

February 27, 2007

RT0712

Computer Science 8 pages

Research Report
Exploiting patterns to reduce IP coefficient matrices

Takayuki Yoshizumi
IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if

accepted. It has been issued as a Research Report for early dissemination of its contents. In view of the

expected transfer of copyright to an outside publisher, its distribution outside IBM prior to publication

should be limited to peer communications and specific requests. After outside publication, requests

should be filled only by reprints or copies of the article legally obtained (for example, by payment of

royalities).

Exploiting patterns to reduce IP coefficient matrices
Takayuki Yoshizumi

Abstract

In this report, we present a novel method to reduce the non-zero factors in the coefficient matrices of

integer programming problems by extracting coefficient patterns that appear frequently in the

coefficient matrix and by replacing these patterns with new variables. Using this method, we can

effectively reduce the memory requirements for maintaining the data structures, and for solving IP

problems with IP solvers.

1. Introduction

We can now solve large integer programming (IP) problems with state-of-the-art IP solvers, such as

CPLEX1 [1], in practical calculation times. However, some large problems cannot be solved due to

their memory requirements. For example, for an IP problem from an actual scheduling problem in

the steel industry[2], the number of variables is in the hundreds of thousands, the number of

constraints is in the tens of thousands, and the number of non-zero factors in the coefficient matrix is

over one hundred million. To hold the data structure for such large problems, we need more than 1

GB of memory. To solve such a problem with an IP solver requires several GB of memory. Such

memory requirements often exceed physical memory capacities, and sometimes even exceed the

32-bit address space of the most pervasive 32-bit Windows environments.

It is more effective to store only the non-zero factors of a coefficient matrix, not the
entire matrix. The memory requirements to store the data structure for a problem
depend on the number of non-zero factors. The memory requirements for an IP solver
are proportional to the number of non-zero factors and are 2 to 5 times larger than the
memory that stores the data structure. Reducing the number of non-zero factors has a
large impact on the overall memory requirements.
While there is active research on speeding up IP solvers by adding redundant
constraints or reformulating IP problems [3][4], so far there has been no research on
methods to reduce the size of the problem (as the number of non-zero factors).
In this report, we present a novel method to reduce the number of non-zero factors in a
coefficient matrix by extracting coefficient patterns that appear frequently in the
coefficient matrix and replacing these patterns with new variables. Our method can
effectively reduce the memory requirements for the data structures and for solving the
IP problems with IP solvers.

1 CPLEX is a registered trademark of ILOG.

2. An algorithm for reducing a coefficient matrix.
The method that we present in this report consists of two major algorithmic components.
One clusters the coefficient matrix, and the other reduces the non-zero factors by using
variable transformations. In the rest of this section, we describe these two components.

2.1. Coefficient matrix clustering
We produce coefficient matrix clusters that consist of subsets of the variables and
constraints. The desirable conditions for these coefficient matrix clusters are:
• For each constraint included in a particular cluster, most of its coefficients are

non-zero, or most of its coefficients are zero.
• For each variable included in a particular cluster, most of its coefficients are the

same, or most of its coefficients are zero.
In general, it is difficult to find good coefficient matrix clusters. It is possible, however,
to make good clusters by considering the nature of an actual problem, because IP
problems are usually formulated from actual problems in the real world.
For example, IP constraints mapped from the same kind of constraint from an actual
problem can form a constraint cluster. Those variables that represent the same event of
an actual problem may form a variable cluster. Finally, we get coefficient matrix
clusters as all of the pairs of a constraint cluster and a variable cluster. Figure 1 shows
an example of coefficient matrix clusters made with this method. In this example, we
have k variable clusters, l constraint clusters, and kl coefficient matrix clusters. (Since
we can arbitrarily renumber the subscripts of variables and constraints in IP problems,
we renumbered them in order that those elements that are included in the same cluster
are sequentially next to each other.)

Figure 1: An example of coefficient matrix clusters.

2.2. Reducing non-zero factors by variable transformation
We seek to reduce the non-zero factors for each coefficient matrix cluster. Figure 2
shows an example of a coefficient matrix cluster. (For the sake of simplicity, the
subscripts are renumbered from 1.)

