer usually defines which non-shared data should be partitioned into
which partition. We call this definitionpartitioning criteria.

transaction request

routing
function

partition id

partition-mapping table

client

server-1

server-2

server-n

partitions

partitions

partitions

routing

partitioned data

shared data
partition id

server

partitioning criterion

transaction requesttransaction request

routing
function

partition id

partition-mapping table

client

server-1

server-2

server-n

partitions

partitions

partitions

routing

partitioned data

shared data
partition id

server

partitioning criterion

Fig. 1. A Model of a Transaction Processing System That Uses Data Partitioning

Determining an appropriate partitioning criterion in a complicated TP system is
not a trivial issue. Our method helps TP system developers to determine partitioning
criteria by offering the candidates of partitioning criteria as well as generating their
routing functions (described later).

In the model, a transaction accesses a set of partitioned data that belongs to a single
partition as well as any shared data in its transaction scope. In other words, each trans-
action request must be associated with at most one specific partition in a TP system.

A partition is identified with apartition identifier (id). Each server manages mul-
tiple partitions and the sets of partitions managed by each server are disjoint. When a
transaction request is associated with a partition, a client sends the transaction request
to the server that manages the partition. To identify a partition from a transaction re-
quest, a client uses arouting function, which is specific to the partitioning criterion
applied to a TP system. A routing function calculates a partition id from the values con-
tained in a transaction request. To identify a server from a partition id, a client uses a
partition-mapping table.

While how to map partitions to servers (how to define a partition-mapping table)
is essential for load-balancing, we do not address this issue in this paper. Rather, we
regard the partition-mapping table as a black box.

We classify the objects used in a TP system by their access patterns as shown in
Table 1. This taxonomy aims to make a necessary and sufficient distinction of objects
to discuss how to find partitioning criteria. An object is classified in this taxonomy
based on how it is accessed by threads. Aread-only objectis an object that has never
been written by any thread, while aread-write objectis an object that has ever been
written. A non-shared objectis an object that is accessed by only one thread, while a
shared objectis ever accessed by at least two distinct threads.

Read-only objects Read-write objects
Non-shared objects Potentially partitioned objects

Shared objectsPotentially shared read-only objectsPotentially shared read-write objects

Table 1.Object Taxonomy by Access Patterns

2.2 Dynamic Data Dependence Graphs

In this section, we first define dynamic data dependence, and then define a dynamic
DDG, which is used for offering partitioning criteria and generating routing functions
later in Section 2.3.

Dynamic Data DependenceA dependencebetween two statements in a program is a
relationship that constrains their execution order [9]. Adata dependenceis a constraint
that arises from the flow of data between statements. There exist three types of data de-
pendence:true (flow) dependence, anti dependenceandoutput dependence(Figure 2).
Each dependence represents an order constraint from a definition to a reference, from a
reference to a definition, and from a definition to another definition, respectively.

live-in={z}
x = a + b

y = x

y = z

z = c
live-out={y,z}

true

anti

output

live-in={z}
x = a + b

y = x

y = z

z = c
live-out={y,z}

true

anti

output

Fig. 2. Three Types of Data Dependence

A dynamic data dependenceis a data dependence that actually arises from the ex-
ecution of a program. Because it ignores potential data dependence from unexecuted
paths, it is suitable to observe the behavior of a program from representative runs.

Dynamic Data Dependence Graphs with True-dependence OnlyFigure 3 shows
how a dynamic DDG is constructed from an execution of a multithreaded Java program.
A dynamic DDG is represented as a directed acyclic graph (DAG), where each node
represents the definition of a value and each edge represents a reference to the value.
Each node is color-coded by the thread id which defines the value.

In Figure 3, one threadT1 executes a Java statementobj.count++ , then another
threadT2 executes the same statement. The statement is compiled into Java bytecode
(Figure 4).

At the time when the threadT1 executes the statement, the nodes 11 and 12 (a node
is identified with the number specified between ’<’ and ’>’) are created in addition to
the initial value node 8. The node 11 is created for a constant value ’1’ contained in
the bytecode (line 4). The node 12 is created for the result ofiadd (line 5). Thus, this
dynamic DDG means “the node 12 is created out of the nodes 8 and 11 byiadd at
Simple1.exec() line 25.”

T1: obj.count++ ; then
T1: obj.count++ =⇒ T2: obj.count++

<8>0

<12>Simple1.exec(25):iadd

<11>1 =⇒

<8>0

<12>Simple1.exec(25):iadd

<11>1

<16>Simple1.exec(25):iadd

<15>1

Fig. 3. A Dynamic DDG from an Execution of a Multithreaded Java Program

obj.count++ =⇒

1: aload obj
2: dup
3: getfield count
4: iconst 1
5: iadd
6: putfield count

Fig. 4. Compiled Java Bytecode

At the time when the threadT2 executes the statement, the nodes 15 and 16 are
created. The node 15 is created for the same constant value as the node 11. Note that we
can see the node 16 is created out of the node 12, which is created by another thread,
and the node 15 from the dynamic DDG.

Full-functional Dynamic Data Dependence GraphsThe dynamic DDG we have de-
fined so far represents true dependence only. We also use anti- and output-dependence
as well for more precise data partitioning. Therefore, we revise the definition of dy-
namic DDG so that we can know whether an object is read or written in which order
and by which thread.

We will explain how to revise the definition of dynamic DDG in the rest of this
section. For later use, we define the notation for data dependence: a read, a write, true
dependence, anti dependence and output dependence (Figure 5).

Rf (t) : a read of a fieldf by a threadt.
Wf (t) : a write of a fieldf by a threadt.

Wf (t1)
t→ Rf (t2) : Rf (t2) depends onWf (t1) by true dependence.

Rf (t1)
a→Wf (t2) : Wf (t2) depends onRf (t1) by anti dependence.

Wf (t1)
o→Wf (t2) : Wf (t2) depends onWf (t1) by output dependence.

Fig. 5. Notation of Data Dependence

Now, let us consider the situation where a field of an object (denoted byf) is ac-
cessed by multiple threads as shown in Figure 6. We shall not treat array elements and
static fields (although Samsara can treat them) in this section to simplify the discussion.

Besides two true dependences (Wf (T1)
t→ Rf (T2) andWf (T1)

t→ Rf (T3)), there ex-

ist two anti dependences (Rf (T2)
a→ Wf (T4) andRf (T3)

a→ Wf (T4)) and one output

dependence (Wf (T1)
o→Wf (T4)).

- Time
Wf (T1) Rf (T2) Rf (T3) Wf (T4)

Fig. 6. A Set of Reads and Writes onf

For every reads and writes of a field, Samsara creates a new node to trace anti- and
output-dependence. Samsara memorizes the latest write node followed by zero-or-more
read nodes after the write for each field. When a field is written again by a thread, all
the nodes in the set except for those created by that thread become the source of a new
write node. The set is then cleared and the new write node is added to the set.

