
March 2, 2007
RT0714
Computer Science; Engineering Technology; Security 8 pages

Research Report
Verifying the Consistency of Security Policies by Abstracting
into Security Types

Kouichi Ono, Yuichi Nakamura, Fumiko Satoh, Takaaki
Tateishi
IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It
has been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or
copies of the article legally obtained (for example, by payment of royalities).

Verifying the Consistency of Security Policies by Abstracting into Security Types

Kouichi Ono Yuichi Nakamura Fumiko Satoh Takaaki Tateishi
Tokyo Research Laboratory, IBM Research

LAB-S77 1623-14 Shimotsuruma, Yamato-shi, Kanagawa, 242-8502 Japanfonono,nakamury,sfumiko,tateg@jp.ibm.com
Abstract

———————————————————————
——- The Service-Oriented Architecture (SOA) makes
application development easier, because applications can
be built from existing services with a bottom-up methodol-
ogy. However, it is difficult to determine if a desired new
service can be built from existing services. Not only the
functional consistency of the existing services, but also
the consistency of their non-functional (such as security)
aspects must be verified. Message protection is an aspect of
security. Every service needs an appropriate security policy
defining the protection of messages exchanged between the
parties to the service. Because of the intricacy of the Web
Services Security Policy Language, it is difficult to verify
the consistency of the security policies.

We are developing a method to verify the consistency of
security policies by abstracting them. Each security pol-
icy is abstracted, and then attached as a security type to
the corresponding service in the application model. The
security type denotes a security level for message protec-
tion. The security developer defines the possible abstraction
methods. In this paper, we define the constraint of abstrac-
tion methods based on the semantics of the policy language.
And also we state verifying the consistemcy of security types
by using information flow analysis.

1. Introduction

Many enterprises are developing with the Service Ori-
ented Architecture (SOA) [1] because their business mod-
els are changing more frequently. In SOA, services are self-
described and can be accessed without regard to the under-
lying IT infrastructure. Such technology independence al-
lows services to be more easily used for building business
processes. Thus, SOA is now widely recognized as having
the potential to radically improve business transformations.

SOA makes application development easier because
technology-independent services can be coupled over in-

tranets and via the Internet. Meanwhile, the underlying
computing environments on which applications are running
are becoming more complex, because computers can be net-
worked in complicated topologies, including firewalls and
intermediate servers. Therefore, the configuration of non-
functional aspects such as security requires a fairly deep
understanding of such complex environments.

We believe that security must be unified with the soft-
ware engineering process from the beginning, and thus se-
curity engineering [2][3] is important. Unfortunately, secu-
rity is considered as an afterthought in most actual develop-
ment projects, in the sense that security is added after the
functional requirements are implemented. It is well known
that finding defects downstream greatly increases the costs
of removal and repair.

It is difficult to determine if a desired new service can
be built from existing services on the underlying comput-
ing environments by using a bottom-up methodology, e.g.
by Component Business Modeling (CBM) [4]. Not only
the functional consistency of the existing services, but also
the consistency of their non-functional aspects such as se-
curity must be verified. Message protection is an aspect of
security. Every service needs an appropriate configuration
as a security policy defining the protection of messages ex-
changed between the parties to the service. Since the Web
Services Security Policy Language (WS-SecurityPolicy) [5]
is intricate, it is difficult to verify the consistency of these-
curity policies.

In this paper, we propose a verification method for the
consistency of security policies by abstracting them. The
security developer defines the possible abstraction methods,
which are constrained based on the semantics of the pol-
icy language. Each security policy is abstracted with the
defined abstraction method. Then it is attached as a secu-
rity qualifier to the corresponding service in the application
model. The security qualifier denotes a security level for
message protection. If the process flow of the application is
given, then the consistency of the security qualifiers can be
verified by using information flow analysis.

The rest of this paper is organized as follows: Section 2

describes how to incorporate security into the SOA. In sec-
tion 3, we describe a verification method for security poli-
cies by abstracting them. Section 4 discusses related work
and some open issues in our own work. In Section 5, we
conclude this paper.

