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Exploiting patterns to reduce IP coefficient matrices 
Takayuki Yoshizumi 

Abstract 

In this report, we present a novel method to reduce the non-zero factors in the coefficient matrices of 

integer programming problems by extracting coefficient patterns that appear frequently in the 

coefficient matrix and by replacing these patterns with new variables. Using this method, we can 

effectively reduce the memory requirements for maintaining the data structures, and for solving IP 

problems with IP solvers. 

 

1. Introduction 

We can now solve large integer programming (IP) problems with state-of-the-art IP solvers, such as 

CPLEX1 [1], in practical calculation times. However, some large problems cannot be solved due to 

their memory requirements. For example, for an IP problem from an actual scheduling problem in 

the steel industry[2], the number of variables is in the hundreds of thousands, the number of 

constraints is in the tens of thousands, and the number of non-zero factors in the coefficient matrix is 

over one hundred million. To hold the data structure for such large problems, we need more than 1 

GB of memory. To solve such a problem with an IP solver requires several GB of memory. Such 

memory requirements often exceed physical memory capacities, and sometimes even exceed the 

32-bit address space of the most pervasive 32-bit Windows environments. 

It is more effective to store only the non-zero factors of a coefficient matrix, not the 
entire matrix. The memory requirements to store the data structure for a problem 
depend on the number of non-zero factors. The memory requirements for an IP solver 
are proportional to the number of non-zero factors and are 2 to 5 times larger than the 
memory that stores the data structure. Reducing the number of non-zero factors has a 
large impact on the overall memory requirements. 
While there is active research on speeding up IP solvers by adding redundant 
constraints or reformulating IP problems [3][4], so far there has been no research on 
methods to reduce the size of the problem (as the number of non-zero factors). 
In this report, we present a novel method to reduce the number of non-zero factors in a 
coefficient matrix by extracting coefficient patterns that appear frequently in the 
coefficient matrix and replacing these patterns with new variables. Our method can 
effectively reduce the memory requirements for the data structures and for solving the 
IP problems with IP solvers. 
 

                                                   
1 CPLEX is a registered trademark of ILOG. 



2. An algorithm for reducing a coefficient matrix. 
The method that we present in this report consists of two major algorithmic components. 
One clusters the coefficient matrix, and the other reduces the non-zero factors by using 
variable transformations. In the rest of this section, we describe these two components. 
 

2.1. Coefficient matrix clustering 
We produce coefficient matrix clusters that consist of subsets of the variables and 
constraints. The desirable conditions for these coefficient matrix clusters are: 
• For each constraint included in a particular cluster, most of its coefficients are 

non-zero, or most of its coefficients are zero. 
• For each variable included in a particular cluster, most of its coefficients are the 

same, or most of its coefficients are zero. 
In general, it is difficult to find good coefficient matrix clusters. It is possible, however, 
to make good clusters by considering the nature of an actual problem, because IP 
problems are usually formulated from actual problems in the real world. 
For example, IP constraints mapped from the same kind of constraint from an actual 
problem can form a constraint cluster. Those variables that represent the same event of 
an actual problem may form a variable cluster. Finally, we get coefficient matrix 
clusters as all of the pairs of a constraint cluster and a variable cluster. Figure 1 shows 
an example of coefficient matrix clusters made with this method. In this example, we 
have k variable clusters, l constraint clusters, and kl coefficient matrix clusters. (Since 
we can arbitrarily renumber the subscripts of variables and constraints in IP problems, 
we renumbered them in order that those elements that are included in the same cluster 
are sequentially next to each other.) 

 

Figure 1: An example of coefficient matrix clusters. 

 



2.2. Reducing non-zero factors by variable transformation 
We seek to reduce the non-zero factors for each coefficient matrix cluster. Figure 2 
shows an example of a coefficient matrix cluster. (For the sake of simplicity, the 
subscripts are renumbered from 1.) 