We define the notation of a node and a set as shown in Figure 7.

Nf ield(f) : The current definition of a fieldf .
Nob ject : The definition of an object reference on the stack in a read or a write of a field.
Nvalue : The definition of a value on the stack in a write of a field.

Naccess(a) : A node that is created by an accessa, wherea is a read or a write of a field.
〈n1, n2, . . .〉 : A composite node that consists ofn1, n2,

T(n) : The thread that creates the noden.
S f (k) : The set for the fieldf at timek.

Fig. 7. Notation of Node and Set

Now, the nodes for a read, a write and a set can be defined as follows:

Naccess(Rf (t)) := 〈Nob ject,Nf ield(f)〉
Naccess(Wf (t)) := 〈Nob ject,Nvalue, s1, s2, . . .〉 (si ∈ S f (k) ∧ T(si) , t)

S f (0) := ∅

S f (k + 1) :=

{
Naccess(Wf (t))

}
for Wf (t)

S f (k)
⋃{

Naccess(Rf (t))
}

for Rf (t)

In the example in Figure 6, during the time afterRf (T3) and beforeWf (T4), the set
S f (k) is expressed as follow:

S f (k) =
{
Naccess(Wf (T1)),Naccess(Rf (T2)),Naccess(Rf (T3))

}

WhenWf (T4) writes a value defined by a nodev, Naccess(Wf (T4)) andS f (k + 1) are
expressed as follows:

Naccess(Wf (T4)) = 〈Nob ject, v,Naccess(Wf (T1)),Naccess(Rf (T2)),Naccess(Rf (T3))〉
S f (k + 1) = Naccess(Wf (T4))

By looking into Naccess(Wf (T4)) on the resulting dynamic DDG, we can find anti-
and output-dependence.

2.3 Data Partitioning

Figure 8 illustrates the usage scenario of our tools, Samsara andPartitioning Criteria
Finder (PCF). The scenario consists of the following three steps: 1) A TP system de-
veloper first launches the target TP system under the control of Samsara and then exam-
ines some representative transactions that sufficiently cover the actual behavior of the
TP system. Tracing the representative transactions, Samsara produces a dynamic DDG;
2) Analyzing the dynamic DDG, PCF offers the candidates of partitioning criteria with
the corresponding routing functions to him/her; 3) He/she determines a partitioning cri-
terion that is even valid with his/her knowledge of the TP system and then applies the
partitioning criterion and its routing function to the TP system.

Partitioning Criteria Finder

routing functions

generated dynamic data
dependence graph

1. Representative transactions

candidates 3. Selection
partitioning criterion

SamsaraTarget TP system

2. Candidates of partition criteria

IT developer

Object

Non-shared Object

Shared Object

Read-only Object

Read-write Object

taxonomy

partitioning criterionpartitioning criterionpartitioning criterion

Partitioning Criteria Finder

routing functions

generated dynamic data
dependence graph

1. Representative transactions

candidates 3. Selection
partitioning criterion

SamsaraTarget TP system

2. Candidates of partition criteria

IT developer

Object

Non-shared Object

Shared Object

Read-only Object

Read-write Object

Object

Non-shared Object

Shared Object

Read-only Object

Read-write Object

Object

Non-shared Object

Shared Object

Read-only Object

Read-write Object

taxonomy

partitioning criterionpartitioning criterionpartitioning criterion
partitioning criterionpartitioning criterionpartitioning criterion

Fig. 8. Usage Scenario

To simplify the discussion, we would like to assume that a transaction begins at
the entry of a specific method, and commits at the exit of the same method. Samsara
traces dynamic data dependence during the method call. A transaction request is a list
of arguments for the method.

As is described in Section 1, there can be a trade-off among multiple partitioning
criteria. It is not always possible to completely partition all the data in a TP system.
Under such trade-off relationship, some data need to be shared among servers whatever
the partitioning criterion is. We, therefore, assume the use of a distributed lock man-
ager [10] with the target TP system so that it can guarantee the consistency even if all
the data cannot be completely partitioned.

By applying an appropriate partitioning criterion, overall data locality of a TP sys-
tem is increased. As a server can hold an ownership for a lock across transactions, we
can effectively reduce the cost of distributed locking for partitioned data. Furthermore,
if a TP system developer can guarantee that some data are partitioned with a partition-
ing criterion, he/she can remove the cost of distributed locking for the data by explicitly
replacing the distributed lock with a local lock.

In general, database keys (keys, for short) that a transaction uses are determined by
the result of some calculation using the arguments in a transaction request, the states
that the server internally holds, and the data obtained from the backend database by
queries.

Our target of data partitioning is the keys that can be calculated from the arguments
in a transaction request and the read-only server states. The routing function we generate
is used to calculate a partition id from the arguments in a transaction request and the
read-only server states. We can capture the keys from representative transactions by
using the knowledge of the configuration and the application programming interface
(API) of a TP system middleware, or by analyzing SQL statements issued.

A client needs to hold a replica of the read-only server states on which the routing
function depends. There may exist a case where the client cannot afford to hold read-
only server states because of their size. In this case, the client can get a partition id from
the transaction request by delegating the execution of the routing function to one of the
servers. There is no locking overhead to the server for executing the routing function
since the server states it requires are read-only.

We shall exclude the keys that are calculated depending on the read-write server
states and/or the data obtained from the backend database from the candidate partition-
ing criteria because we cannot generate routing functions for such keys. It might still
be possible to partition the non-partitioned data associated with such key if the key de-
pends on other keys that are partitioned by a partitioning criterion if the non-partitioned
data depends on such partitioned keys.

An argument in a transaction request or a read-only server state may or may not be
used for calculating the keys. We need to know which part of the arguments and the
server states will actually be used to calculate the keys for generating routing functions.
It is however not obvious.

In a more complicated scenario, the combinations of values, which are completely
different each other, of more than one transaction requests may result in the equiva-
lent keys. We determine the code location where the values that are well-calculated for
choosing a key are defined, defining such a set of values as a partition id and the set of
data identified by the partition id as a partitioning criterion.

How can we possibly determine such well-calculated values? If the calculation of
partition id is not sufficient, two different transaction requests that eventually read or
write the equivalent keys may be recognized as different partitions. If the calculation
of partition id is too much, clients need to pay unnecessary cost for the calculation.
Moreover, it may make the calculation unnecessarily depend on the read-only server
states.

Our method allows a client to define a partition id even from a transaction request
that is not executed as a representative transaction by abstracting the calculation to
define a partition id. We focus on multiple transactions that defines the equivalent key.
We find the common and uncommon part of the calculations that affect the selection of
the key among such transactions. We use the uncommon part as a routing function and
define the set of the output values of the uncommon part as a partition id.