Figure 2: An example of a coefficient matrix cluster

2.2.1. Reduction by dictionary compression
One of the basic ideas of data compression is the dictionary compression method, which
replaces a pattern that appears frequently in the data set with a shorter pattern. This
idea can be applied to compression of a coefficient matrix. Suppose that a common
coefficient pattern that appears in multiple constraints is replaced by a new variable. In
the case of the example shown at Figure 3, we can find a common pattern that is shown
as six shaded regions.

Figure 3: Common pattern of the coefficient matrix cluster.

In the constraints of 532 ,, CCC , their coefficients for 652 ,, xxx are same. Introducing

the new variable y, we can define a new constraint for yxxxCy =++− 652 723: , which

can be added to the IP formulation. Then we erase the terms for 652 ,, xxx for the
constraints of 532 ,, CCC , and add y to each of these constraints. These operations are

mathematically equivalent. Finally, we get the revised coefficient matrix cluster, which
is shown in Figure 4. While the number of variables and constraints has increased by
one, the number of non-zero factors has decreased to a greater degree.

Figure 4: A coefficient matrix cluster after dictionary compression

When the number of variables that relate to the reduction is k and the number of
constraints is l, we can reduce the number of non-zero factors by)1(−−− lkkl . The

more constraints and variables we can extract from a coefficient matrix cluster, the
more non-zero factors we can eliminate. In general, however, it is difficult to extract
those subsets of the variables and constraints that maximize)1(−−− lkkl . (In

practice, it is reasonable to use heuristic methods that can extract good subsets of the
variables and constraints in practical time.)
Since a pattern must be exactly the same among the constraints, the maximum values
of)1(−−− lkkl will not be very much large in some problems. In such problems, the

effectiveness of this method will tend to be limited.

2.2.2. Reduction by extracting the coefficients that appear most frequently
To solve the difficulties of dictionary compression, we present a novel method, which
exploits the coefficients that appear most frequently.
First, we select constraints that will be candidates for elimination in a later step. We
consider those constraints for which the number of non-zero factors is greater than or
equal to half of the number of variables in the cluster as candidates. For the example
shown at Figure 2, those constraints for which the number of non-zero factors is less
than or equal to 3 will be excluded from the later step, because the number of variables
of the cluster is 7. Only 4C is excluded in this example. (The dark gray region of Figure

5 represents those elements that are excluded from the later steps.)
Next we select variables and their coefficients that will be candidates for elimination.
For each variable, we select the coefficient that appears most frequently and count its
number of occurrences. If the frequency of occurrences of the coefficient is less than or
equal to half of the number of constraints in the cluster, its variables are excluded. In
Figure 2, the number of constraints that will be candidates for elimination is 4, because

4C was already excluded. We exclude those variables whose frequency of occurrence is
less than or equal to 2. In this example, 3x is excluded because its frequency of

occurrence is 2. Variables that will be candidates for elimination are shown with
half-tone meshing in Figure 5.

Figure 5: Extraction of components for reduction.

At this point, we introduce a new variable z, and define a linear combination of the
variables which will be candidates for elimination as z:

zxxxxxxCz =+++−− 765421 72935:

This constraint is added to the IP problem, the variable z is added to each constraint
that will be candidates for elimination, and the non-zero factors of those constraints are
removed. Figure 6 shows the constraints after reduction of the non-zero factors. (The
reason why some variables and constraints are excluded before reduction is that this
transformation may increase the number of non-zero factors if they are not excluded.)
It is possible to efficiently reduce the non-zero factors among many constraints by
defining new constraints that exploit the coefficients that appear most frequently. The
number of non-zero factors that can be reduced by this method is larger than that by
dictionary compression.
This method can, of course, be applied to linear programming (LP) and mixed integer
programming (MIP) problems as well as to integer programming problems.

Figure 6: Constraints after transformation.