 

Figure 2: An example of a coefficient matrix cluster 

2.2.1. Reduction by dictionary compression 
One of the basic ideas of data compression is the dictionary compression method, which 
replaces a pattern that appears frequently in the data set with a shorter pattern. This 
idea can be applied to compression of a coefficient matrix. Suppose that a common 
coefficient pattern that appears in multiple constraints is replaced by a new variable. In 
the case of the example shown at Figure 3, we can find a common pattern that is shown 
as six shaded regions. 

 

Figure 3: Common pattern of the coefficient matrix cluster. 

In the constraints of 532 ,, CCC , their coefficients for 652 ,, xxx  are same. Introducing 

the new variable y, we can define a new constraint for yxxxCy =++− 652 723: , which 

can be added to the IP formulation. Then we erase the terms for 652 ,, xxx  for the 
constraints of 532 ,, CCC , and add y to each of these constraints. These operations are 

mathematically equivalent. Finally, we get the revised coefficient matrix cluster, which 
is shown in Figure 4. While the number of variables and constraints has increased by 
one, the number of non-zero factors has decreased to a greater degree. 



 

Figure 4: A coefficient matrix cluster after dictionary compression 

When the number of variables that relate to the reduction is k and the number of 
constraints is l, we can reduce the number of non-zero factors by )1( −−− lkkl . The 

more constraints and variables we can extract from a coefficient matrix cluster, the 
more non-zero factors we can eliminate. In general, however, it is difficult to extract 
those subsets of the variables and constraints that maximize )1( −−− lkkl . (In 

practice, it is reasonable to use heuristic methods that can extract good subsets of the 
variables and constraints in practical time.) 
Since a pattern must be exactly the same among the constraints, the maximum values 
of )1( −−− lkkl  will not be very much large in some problems. In such problems, the 

effectiveness of this method will tend to be limited. 
 
2.2.2. Reduction by extracting the coefficients that appear most frequently 
To solve the difficulties of dictionary compression, we present a novel method, which 
exploits the coefficients that appear most frequently. 
First, we select constraints that will be candidates for elimination in a later step. We 
consider those constraints for which the number of non-zero factors is greater than or 
equal to half of the number of variables in the cluster as candidates. For the example 
shown at Figure 2, those constraints for which the number of non-zero factors is less 
than or equal to 3 will be excluded from the later step, because the number of variables 
of the cluster is 7. Only 4C  is excluded in this example. (The dark gray region of Figure 

5 represents those elements that are excluded from the later steps.) 
Next we select variables and their coefficients that will be candidates for elimination. 
For each variable, we select the coefficient that appears most frequently and count its 
number of occurrences. If the frequency of occurrences of the coefficient is less than or 
equal to half of the number of constraints in the cluster, its variables are excluded. In 
Figure 2, the number of constraints that will be candidates for elimination is 4, because 

4C was already excluded. We exclude those variables whose frequency of occurrence is 
less than or equal to 2. In this example, 3x is excluded because its frequency of 

occurrence is 2. Variables that will be candidates for elimination are shown with 
half-tone meshing in Figure 5. 



 

Figure 5: Extraction of components for reduction. 

At this point, we introduce a new variable z, and define a linear combination of the 
variables which will be candidates for elimination as z: 

zxxxxxxCz =+++−− 765421 72935:  

This constraint is added to the IP problem, the variable z is added to each constraint 
that will be candidates for elimination, and the non-zero factors of those constraints are 
removed. Figure 6 shows the constraints after reduction of the non-zero factors. (The 
reason why some variables and constraints are excluded before reduction is that this 
transformation may increase the number of non-zero factors if they are not excluded.) 
It is possible to efficiently reduce the non-zero factors among many constraints by 
defining new constraints that exploit the coefficients that appear most frequently. The 
number of non-zero factors that can be reduced by this method is larger than that by 
dictionary compression. 
This method can, of course, be applied to linear programming (LP) and mixed integer 
programming (MIP) problems as well as to integer programming problems. 

 

Figure 6: Constraints after transformation. 