Specifically, we traverse backward the definition of the key from the key itself to the
arguments while each separate value that affects the definition of the key is equivalent

among the multiple transactions. We consider the most upward values that satisfy such
equivalence as ann-dimensional vector. We finally define thisn-dimensional vector as
a partition id. Two separaten-dimensional vectors are equivalent if every corresponding
elements are equivalent.

In the step 1 of the scenario shown in Figure 8, the TP system developer executes
a variety of representative transactions. The representative transactions should contain
multiple transactions that read or write the equivalent key. When tracing dynamic data
dependence, for every dominators in the method, Samsara records all the live values at
their entries so that PCF can later check the equality of the values.

PCF uses the ’==’ operator for primitive values and theequals() method for ob-
jects respectively to check the equality. When recording values, PCF writes a primitive
value as it is while for objects it writes only the instance fields that are necessary for
invoking theequals() method, and the unnecessary instance fields are filled with0
or null values. By not writing unnecessary fields, PCF can avoid writing values that
are not suitable for logging (e.g. a file descriptor).

The algorithm of PCF consists of the following three steps:

1. Find the multiple transactions that access the equivalent key from a dynamic DDG.
2. Find an appropriate partition id by traversing the paths through which the key is

defined.
3. Generate a routing function.

Let us look into the details of the algorithm of PCF. We first consider the simplest
case, a single key is accessed by the set of two transactions (Figure 9). Note that we can
easily extend this algorithm to the set of three-or-more transactions.

arg1

o6 o7

o4

arg2

o3

o1 o2

k1

R1

arg1’

o6' o7'

o4'

arg2’

o3'

o1' o2'

k1’

R2

equals

equals

equals

equals

equals

equals

NOT equals

<partition id> := f(arg1, arg2/*not used*/)

Step 1: find equivalent keys

Step 2:evaluate
equalities step by step

Step 3: generate a routing function

transaction scope

o5 o5'

equals

arg1

o6 o7

o4

arg2

o3

o1 o2

k1

R1

arg1’

o6' o7'

o4'

arg2’

o3'

o1' o2'

k1’

R2

equals

equals

equals

equals

equals

equals

NOT equals

<partition id> := f(arg1, arg2/*not used*/)

Step 1: find equivalent keys

Step 2:evaluate
equalities step by step

Step 3: generate a routing function

transaction scope

o5 o5'

equals

Fig. 9. Algorithm of PCF (1)

PCF finds two transactions (R1 andR2) that access the equivalent keys (k1 andk1′)
by looking into the dynamic DDG in the step 1. In general, such set can consist of
more than two transactions. In addition, it is possible that more than one sets exist for
different keys. When each transaction in a set accesses more than one keys and they
have multiple equivalent keys, PCF adopt the key with which associated data is the
most frequently written according to the profiling of the TP system. We reduce the cost
of distributed locking as much as possible by partitioning such frequently written data.

At the step 2, PCF traverses backward the definition of the key from the keys (k1
andk1′) to the arguments (arg1, arg2, arg1′ andarg2′). The gray arrows in the figure
indicate these backward traversals.

The equivalence of corresponding live values at the entries of every common domi-
nators is evaluated from the lowest common dominator. The values of the nodeso1–o6
in R1 and their corresponding nodeso1′–o6′ in R2 are all equivalent respectively.

PCF continues this backward traversal while all the corresponding live values are
equivalent, and finally stops at the highest common dominator that satisfies the equiva-
lence of the live values. At the level ofo6 ando7, o7 is not equal too7′, althougho6 is
equal too6′. Thus PCF stops the backward traversal at the level ofo4 ando5.

PCF then defines then-dimensional vector that is comprised of the live values as
the partition id for these representative transactions. The two-dimensional vectors ofo4
ando5, and their correspondingo4′ ando5′, are the partition ids in this case.

At the step 3, PCF finally generate a routing function as astatic backward program
slicewith respect to the partition id. The routing function takes a list of arguments as
its input and generates a partition id as ann-dimensional vector.

Every instruction to calculate the partition id is added to the routing function in the
order of their appearance in the dynamic DDG. The generated routing function usually
starts from the accesses to the arguments and ends with the definition of a partition id.
We use the result of control-flow analysis for the target TP system to add branch instruc-
tions to the routing function (Figure 10). PCF generates the guard code to terminate the
routing function to avoid executing unexecuted paths. If the routing function evaluates
a conditional branch then branches to an unexecuted path, it immediately terminates
the calculation of partition id with a special error code. We can avoid an unexpected
behavior of routing function such as an exception with this guard code.

partition id

b1

c1

b2
partition id
definition error

generated routing function

b1

c1

b2

c2

b3 b4

b5

b6

partition id
definition

key definition

representative transaction

generate

partition id

b1

c1

b2
partition id
definition error

generated routing function

partition id

b1

c1

b2
partition id
definition error

partition id

b1

c1

b2
partition id
definition error

b1

c1

b2
partition id
definition error

generated routing function

b1

c1

b2

c2

b3 b4

b5

b6

partition id
definition

key definition

representative transaction

b1

c1

b2

c2

b3 b4

b5

b6

partition id
definition

key definition

b1

c1

b2

c2

b3 b4

b5

b6

partition id
definition

key definition

representative transaction

generate

Fig. 10.Considerations on Conditional Branches

We secondly consider the case where the two distinct sets of equivalent keys appear
at the same code location (Figure 11).R1 andR2 define a set of equivalent keys at a
code location whileR3 andR4 define the other set of equivalent keys at the same code
location. It is not guaranteed that the backward traversal at the step 3 reaches the same
common dominator in this case, namely either one may stop the backward traversal
earlier. We adopt the lowest common dominator to make the most abstracted routing
function with broader coverage of input arguments. We adopt the routing functionf()
rather thang() . We use the lowest common dominator among multiple sets in general.
Even though a client needs to pay extra cost to calculate a partition id, we can reduce
wrong partitioning as much as possible by expanding the coverage of the acceptable
arguments.

f(arg1, arg2)

R1 R2 R3 R4

g(arg1, arg2)f(arg1, arg2)

R1 R2 R3 R4

g(arg1, arg2)

Fig. 11.Algorithm of PCF (2)

We also discuss the case where the two distinct sets define equivalent keys respec-
tively at the different code locations by conditional branches (Figure 12). The set ofR1
andR2, and the set ofR3 andR4, define the keys in the different code locations. If both
sets can be merged into a common dominator on the way of the backward traversal,
then we adopt the lowest common dominator for defining a partition id so that we can
expand the coverage as well. If both sets cannot be merged into a common dominator,
that is, if either one or both of which stop the backward traversal within their specific
branches, we adopt both as the partition id definitions and generates two routing func-
tions. In this case, the client needs to call each of them one by one until a partition id is
generated without any error.