2. SOA and Security2.1. Servie-Oriented Arhiteture
Applications can be developed based on SOA by using

a top-down methodology or a bottom-up methodology as is
used here. CBM is the bottom-up methodology we chose,
and applications will be built from the existing services by
using CBM. In this paper, an example of an application
which is built from existing services is used. Fig. 1 shows
the example. The example is the Supply Chain Manage-
ment Application defined by the Web Services Interoper-
ability Organization (WS-I) [6]. The SCM application con-
sists of three sub-systems: Demo System, Retailer System,
and Manufacturing System. The application is built from a
number of existing services: Logging Service, Retailer Ser-
vice, Warehouse Service, Warehouse Callback Service, and
Manufacturing Service.

Figure 1. WS-I Supply Chain Management2.2. Seurity Poliy
From the perspective of security, every service is sup-

posed to have a security policy which represents the pol-
icy of the security required for the service. This paper fo-
cuses on message protection as one of the aspects of secu-
rity, and it is accepted that the security policy specified in
WS-SecurityPolicy is assigned to every service as in Fig. 2.
The security policy defines a policy for how incoming mes-
sages to the service must be protected. The message protec-
tion mainly works using encryption technologies and digi-
tal signature technologies. The encryption technologies are
related to the confidentiality of the messages, and the digi-
tal signature technologies are related to the integrity of the
messages.

Figure 2. WS-I Supply Chain Management
and Security Policies

When developing an application from the existing ser-
vices with a bottom-up methodology like CBM, every ser-
vice has its own security policy prior to the service com-
position. The service composition also defines the flows
regarding what data and how the data of the messages is
passed from one service to another service. Therefore, the
service composition will need to verify the consistency of
the security policy for message protection. For example, in
the WS-I SCM application, suppose that the encryption of
the order information with a strong cipher is specified in the
security policy of the Retailer Service, and the encryption
of the order information with a weak cipher is specified in
the security policy of the Warehouse Service. The order in-
formation given by requester must be protected with high
confidentiality, because the security policy of the Retailer
Service calls for encryption with a strong cipher. However,
that order information will be passed from the Retailer Ser-
vice to the Warehouse Service while protecting it with low
confidentiality because the security policy of the Warehouse
Service calls for encryption with a weak cipher. For devel-
opment with a bottom-up methodology like CBM, each ser-
vice was defined as a service component in advance, and its
security policy was also defined prior to the service compo-
sition. That means it is possible that the security policiesof
some of the service components will be inconsistent when
an application is built from the service components.

3. Verifying the Consistency of Security Poli-
cies3.1. Abstration Method

In this section, we propose a method to verify the con-
sistency of security policies. The basic idea is that each
security policy is translated into the corresponding security
qualifier and the consistency of the qualifiers is verified with

a process flow. A security qualifier is a sort of security type,
and consists of a number of security levels. In this paper,
each security qualifier consists of a confidentiality level and
an integrity level. Each set of security levels is totally or-
dered (or a lattice), and therefore, the set of security quali-
fiers is a lattice. The translation from a security policy into
a security qualifier is called “the abstraction of a security
policy” in this paper. Fig. 3 shows the abstraction of secu-
rity policies of Fig. 2. In Fig. 3, “high”, “middle”, “strong”,
and “normal” represent security levels. In addition, a map-
ping from security policies to security qualifiers is called
“an abstraction method for security policies”.

Figure 3. Abstraction of Security Policies

The consistency of the security qualifiers is verified
with process flows by using an information flow analy-
sis technique [7][8]. In this paper, we specify process
flows in Web Services Business Process Execution Lan-
guage [9][10] (BPEL for short). Parameter variables in any
operation that the process flow describes are typed with a
security qualifier, and other variables which are used for in-
vocations of outside services are also typed with the security
qualifiers of the outside services. The information flow of
the process flow is analyzed statically by using type infer-
ence of the variables typed with the security qualifiers.