3. Experimental results 
Table 1 shows experimental results for the IP problem formulated from an actual 
scheduling problem. We used CPLEX version 9.0 as the IP solver. We measure several 
indices for the original problem, for dictionary compression, and for the proposed 
method. The size of each IP problem is represented as the number of variables, of 
constraints, or of non-zero factors. The percentages in parenthesis represent the ratios 
of the size of the reduced problem to the original problem. MPS (Mathematical 
programming system) is a format to describe a mathematical programming problem 
such as IP, LP, or MIP. The MPS file size and the memory required for storing the data 



structure of that problem are about the same size. The memory requirements for 
CPLEX are about 2 to 5 times larger than the MPS file sizes. We can roughly estimate 
the memory requirements from the MPS file sizes. The “reduction time” represents the 
time that is used for reducing non-zero factors. The “CPLEX time” represents the time 
for CPLEX. The termination condition for CPLEX is an optimality gap of 1% or a 
maximum running time of 2,000 seconds. “Total time” is the total running time, which 
consists of “reduction time”, “CPLEX time”, and others, such as file I/O, generating the 
IP data structure from the original scheduling problem, and so on. 
Using the proposed method, the number of non-zero factors can be reduced down to less 
than 10 percent of the original problem while increasing the numbers of variables and 
constraints by only a few percent. The reduction efficiency of proposed method is about 
two times better than the dictionary compression method. This result shows that 
proposed method can effectively reduce the non-zero factors of IP problems. 
For computational time, we believe the reduction time is practical because it is not very 
large compared with the running time of CPLEX and the total time. The Cplex times of 
both reduction methods are better than the time for the original IP problem. However 
the Cplex time of the proposed method is not always better than the dictionary 
compression method. One of the reasons is that sometimes adding new variables may 
make an IP problem more difficult for an IP solver even if the IP problems are 
mathematically exactly the same. 



 

Table 1: Experimental results 

instance reduction 

method 

#variables #constraints #non-zero 

factors 

MPS file 

size(MB) 

reduction 

time (sec) 

CPLEX 

time 

Total 

time 

None 21,192 7,794 9,704,453 246 N/A 247 362 

Dictionary 
21,270 

(100.4%) 

7,872 

(101.0%) 

1,924,051 

(19.8%) 
49 43 46 168 

1 

Proposed 
21,292 

(100.5%) 

7,894 

(101.3%) 

914,132 

(9.4%) 
24 53 85 213 

None 63,576 21,086 29,113,359 738 N/A 335 593 

Dictionary 
63,810 

(100.4%) 

21,320 

(101.1%) 

5,772,153 

(19.8%) 
148 129 91 400 

2 

Proposed 
63,876 

(100.5%) 

21,386 

(101.4%) 

2,742,396 

(9.4%) 
72 159 165 488 

None 32,556 12,467 9,100,860 231 N/A 97 201 

Dictionary 
32,720 

(100.5%) 

12,631 

(101.3%) 

2,701,976 

(29.7%) 
70 38 57 170 

3 

Proposed 
32,788 

(100.7%) 

12,699 

(101.9%) 

1,470,430 

(16.2%) 
39 49 27 147 

None 97,668 35,651 27,302,580 693 N/A 496 739 

Dictionary 
98,160 

(100.5%) 

36,143 

(101.4%) 

8,105,928 

(29.7%) 
209 114 74 371 

4 

Proposed 
98,364 

(100.7%) 

36,347 

(102.0%) 

4,411,290 

(16.2%) 
116 147 45 362 

None 204,262 50,799 111,282,850 unsolvable (out of memory) 

Dictionary 
204,980 

(100.4%) 

51,517 

(101.4%)

25,057,010 

(22.5%)
636 486 

timeout 

gap: 1.7% 
3050

5 

Proposed 
205,162 

(100.4%) 

51,699 

(101.8%)

11,377,172 

(10.2%)
296 606 

timeout 

gap: 3.9% 
3129

 
4. Conclusions 
In this report, we present a novel method to reduce the non-zero factors in coefficient matrices for 

integer programming problems. Experimental results showed that our method can effectively reduce 

IP problem sizes. On some instances, memory requirements can be reduced to less than 10% of the 



original problems. 

In many instances, we can also reduce the computational time of an IP solver by problem size reductions. 

However this is not always true. We will investigate the relationships between problem size reduction and 

computation times of an IP solver. 
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