The routing function may modify its arguments on the way of calculating a partition
id, although it would actually be a rare case. If the routing function does not modify the
arguments, then the client passes the arguments of a transaction request to the routing
function. Otherwise, it copies the arguments of the transaction request and passes them
to the routing function. Usually the arguments are not very big objects, and the overhead
of copying the arguments is not a big issue in that case.

When determining a partitioning criterion, the TP system developer needs to be
aware of the fact that the representative transactions may not reflect all the behavior
of the TP system. There is a case where some actually shared objects in the dynamic
DDG can be seen as if they were non-shared depending on the representative transac-
tions. In that case, the resulting candidates of partitioning criteria may include wrong

f(arg1, arg2)
R1 R2 R3 R4

g(arg1, arg2)

h(arg1, arg2)

f(arg1, arg2)
R1 R2 R3 R4

g(arg1, arg2)

h(arg1, arg2)

Fig. 12.Algorithm of PCF (3)

partitioning criteria. As we assume the use of distributed lock manager in the target
TP system, the consistency of data is not broken even if it uses a wrong partitioning
criterion. Rather, it just slows down.

Static backward program slice [11] can provide the information that is useful for the
his/her decision. More specifically, even if there is a conditional branch that has never
been executed in the representative executions but there is possible use of the object in
it, Samsara can remind him/her of that.

When the data is partitioned, there needs to be a way of identifying a partition
from a transaction request at the client side for routing the transaction request to the
target process of TP system that manages the partition. As our dynamic DDG holds all
the calculation process to reach each value in a transaction, we can extract the routing
function by which a partition id can be calculated from the values contained in the
transaction request. There is no impact on a TP system when the algorithm depends
only on the transaction request. Even if it depends on the internal states of the TP
system, we can replicate the states to the client side if such states are read-only objects.
If it were not for dynamic DDGs, it would be quite difficult to automatically determine
such routing algorithm.

There is a restriction in Samsara. As Samsara only traces what happens within a
single Java VM process, a dynamic DDG normally loses some information when the
TP system reads data from or writes data to the outside world, which typically happens
due to the TP system’s disk or network I/O. This seems to be a big restriction when we
do not have any assumptions on TP systems. We, however, can mitigate this restriction
by making some reasonable assumptions.

For representative executions, we should use a single-server version of the TP sys-
tem so that we can avoid losing the information by communication among servers. All
the configurations that are loaded from local storage or via network should be stati-
cally loaded by initialization threads at the start-up time. Otherwise, Samsara treats the
configurations dynamically loaded from the outside world, which can be considered as
read-write objects in conservative understanding. Thus, it prevents Samsara from parti-
tioning data on such paths.

Another approach to mitigate the restrictions is to give Samsara the knowledge of
the TP system. In general, a TP system consists of a transaction processing middleware
and its applications. The applications are typically restricted their behavior especially
regarding their access to the system resources. Instead, they usually use an API that the

middleware provides. With such assumption, Samsara can assert that the outgoing data
does not affects the behavior of the application using the knowledge on the API.

One of the major concerns on losing the information to the outside world is the
existence of a backend database for the TP system. We, however, can trace the behavior,
when the TP system itself has in-memory database as the front-end of the backend
database and the in-memory database allows Samsara to trace its behavior. Current
trend in the TP system arena, where transactional cache and in-memory database are
used, can support this approach.

3 How Samsara Works

This section explains the details of Samsara. It includes how we achieved the portability
of Samsara using JDI.

3.1 Mirroring Java VM

Unlike other Java-based dynamic data dependence tools, Samsara does not require a
modification of Java VM, and thus it is portable to any Java VMs. Samsara dynamically
captures data dependence of target Java programs by emulating the execution of target
programs at bytecode instruction level using JDI events. Samsara does not use byte-
code instrumentation except for accessing the array indexes, which is needed due to the
current functional limitation of the Java Debug Interface (JDI) [12] on which Samsara
depends. JDI is a high-level Java programming interface to build debugger applications
for the Java 2 Platform, Standard Edition (J2SE) [13].

Samsara includes so-called amirroring Java VM that mirrors the state of the target
Java VM running the target Java program. The state mirrored by the mirroring Java VM
is the definition of data, rather than the data itself which an ordinary Java VM traces.

Dependence Within a Frame Figure 13 shows how mirroring Java VM mirrors the
state of the target Java VM for tracing dependence within a frame. While the target Java
VM traces values on a stack, Samsara’s mirroring Java VM traces definitions on a stack.

x = y + z iload y

iload z

iadd

istore x

Target Java VMBytecode
Target Java

program Mirroring Java VM

trace values trace definitions

y
x

z

2

3
2

5

y
x

z
2
3

y
x

z
2
3

5
y
x

z

Stack StackLocal variables Local variables

x = y + z iload y

iload z

iadd

istore x

Target Java VMBytecode
Target Java

program Mirroring Java VM

trace values trace definitions

y
x

z

22

3
2
3
2

55

y
x

z
2
3

y
x

z
2
3

y
x

z
2
3

5
y
x

z
2
3

5
y
x

z

Stack StackLocal variables Local variables

Fig. 13.Dependence Within a Frame

In Figure 13, the target Java program calculatesy + z and assigns the result value
into x. The Java program is compiled into a sequence of bytecode instructions:iload y,

iload z, iadd andistore x. These instructions load the values of local integer variablesy
andz onto the stack, pops the top-two integer values from the stack, add them, pushes
the result value to the stack, and then stores the stack top integer value into the local
variablex.

The mirroring Java VM, on the other hand, understands the semantics of each byte-
code instruction from the viewpoint on how values are defined. The mirroring Java VM
first pushes the definition of the local variabley andz onto the stack, then pops the top-
two definitions from the stack, creates a new definition that refers to the two definitions
and pushes it onto the stack, and finally stores the new definition to the local variable
x. Note that the definitions and the references to them form a DAG, that is a dynamic
DDG generated in this execution.

Dependence Across FramesData dependence is also generated by calling methods
and by throwing exceptions. On calling methods, a caller may pass arguments to its
callee, and the callee may return a return value to the caller. Thus, when the callee
defines some value using its arguments and when the caller defines some value using
the return value, new data dependences are generated. Note that thethis object is also
passed as the “zeroth” argument.