Fig. 4 shows the systems structure of our method. An
abstraction method has to be defined by the security devel-
oper prior to the verification. Defining abstraction meth-
ods is subject to several constraints based on the semantics
of WS-SecurityPolicy. The constraints are discussed in the
following section.3.2. Typing Rules

A security type system is defined as a set of typing
rules. A BPEL description (or its subexpressions) will be
typed with a security type by the typing rules. It is sup-
posed thatexp stands for an expression,v stands for a vari-
able, andA stands for an activity or a sequence of acitiv-
ities. V ars(exp) denotes a set of variables used inexp,

Figure 4. System StructureType(v) denotes a security type where the variablev is
typed,Type(Sv) denotes a set of security types ofType(v)
where variablev in Sv,UB(ST) denotes the upperbound of
security types inST , andLB(ST) denotes the lowerbound
of security types inST . Tub stands for the upperbound of
allsecurity types, andTlb stands for the lowerbound of allse-
curity types. In addition,vub stands for a variable typed asTub (i.e. Type(vub) = Tub, ` vub : Tub), andvlb stands for
a variable typed asTlb (i.e. Type(vlb) = Tlb, ` vlb : Tlb).
We write` exp : T to mean that the expressionexp has
typeT according to the typing rules. Similarly,[p℄ ` A
means the activity A in the BPEL description istypablein
the security context pc. T1 v T2 means that an order re-
lationship is defined on security typesTi, and the security
typeT2 is upper thanT1. Using those notations, the typ-
ing rules for BPEL (a subset of WS-BPEL version 2.0) are
defined as follows:(1) ` exp : Tlb(2) ` exp : LB(Type(V ars(exp)))(3) ` exp : Tu ` Tl v Tu` exp : Tl(4) ` v : Tlb[p℄ ` <copy><from expression="exp"/>

<to variable="v"/>
</copy>(5) ` exp : T ` v : T[T ℄ ` <copy><from expression="exp"/>
<to variable="v"/>

</copy>(6) [p℄ ` A1 [p℄ ` A2[p℄ ` <assign>A1 A2</assign>(7) [p℄ ` A1 [p℄ ` A2[p℄ ` <sequence>A1 A2</sequence>

(8) ` exp : T [T ℄ ` A[T ℄ ` <if><condition>exp</condition>A
</if>(9) ` exp : T [T ℄ ` A1 [T ℄ ` A2[T ℄ ` <if><condition>exp</condition>A1
<else>A2</else>

</if>(10) ` exp : T [T ℄ ` A ` Te v T [Te℄ ` Ae[Te℄ ` <if><condition>exp</condition>AAe
</if>(11) ` exp : T [Tl℄ ` A ` Tl v T[Tl℄ ` <elseif><condition>exp</condition>A
</elseif>(12) ` exp : T [Tl℄ ` A1 [Tl℄ ` A2 ` Tl v T[Tl℄ ` <elseif><condition>exp</condition>A1
<else>A2</else>

</elseif>(13) ` exp : T [Tl℄ ` A ` Te v Tl v T [Te℄ ` Ae[Te℄ ` <elseif><condition>exp</condition>AAe
</elseif>(14) ` exp : T [T ℄ ` A[T ℄ ` <while><condition>exp</condition>A
</while>(15) ` exp : T [T ℄ ` A[T ℄ ` <repeatUntil>A<condition>exp</condition>
</repeatUntil>(16) ` es : Ts ` ef : Tf ` T = LB(fTs; Tfg) [T ℄ ` A[T ℄ ` <forEach counterName="v">

<startCounterValue>es
</startCounterValue>
<finalCounterValue>ef
</finalCounterValue>
<scope>A</scope>

</forEach>(17) [Tu℄ ` A ` Tl v Tu[Tl℄ ` A
The rules (1)-(3) are for typing an expression, (4)-(6)

are for assignment, (8)-(13) are for conditional branch, and
(14)-(16) are for iterations (loops). The rule (17) is asub-
sumptionrule. It denotes that if a BPEL description (or an
activity) is typable in a security contextTu then it is typable
in a lowersecurity contextTl.