3. Experimental results
Table 1 shows experimental results for the IP problem formulated from an actual
scheduling problem. We used CPLEX version 9.0 as the IP solver. We measure several
indices for the original problem, for dictionary compression, and for the proposed
method. The size of each IP problem is represented as the number of variables, of
constraints, or of non-zero factors. The percentages in parenthesis represent the ratios
of the size of the reduced problem to the original problem. MPS (Mathematical
programming system) is a format to describe a mathematical programming problem
such as IP, LP, or MIP. The MPS file size and the memory required for storing the data

structure of that problem are about the same size. The memory requirements for
CPLEX are about 2 to 5 times larger than the MPS file sizes. We can roughly estimate
the memory requirements from the MPS file sizes. The “reduction time” represents the
time that is used for reducing non-zero factors. The “CPLEX time” represents the time
for CPLEX. The termination condition for CPLEX is an optimality gap of 1% or a
maximum running time of 2,000 seconds. “Total time” is the total running time, which
consists of “reduction time”, “CPLEX time”, and others, such as file I/O, generating the
IP data structure from the original scheduling problem, and so on.
Using the proposed method, the number of non-zero factors can be reduced down to less
than 10 percent of the original problem while increasing the numbers of variables and
constraints by only a few percent. The reduction efficiency of proposed method is about
two times better than the dictionary compression method. This result shows that
proposed method can effectively reduce the non-zero factors of IP problems.
For computational time, we believe the reduction time is practical because it is not very
large compared with the running time of CPLEX and the total time. The Cplex times of
both reduction methods are better than the time for the original IP problem. However
the Cplex time of the proposed method is not always better than the dictionary
compression method. One of the reasons is that sometimes adding new variables may
make an IP problem more difficult for an IP solver even if the IP problems are
mathematically exactly the same.

Table 1: Experimental results

instance reduction

method

#variables #constraints #non-zero

factors

MPS file

size(MB)

reduction

time (sec)

CPLEX

time

Total

time

None 21,192 7,794 9,704,453 246 N/A 247 362

Dictionary
21,270

(100.4%)

7,872

(101.0%)

1,924,051

(19.8%)
49 43 46 168

1

Proposed
21,292

(100.5%)

7,894

(101.3%)

914,132

(9.4%)
24 53 85 213

None 63,576 21,086 29,113,359 738 N/A 335 593

Dictionary
63,810

(100.4%)

21,320

(101.1%)

5,772,153

(19.8%)
148 129 91 400

2

Proposed
63,876

(100.5%)

21,386

(101.4%)

2,742,396

(9.4%)
72 159 165 488

None 32,556 12,467 9,100,860 231 N/A 97 201

Dictionary
32,720

(100.5%)

12,631

(101.3%)

2,701,976

(29.7%)
70 38 57 170

3

Proposed
32,788

(100.7%)

12,699

(101.9%)

1,470,430

(16.2%)
39 49 27 147

None 97,668 35,651 27,302,580 693 N/A 496 739

Dictionary
98,160

(100.5%)

36,143

(101.4%)

8,105,928

(29.7%)
209 114 74 371

4

Proposed
98,364

(100.7%)

36,347

(102.0%)

4,411,290

(16.2%)
116 147 45 362

None 204,262 50,799 111,282,850 unsolvable (out of memory)

Dictionary
204,980

(100.4%)

51,517

(101.4%)

25,057,010

(22.5%)
636 486

timeout

gap: 1.7%
3050

5

Proposed
205,162

(100.4%)

51,699

(101.8%)

11,377,172

(10.2%)
296 606

timeout

gap: 3.9%
3129

4. Conclusions
In this report, we present a novel method to reduce the non-zero factors in coefficient matrices for

integer programming problems. Experimental results showed that our method can effectively reduce

IP problem sizes. On some instances, memory requirements can be reduced to less than 10% of the

original problems.

In many instances, we can also reduce the computational time of an IP solver by problem size reductions.

However this is not always true. We will investigate the relationships between problem size reduction and

computation times of an IP solver.

References

[1] ILOG CPLEX, http://www.ilog.com/products/cplex/

[2] http://www.research.ibm.com/trl/projects/optimization/hsm_e.htm

[3] M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed integer programming

problems. ORSA Journal on Computing, 6(4):445--454, 1994.

[4] Ellis L. Johnson, George L. Nemhauser, Martin W.P. Savelsbergh, “Progress in Linear

Programming-based Algorithms for Integer Programming: An Exposition”, INFORMS Journal on

Computing, Vol. 12, No. 1, Winter 2000