Figure 14 explains how Samsara traces data dependence passed through arguments
and a return value of a method call. In this scenario, the caller calls the methodadd(a,b)
with the argumentsy andz (plus this), then assigns the return value tox. The callee
returnsa + b, which is equivalent toy + z in the caller’s frame, to the caller.

x = add(y, z) aload_0
iload y
iload z

invokevirtual add

istore x

Bytecode
Target Java

program Stack

Caller Callee (add(a,b))

Local variables

y

this

z

x

Bytecode
Target java

program Stack Local variables

iload a
iload b

iadd

ireturn

a

this

b

y

this

z

x

return a + b
copy arguments

copy a return value

x = add(y, z) aload_0
iload y
iload z

invokevirtual add

istore x

Bytecode
Target Java

program Stack

Caller Callee (add(a,b))

Local variables

y

this

z

x

Bytecode
Target java

program Stack Local variables

iload a
iload b

iadd

ireturn

a

this

b

y

this

z

x

return a + b
copy arguments

copy a return value

Fig. 14.Dependence by Method Calls

Receiving the event of method invocation instruction, the mirroring Java VM copies
the definitions of the arguments,y andz, on the caller’s stack onto the local variables
of the callee and removes the arguments from the caller’s stack. Similarly, receiving the
event of return-from-method instruction, the mirroring Java VM copies the definition
of the return value (a + b) on the callee’s stack onto the caller’s stack.

For native methods which do not have bytecode, mirroring Java VM cannot trace
dependence at bytecode instruction level. If the callee is a native method, mirroring Java
VM treats its return value as if it only depends on its arguments assuming that the callee
does not access data other than its arguments.

Some bytecode instructions implicitly or explicitly throw exceptions. We call such
instructionpotentially-excepting instruction (PEI). For example, a division instruction
like idiv throws an exception when divisor value is zero. Such exception may be caught
and referred by exception handlers, therefore we need to trace data dependence of ex-
ception objects. When a exception handler defines a new value out of the caught excep-
tion, a new data dependence is created.

Data dependence of an exception object depends on its excepting instruction and its
exception class. In case of division instruction, it is caused by the fact that the divisor
value is zero. Thus, it is considered that the dependence comes from the divisor value.
For each thread, Samsara memorizes the causes of all potential exceptions before exe-
cuting every PEIs, and when an exception is actually thrown, Samsara sets references
to the memorized causes to the thrown exception.

Dependence Across ThreadsWhen a reference to an object is stored in the fields
of other objects or classes (i.e. the object isescapedfrom the origin thread [14]), the
other threads may refer to the object and they can define another value using that object.
Samsara traces this kind of data dependence across threads as well.

obj.f = a aload obj
iload a
putfield f

aload arr
iconst 3
iload b
iastore

Bytecode
Target Java

program Bytecode
Target Java

program

aload obj
getfield f
istore x

aload arr
iconst 3
iaload
istore y

x = obj.f

arr[3] = b

y = arr[3]

object map

{obj,f}
{arr,3}

b
a

Local variables

Thread 1 Thread 2

y
x

Local variables

obj.f = a aload obj
iload a
putfield f

aload arr
iconst 3
iload b
iastore

Bytecode
Target Java

program Bytecode
Target Java

program

aload obj
getfield f
istore x

aload arr
iconst 3
iaload
istore y

x = obj.f

arr[3] = b

y = arr[3]

object map

{obj,f}
{arr,3}

b
a

Local variables

Thread 1 Thread 2

y
x

Local variables

Fig. 15.Dependence Across Threads

Figure 15 depicts how Samsara traces the data dependence generated across threads.
Unlike other data dependence tools, Samsara distinguishes the different instances of the
same class. Samsara manages an object map that associates the key of an object field
or an array element with its definition. An object field is specified as a pair of an object
identifier and a field identifier. An array element is identified as a pair of an array object
identifier and an index value. When a thread stores a value to an object field or an
array element, Samsara puts the definition to the object map with an appropriate key.
When another thread loads a value from the object field or the array element, Samsara
gets the definition from the object map with the same key. Thus, a definition created
by some thread can be referred by another thread. We made bytecode instrumentation
to runtime libraries and target Java programs, however this is due to the lack of JDI’s
capability to capture array access with an array object and an array index. If the future
specification of JDI is changed to send a special event for array access or provide an
access to the operand stack of a stack frame, then Samsara does not require bytecode
instrumentation.

Samsara Architecture Figure 16 depicts the architectural details of Samsara. The
target Java VM is executed in the debug mode as if they were debugged with a JDI-
compliant debugger, thus there is no need for additional changes for them.

Java heap

thread context

JD
I agent

Target Java VM

object map

Mirroring Java VM

event handler

Samsara Java VM

{obj,field}

{array,idx}

B
C

E
LClass file

JDI

event request

event

thread context

event handler

cascaded

Trace log
.dot
.ps
.pdf

post process

Java heap

thread context

JD
I agent

Target Java VM

object map

Mirroring Java VM

event handler

Samsara Java VM

{obj,field}

{array,idx}

B
C

E
LClass file

JDI

event request

event

thread context

event handler

cascaded

Trace log
.dot
.ps
.pdf

post process

Fig. 16.Architecture of Samsara

Samsara has an event handler cascading architecture, where multiple event handlers
can be chained. In practice, this chain always ends with the mirroring Java VM for data
dependence tracing. Other event handlers in front of the mirroring Java VM are used
for separation of concernon event sequences. Actual usage of these event handlers are
1) starting and stopping event requests using the knowledge on the target TP system; 2)
emulating missing events due to vendor specific bugs in JDI implementation; 3) event
logging for debugging Samsara itself, etc.

Samsara needs to read the same class files as the target Java VM uses. This is be-
cause current JDI does not provide an access to the constant pool of class definitions.
This limitation will be mitigated in Java 6, which allows a debugger to access to con-
stant pools [15]. Samsara looks into the class file using the Byte Code Engineering
Library (BCEL) [16]. By post-processing the trace log of Samsara, dynamic DDGs can
be visualized with Graphviz [17].

4 An Example of Data Partitioning Using Our Method

We proposed a novel data partitioning method that is capable of generating routing
functions as well as offering partitioning criteria by using dynamic DDGs in Section 2.
In this section, we will demonstrate the effectiveness of our data partitioning method
with a simple but non-trivial TP system scenario. We could verify that our method
could successfully define a partition id, generating the corresponding routing function
with our analysis method through this example scenario.

The example scenario is a simple stock exchange scenario, where clients send order
transaction requests to buy stocks. A client specifies the symbol that represents the stock
he/she wants to buy with its price to the stock exchange server (sx-server).

The source code of the sx-server is listed in Figure 17. There are two methods:
initialize() andexec() .