The rules are used for typing not only security levels of
confidentiality but also security levels of integrity. In the
context of confidentiality, a formulaT1 v T2 represents
“the confidentiality of security typeT2 is higher thanT1.
However in the context of integrity, the same formulaT1 vT2 represents “the integrity of security typeT2 is weaker
thanT1. The meanings of order predicatesv andw are not
intuitive in the context of integrity because the information

flow direction is the exact opposite of the direction in the
context of confidentiality.3.3. Constraints on Abstration

The specification of WS-SecurityPolicy specifies the
syntax and semantics of security assertions. For example,
a <sp:AlgorithmSuite> assertion designates an al-
gorithm suite which will be applied to targeted elements
and/or parts for their encryption and/or digital signatures.
In an <sp:AlgorithmSuite> assertion, an algorithm
suite name is specified, which represents a suite of mes-
sage digest function for digital signature, encryption, sym-
metric/asymmetric key wrap algorithms, and so on. These
algorithms have intrinsic strengths, and therefore, thereex-
ist some orders about the confidentiality level and integrity
level between arbitrary algorithm suites. Table 1 shows the
list of algorithm suites defined in the WS-SecurityPolicy
specification (extracted from the specification). In this ta-
ble, the “Algorithm Suite” row is the names of algorithm
suites, the “Enc” row is the names of encryption algorithms,
the “Dig” row is the names of secure hash functions (mes-
sage digest functions) for digital signatures, the “Sym KW”
row is the names of key wrap algorithms for symmetric
keys, and the “Asym KW” row is the names of key wrap
algorithms for asymmetric keys.

Table 1. Algorithm Suite (extracted)
Algorithm Suite Enc Dig Sym KW Asym KW
Basic256 Aes256 Sha1 KwAes256 KwRsaOaep
Basic192 Aes192 Sha1 KwAes192 KwRsaOaep
Basic128 Aes128 Sha1 KwAes128 KwRsaOaep
TripleDes TripleDes Sha1 KwTripleDes KwRsaOaep
Basic256Rsa15 Aes256 Sha1 KwAes256 KwRsa15
Basic192Rsa15 Aes192 Sha1 KwAes192 KwRsa15
Basic128Rsa15 Aes128 Sha1 KwAes128 KwRsa15
TripleDesRsa15 TripleDes Sha1 KwTripleDes KwRsa15
Basic256Sha256 Aes256 Sha256KwAes256 KwRsaOaep
Basic192Sha256 Aes192 Sha256KwAes192 KwRsaOaep
Basic128Sha256 Aes128 Sha256KwAes128 KwRsaOaep
TripleDesSha256 TripleDes Sha256KwTripleDes KwRsaOaep
Basic256Sha256Rsa15Aes256 Sha256KwAes256 KwRsa15
Basic192Sha256Rsa15Aes192 Sha256KwAes192 KwRsa15
Basic128Sha256Rsa15Aes128 Sha256KwAes128 KwRsa15
TripleDesSha256Rsa15TripleDes Sha256KwTripleDes KwRsa15

Those algorithms have influences on the strength of mes-
sage protection. The message digest function has an in-
fluence on the integrity level, the encryption has an in-
fluence on the confidentiality level, and the key wrap al-
gorithms have influences on both of these levels. How-
ever, note that the key wrap algorithm has no influ-
ence on the integrity level if no<sp:SignedParts>
assertions and no<sp:SignedElements> assertions
are specified in the<wsp:Policy> element when the
<sp:AlgorithmSuite> assertion is specified in the
<wsp:Policy> element. Also, it has no influence on the
confidentiality level if no<sp:EncryptedParts> as-

sertions and no<sp:EncryptedElements> assertions
are specified.