The methodinitialize() initializes the state of the sx-server. It is called only
once at the start-up time exclusively by a single thread, namely no other thread begins
any transaction until the sx-server completes the initialization. Samsara memorizes the

1 void initialize() {
2 requests[0] = "foo,120";
3 requests[1] = "foo,150";
4
5 symbol2codeTable = new HashMap();
6 symbol2codeTable.put("foo", new Integer(123));
7 symbol2codeTable.put("bar", new Integer(456));
8
9 inMemoryDB = new HashMap();

10 List resultSet = new ArrayList();
11 resultSet.add("foo-key1");
12 resultSet.add("foo-key2");
13 inMemoryDB.put(new Integer(123), resultSet);
14 resultSet = new ArrayList();
15 resultSet.add("bar-key1");
16 resultSet.add("bar-key2");
17 inMemoryDB.put(new Integer(456), resultSet);
18 }

1 void exec(int threadId) {
2 String request = requests[threadId];
3
4 String symbol = request.substring(0, request.indexOf(’,’));
5 Integer dbKey;
6 synchronized (symbol2codeTable) {
7 dbKey = (Integer) symbol2codeTable.get(symbol);
8 }
9 synchronized (inMemoryDB) {

10 List resultSet = (List) inMemoryDB.get(dbKey);
11 resultSet.add(request);
12 }
13 }

Fig. 17.Java Source Fragments

initial state of the sx-server by tracing this particular thread. This knowledge is later
used for recognizing shared read-only and read-write objects.

The method first creates two requests for later use for the transaction threads (lines
2 and 3). It also initializes the in-memory database (lines 9–17) as well as the symbol-
to-code table that maps a stock symbol to its code (lines 5–7). Two stock symbols are
defined (“foo ” and “bar ”), associating with their code (“123 ” and “456 ”) (lines 6
and 7). The code are later used to query on the in-memory database. It is intended that
the symbol-to-code table is to be a shared read-only table and the in-memory database
is to be a shared read-write object.

The methodexec() is called by the threads that execute transactions. The trans-
action begins at the entry of the method and commits at the exit of the method. The
method first gets the request for the thread (line 2). It then parses the request to get the
symbol, calling the methodsindexOf() andsubstring() (line 4). The symbol is
then used as the key for the symbol-to-code table to retrieve the code (line 7). The code
is used as a database key (key) to query a result set from the in-memory database (line
10).

Our first goal is to find an appropriate partition id from the dynamic DDG that is
generated by executing the sx-server. Our second goal is to generate a routing function,
defining an appropriate partition id.

Figure 18 shows the result of our analysis method. The upper graph shows a whole
dynamic DDG generated by executing two transaction threads that request “foo,120 ”
and “foo,150 ” respectively. Our analysis method has extracted the paths from the
requests to the keys (the definitions of the keys) from the whole dynamic DDG as shown
in the lower graph, which is the subgraph of the whole dynamic DDG.

<246>TPSystem$1.run(25):getfield:val$threadId:int:0<706>TPSystem$1.run(25):getfield:val$threadId:int:0

<425>HashMap.get(442):getfield:value:Object:123

<250>StockExchange.exec(72):aaload:Object:foo,120

<259>String.indexOf(710):getfield:offset:int:0 <293>String.indexOf(711):getfield:offset:int:0 <297>String.substring(1058):getfield:offset:int:0

<300>String.substring(1058):getfield:value:char[]:foo,120 <298>String.substring(1058):iadd:int:0<299>String.substring(1058):isub:int:3

<260>String.indexOf(710):iadd:int:0

<269>String.indexOf(710):iinc:int:1

<277>String.indexOf(710):iinc:int:2

<285>String.indexOf(710):iinc:int:3

<294>String.indexOf(711):isub:int:3

<308>String.hashCode(663):getfield:offset:int:0<309>String.hashCode(663):getfield:count:int:3<314>String.hashCode(664):getfield:value:char[]:foo,120<325>String.hashCode(664):getfield:value:char[]:foo,120<336>String.hashCode(664):getfield:value:char[]:foo,120

<347>String.hashCode(670):getfield:hashCode:int:101574

<319>String.hashCode(664):iadd:int:111

<318>String.hashCode(664):imul:int:111

<310>String.hashCode(663):iadd:int:3

<312>String.hashCode(663):isub:int:2

<316>String.hashCode(664):caload:char:o <323>String.hashCode(663):iinc:int:1

<330>String.hashCode(664):iadd:int:3552

<329>String.hashCode(664):imul:int:3441

<327>String.hashCode(664):caload:char:o <334>String.hashCode(663):iinc:int:0

<341>String.hashCode(664):iadd:int:101574

<340>String.hashCode(664):imul:int:98022

<338>String.hashCode(664):caload:char:f

<349>HashMap.hash(360):ishl:int:52005888

<352>HashMap.hash(364):iadd:int:-51904315

<351>HashMap.hash(362):ixor:int:-52005889

<354>HashMap.hash(366):iushr:int:258976

<355>HashMap.hash(368):ixor:int:-51645595

<357>HashMap.hash(370):ishl:int:-826329520

<358>HashMap.hash(372):iadd:int:-877975115

<360>HashMap.hash(374):iushr:int:3336906

<361>HashMap.hash(376):ixor:int:-879115393

<366>HashMap.indexFor(395):iand:int:15

<369>HashMap.get(436):aaload:Object:foo=123

<756>String.substring(1058):getfield:value:char[]:foo,150

<716>String.indexOf(710):getfield:offset:int:0 <749>String.indexOf(711):getfield:offset:int:0 <753>String.substring(1058):getfield:offset:int:0

<881>HashMap.get(442):getfield:value:Object:123

<709>StockExchange.exec(72):aaload:Object:foo,150

<754>String.substring(1058):iadd:int:0<755>String.substring(1058):isub:int:3

<717>String.indexOf(710):iadd:int:0

<725>String.indexOf(710):iinc:int:1

<733>String.indexOf(710):iinc:int:2

<741>String.indexOf(710):iinc:int:3

<750>String.indexOf(711):isub:int:3

<764>String.hashCode(663):getfield:offset:int:0<765>String.hashCode(663):getfield:count:int:3<770>String.hashCode(664):getfield:value:char[]:foo,150<781>String.hashCode(664):getfield:value:char[]:foo,150<792>String.hashCode(664):getfield:value:char[]:foo,150