Every algorithm suite has an encryption algorithm:
AES-256 (“Aes256” in Table 1), AES-192 (“Aes192”),
AES-128 (“Aes128”), or Triple-DES (“TripleDes”). In
general, the strengths of those algorithm are ordered from
strongest to weakest as AES-256, AES-192, AES-128, and
Triple-DES. Therefore, from the viewpoint of the strength
of confidentiality about encryption algorithm, the algorithm
suites defined in Table 1 are ordered as follows.Basi256 = Basi256Rsa15= Basi256Sha256 = Basi256Sha256Rsa15w Basi192 = Basi192Rsa15= Basi192Sha256 = Basi192Sha256Rsa15w Basi128 = Basi128Rsa15= Basi128Sha256 = Basi128Sha256Rsa15w TripleDes = TripleDesRsa15= TripleDesSha256 = TripleDesSha256Rsa15

On the other hand, every algorithm suite has a message
digest function using either SHA-1 (“Sha1” in Table 1) or
SHA-256 (“Sha256”). In general, SHA-256 is stronger than
SHA-1. Therefore, from the viewpoint of the strength of
the integrity of the message digest function, the algorithm
suites defined in Table 1 are ordered as follows:Basi256 = Basi192= Basi128 = TripleDes= Basi256Rsa15 = Basi192Rsa15= Basi128Rsa15 = TripleDesRsa15w Basi256Sha256 = Basi192Sha256= Basi128Sha256 = TripleDesSha256= Basi256Sha256Rsa15= Basi192Sha256Rsa15= Basi128Sha256Rsa15= TripleDesSha256Rsa15

The same thing as encryption algorithm holds for
the key wrap algorithms for symmetric/asymmetric keys.
Every algorithm suite has a symmetric key: AES-256
(“KwAes256” in Table 1), AES-192 (“KwAes192”), AES-
128 (“KwAes128”), or Triple-DES (“KwTripleDes”). From
the viewpoint of the strength of integrity and confidentiality
of the symmetric key wrap algorithm, the algorithm suites
defined in Table 1 are ordered as follows.Basi256 = Basi256Rsa15= Basi256Sha256 = Basi256Sha256Rsa15w Basi192 = Basi192Rsa15= Basi192Sha256 = Basi192Sha256Rsa15w Basi128 = Basi128Rsa15= Basi128Sha256 = Basi128Sha256Rsa15w TripleDes = TripleDesRsa15= TripleDesSha256 = TripleDesSha256Rsa15

An algorithm suite has an asymmetric algorithm:
RSA-OAEP (“KwAesOaep” in Table 1) and RSA-1.5

(“KwRsa15). In general, the strengths of those algorithm
are ordered from strongest to weakest as RSA-OAEP and
RSA-1.5. Therefore, from the viewpoint of the strength of
the integrity and the confidentiality of the asymmetric algo-
rithms, the algorithm suites defined in Table 1 are ordered
as follows. Basi256 = Basi192= Basi128 = TripleDes= Basi256Sha256 = Basi192Sha256= Basi128Sha256 = TripleDesSha256w Basi256Rsa15 = Basi192Rsa15= Basi128Rsa15 = TripleDesRsa15= Basi256Sha256Rsa15= Basi192Sha256Rsa15= Basi128Sha256Rsa15= TripleDesSha256Rsa15

In addition, <sp:ProtectTokens>,
<sp:OnlySignEntireHeadersAndBody>,
<sp:IncludeTimestamp>, and
<sp:EncryptSignature> assertions also have
influences on the integrity and/or confidentiality levels.
Each assertion is optional, and it has no child nodes. Each
assertion has a influence on the integrity level. The strength
of the integrity of a security policy is weaker or equal to a
security policy which is the same except when one of the
above assertions is added.