<803>String.hashCode(670):getfield:hashCode:int:101574

<775>String.hashCode(664):iadd:int:111

<774>String.hashCode(664):imul:int:111

<766>String.hashCode(663):iadd:int:3

<768>String.hashCode(663):isub:int:2

<772>String.hashCode(664):caload:char:o<779>String.hashCode(663):iinc:int:1

<786>String.hashCode(664):iadd:int:3552

<785>String.hashCode(664):imul:int:3441

<783>String.hashCode(664):caload:char:o<790>String.hashCode(663):iinc:int:0

<797>String.hashCode(664):iadd:int:101574

<796>String.hashCode(664):imul:int:98022

<794>String.hashCode(664):caload:char:f

<805>HashMap.hash(360):ishl:int:52005888

<808>HashMap.hash(364):iadd:int:-51904315

<807>HashMap.hash(362):ixor:int:-52005889

<810>HashMap.hash(366):iushr:int:258976

<811>HashMap.hash(368):ixor:int:-51645595

<813>HashMap.hash(370):ishl:int:-826329520

<814>HashMap.hash(372):iadd:int:-877975115

<816>HashMap.hash(374):iushr:int:3336906

<817>HashMap.hash(376):ixor:int:-879115393

<822>HashMap.indexFor(395):iand:int:15

<825>HashMap.get(436):aaload:Object:foo=123

wwww�
<706>TPSystem$1.run(25):getfield:val$threadId:0

<709>StockExchange.exec(72):aaload:foo,150

<716>String.indexOf(710):getfield:offset:0

<749>String.indexOf(711):getfield:offset:0

<753>String.substring(1058):getfield:offset:0

<756>String.substring(1058):getfield:value:char[]:foo,150

<717>String.indexOf(710):iadd:0

<725>String.indexOf(710):iinc:1

<733>String.indexOf(710):iinc:2

<741>String.indexOf(710):iinc:3

<750>String.indexOf(711):isub:3

<755>String.substring(1058):isub:3

<754>String.substring(1058):iadd:0

<764>String.hashCode(663):getfield:offset:0

<765>String.hashCode(663):getfield:count:3

<770>String.hashCode(664)
:getfield:value:char[]:foo,150

<781>String.hashCode(664)
:getfield:value:char[]:foo,150

<792>String.hashCode(664)
:getfield:value:char[]:foo,150

<766>String.hashCode(663):iadd:3

<768>String.hashCode(663)
:isub:2

<772>String.hashCode(664)
:caload:char:o

<779>String.hashCode(663)
:iinc:1

<774>String.hashCode(664)
:imul:111

<775>String.hashCode(664)
:iadd:111

<786>String.hashCode(664):iadd:3552

<783>String.hashCode(664)
:caload:char:o

<790>String.hashCode(663)
:iinc:0

<785>String.hashCode(664)
:imul:3441

<797>String.hashCode(664):iadd:101574

<794>String.hashCode(664)
:caload:char:f

<796>String.hashCode(664):imul:98022

<803>String.hashCode(670):getfield:hashCode:101574

<805>HashMap.hash(360):ishl:52005888

<808>HashMap.hash(364):iadd:-51904315

<807>HashMap.hash(362):ixor:-52005889

<810>HashMap.hash(366):iushr:258976

<811>HashMap.hash(368):ixor:-51645595

<813>HashMap.hash(370):ishl:-826329520

<814>HashMap.hash(372):iadd:-877975115

<816>HashMap.hash(374):iushr:3336906

<817>HashMap.hash(376):ixor:-879115393

<822>HashMap.indexFor(395):iand:15

<825>HashMap.get(436):aaload:foo=123

<881>HashMap.get(442):getfield:value:123

<246>TPSystem$1.run(25):getfield:val$threadId:0

<250>StockExchange.exec(72):aaload:foo,120

<259>String.indexOf(710):getfield:offset:0

<293>String.indexOf(711):getfield:offset:0

<297>String.substring(1058):getfield:offset:0

<300>String.substring(1058):getfield:value:char[]:foo,120

<260>String.indexOf(710):iadd:0

<269>String.indexOf(710):iinc:1

<277>String.indexOf(710):iinc:2

<285>String.indexOf(710):iinc:3

<294>String.indexOf(711):isub:3

<299>String.substring(1058):isub:3

<298>String.substring(1058):iadd:0

<308>String.hashCode(663):getfield:offset:0

<309>String.hashCode(663):getfield:count:3

<314>String.hashCode(664)
:getfield:value:char[]:foo,120

<325>String.hashCode(664)
:getfield:value:char[]:foo,120

<336>String.hashCode(664)
:getfield:value:char[]:foo,120

<310>String.hashCode(663):iadd:3

<312>String.hashCode(663)
:isub:2

<316>String.hashCode(664)
:caload:char:o

<323>String.hashCode(663)
:iinc:1

<318>String.hashCode(664)
:imul:111

<319>String.hashCode(664)
:iadd:111

<330>String.hashCode(664):iadd:3552

<327>String.hashCode(664)
:caload:char:o

<334>String.hashCode(663)
:iinc:0

<329>String.hashCode(664)
:imul:3441

<341>String.hashCode(664):iadd:101574

<338>String.hashCode(664)
:caload:char:f

<340>String.hashCode(664):imul:98022

<347>String.hashCode(670):getfield:hashCode:101574

<349>HashMap.hash(360):ishl:52005888

<352>HashMap.hash(364):iadd:-51904315

<351>HashMap.hash(362):ixor:-52005889

<354>HashMap.hash(366):iushr:258976

<355>HashMap.hash(368):ixor:-51645595

<357>HashMap.hash(370):ishl:-826329520

<358>HashMap.hash(372):iadd:-877975115

<360>HashMap.hash(374):iushr:3336906

<361>HashMap.hash(376):ixor:-879115393

<366>HashMap.indexFor(395):iand:15

<369>HashMap.get(436):aaload:foo=123

<425>HashMap.get(442):getfield:value:123

Fig. 18.Dynamic DDG with the StockExchange Scenario

The left-hand side nodes of the whole dynamic DDG were most created by the
thread of “foo,150 ,” while the right-hand side nodes were most created by the thread
of “ foo,120 .” The bottom nodes in the dynamic DDG were mostly created by the
initialization thread.

The two downward triangles were the nodes that represent the requests, that is, the
thread ids passed as the argument for the methodexec() . The two upward triangles
were the keys. The paths from the requests to the keys are specified by the bold edges.
The nodes on the paths are specified by the bigger rectangle in order to distinguish them
from other nodes that are irrelevant to the definition of the keys. It might be observed
that the paths resemble each other despite the fact that each threads were executed
independently. The dynamic DDG revealed that the calculation of the keys only depend
on the requests and the shared read-only objects.

The lower subgraph that were extracted using our analysis method shows the details
of how the keys have been defined. As is discussed in Section 2, we traversed backward
the dynamic DDG from the keys to the requests, evaluating the equivalence between the
corresponding nodes. Note that each node displays its own value on the label. For ex-
ample, the node 706 asserts that an integer value zero is obtained by executinggetfield.
Also, the node 709 asserts that a string value “foo,150 ” is obtained byaaload.

As the result of the backward traversal, our analysis method could find the definition
of a partition id and its corresponding routing function. Our method discovered the path
specified with the bold edges and the nodes with bold sides were the nodes that were not
equivalent to their corresponding nodes. Other nodes had exactly the same values with
their corresponding nodes. Thus, the vectors that consist of the nodes 250, 300, 314,
325 and 336, and the nodes 709, 759, 770, 781 and 792, can be defined as partition ids.
The routing function can be defined by extracting every instruction to calculate those
nodes. The routing function calculates partition ids from transaction requests.

5 Related Work

Redux [18] is a tool that generates dynamic dataflow graphs of target programs at ma-
chine instruction level. It is implemented as a skin of Valgrind [19] and works with pro-
gram binaries, and thus is not restricted to programs written in any particular language.
However, for Java programs which are represented in bytecode, it generates dataflow
graphs of the Java VM that interprets the target Java programs instead of the graphs of
the target Java programs themselves. It is not straight-forward or almost impossible to
understand dependences in Java programs from the instruction level trace of Java VM.

Umemori et al. [20] propose a dynamic program slicing technique calleddepen-
dence cache (DC) slicingwhich combines a dynamic data dependence analysis with
a static control dependence analysis. Their implementation uses aspect-oriented pro-
gramming (AOP) with AspectJ [21] to instrument code for collecting dynamic data
dependence, thus it requires an access to the source code of the target Java programs.
Samsara works with Java bytecode (class files) and does not require an access to their
source code.

Nishiyama [22] proposes an improved dynamic escape analysis method with read-
barrier technique. Although its original goal is to reduce the number of memory loca-

tions that must be checked at runtime for detecting data races, it effectively eliminates
the same conservativeness of conventional escape analysis as we addressed with Sam-
sara in the sense that it captures only objects that are actually accessed by multiple
threads. Our method can not only classify the objects used in a TP system by their
access patterns, but also find the candidates of partitioning criteria and their routing
functions using its dynamic DDG. Unlike his dynamic analysis which is implemented
as a modification of HotSpot Java VM [23], our toolSamsarais portable to any Java
VM.

Coign [24] is an automatic distributed partitioning system for binary applications
built from distributable COM components. It detects the application’s inter-component
communication through scenario-based profiling. Then it applies a graph-cutting algo-
rithm to partition the application across a network to minimize execution delay due to
network communication. Unlike Coign, our method focuses on partitioning data across
servers and/or processors to optimize the cost of data access.

6 Conclusions

We have proposed a novel analysis method that allows a TP system developer to find
even a non-intuitive partitioning criterion by generating a dynamic DDG for a target
Java-based TP system. We used dynamic DDGs to see the calculation of the database
keys as well as to recognize data access patterns such as non-shared and shared read-
only objects. Using the data access patterns, our method has enabled to discover the
database keys that could be used for data partitioning. While escape analysis method
also could exhibit data access patterns, our method have enabled to generate routing
functions that calculate partition ids as well, taking advantage of a dynamic DDG.

We are planning to measure the performance of a TP system in more realistic sce-
nario. We assumed that there exists a single entry point of transactions in the target TP
system. We will extend our method so that it can allow multiple entry points as well.
Samsara traces the dynamic data dependence within a single Java VM. We will extend
Samsara to trace dynamic data dependence across the Java VMs, and more generally
any processes.

7 Acknowledgements

We would like to thank the members of the Business Computing Platform group of
Tokyo Research Laboratory for their support and valuable comments.

References

1. Jim Gray and Andreas Reuters.Transaction Processing: Concepts and Techniques. Morgan
Kaufmann Publishers, Inc., 1993.

2. Gordon E. Moore. No exponential is forever: But ”forever” can be delayed! InProceedings
of the 2003 IEEE International Solid-State Circuits Conference (ISSCC ’03), pages 20–23,
2003.

3. IBM Corporation. IBM BladeCenter. http://www.ibm.com/systems/bladecenter/.
4. Intel Corporation. Multi-core from Intel. http://www.intel.com/multi-core/.
5. IBM Corporation. Cell Broadband Engine resource center.

http://www.ibm.com/developerworks/power/cell/.
6. Sun Microsystems, Inc. UltraSPARC T1. http://www.sun.com/processors/UltraSPARC-T1/.
7. Advanced Micro Devices, Inc. AMD multi-core. http://multicore.amd.com/.
8. Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom.Database Systems: The

Complete Book. Prentice Hall PTR, 2002.
9. Steven S. Muchnick.Advanced Compiler Design and Implementation. Morgan Kaufmann

Publishers, Inc., 1997.
10. Kai Li and Paul Hudak. Memory coherence in shared virtual memory systems.ACM Trans-

actions on Computer Systems, 7(4):321–359, 1989.
11. Frank Tip. A survey of program slicing techniques.Journal of Programming Languages,

3(3):121–189, 1995.
12. Sun Microsystems, Inc. Java debug interface (JDI).

http://java.sun.com/j2se/1.5.0/docs/guide/jpda/jdi/.
13. Sun Microsystems, Inc. Java 2 platform, standard edition (J2SE). http://java.sun.com/j2se/.
14. Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and Sam Midkiff.

Escape analysis for Java. InProceedings of the 1999 ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA ’99), pages 1–19,
1999.

15. Bug Database. Bug ID 5024104: Allow access to constant pool in classtype.
http://bugs.sun.com/bugdatabase/view bug.do?bugid=5024104, 2004.

16. Apache Software Foundation. The byte code engineering library.
http://jakarta.apache.org/bcel/.

17. Emden R. Gansner and Stephen C. North. An open graph visualization system and its ap-
plications to software engineering.Software—Practice and Experience, 30(11):1203–1233,
2000.

18. Nicholas Nethercote and Alan Mycroft. Redux: A dynamic dataflow tracer. InProceedings
of the 3rd International Workshop on Runtime Verification (RV ’03), 2003.

19. Nicholas Nethercote and Julian Seward. Valgrind: A program supervision framework. In
Proceedings of the 3rd International Workshop on Runtime Verification (RV ’03), 2003.

20. Fumiaki Umemori, Kenji Konda, Reishi Yokomori, and Katsuro Inoue. Design and imple-
mentation of bytecode-based Java slicing system. InProceedings of the 3rd International
Workshop on Source Code Analysis and Manipulation (SCAM ’03), pages 108–117, 2003.

21. The Eclipse Foundation. AspectJ project. http://www.eclipse.org/aspectj/.
22. Hiroyasu Nishiyama. Detecting data races using dynamic escape analysis based on read

barrier. InProceedings of the 3rd Virtual Machine Research and Technology Symposium
(VM ’04), pages 127–138, 2004.

23. Sun Microsystems, Inc. Java HotSpot technology. http://java.sun.com/products/hotspot/.
24. Galen C. Hunt and Michael L. Scott. The Coign automatic distributed partitioning system. In

Proceedings of the 3rd Symposium on Operating System Design and Implementation (OSDI
’99), pages 187–200, 1999.