The above security assertions are independent of each
other, and the order relationships cannot be defined among
them. For example, there are no constraints on the order
of the integrity level between a security policy where an
<sp:IncludeTimestamp> assertion is specified but an
<sp:ProtectTokens> assertion is not and a security
policy where an<sp:IncludeTimestamp>assertion is
not specified but an<sp:ProtectTokens> assertion is
specified.

Supporting tokens assertions, such as

<sp:SupportingTokens> assertion
<sp:SignedSupportingTokens> asser-
tion
<sp:EndorsingSupportingTokens>
assertion
<sp:SignedEndorsingSupportingTokens>
assertion,

are used to specify message protection with additional secu-
rity tokens. Therefore, the<sp:AlgorithmSuite> as-
sertion specified in the<wsp:Policy> element of a sup-
porting tokens assertion has an influence on the integrity
and/or confidentiality levels. In addition, the supportingto-
kens assertions for endorsing, such as

<sp:EndorsingSupportingTokens>
assertion

<sp:SignedEndorsingSupportingTokens>
assertion,

improve the strength of the integrity, because those asser-
tions sign the digital signature of the message. When one of
the signed supporting tokens assertions such as

<sp:SignedSupportingTokens> asser-
tion
<sp:SignedEndorsingSupportingTokens>
assertion,

is used for signing, it also improves the strength of the in-
tegrity, because the security token of the assertion is signed
with the signature key of the message.

The security developer has to define an abstraction
method for the security policies that satisfies the constraints
described in this section. The security developer has the
freedom to define the mapping as an abstraction if it is not
subjected to the constraints.

Suppose that the following security policies are given,
and Policy 1 is for the Retailer service, and Policy 2 is for
the Warehouse service. Note that the policy descriptions are
simplified for this explanation.

[Policy 1]
<wsp:Policy>
<sp:SymmetricBinding>

<wsp:Policy>
<sp:AlgorithmSuite>
<wsp:Policy>

<sp:Basic256Sha256/>
</wsp:Policy>

</sp:AlgorithmSuite>
<sp:IncludeTimestamp/>
<sp:ProtectTokens/>

</wsp:Policy>
</sp:SymmetricBinding>
<sp:SignedParts>

<sp:Body/>
</sp:SignedParts>
<sp:EncryptedParts>

<sp:Body/>
</sp:EncryptedParts>

</wsp:Policy>

[Policy 2]
<wsp:Policy>
<sp:SymmetricBinding>

<wsp:Policy>
<sp:AlgorithmSuite>
<wsp:Policy>

<sp:Basic256/>
</wsp:Policy>

</sp:AlgorithmSuite>
</wsp:Policy>

</sp:SymmetricBinding>
<sp:SignedParts>

<sp:Body/>
</sp:SignedParts>
<sp:EncryptedParts>

<sp:Body/>
</sp:EncryptedParts>

</wsp:Policy>

The security levels of confidentiality about these se-
curity policies are the same because the same encryp-
tion algorithm and the same symmetric key wrap al-
gorithm are used in the specified algorithm suite: Ba-
sic256Sha256 and Basic256. On the other hand, the se-
curity levels of the integrity about these security policies
are different, because the message digest function of Ba-
sic256Sha256 and Basic256 are SHA-256 and SHA-1. And
also an<sp:IncludeTimestamp> assertion and an
<sp:ProtectTokens> assertion are specified in Policy
1. That means the integrity level of Policy 1 is stronger than
Policy 2 (and, the security type of Policy 2 isupperthan the
security type of Policy 1).

Suppose that the security developer defines the security
levels of the confidentiality ashigh, middle, low, and also
defines the security levels of the integrity asstrong, nor-
mal, weak. Now the security developer defines an abstrac-
tion method for the security policies. Suppose that it is
defined that Policy 1 is mapped to [confidentiality:high,
integrity: strong] (SQ1) and Policy 2 is mapped to [confi-
dentiality:high, integrity: normal] (SQ2).3.4. Verifying the Consisteny of SeurityQuali�ers

Each security policy of a service component is trans-
lated into a security qualifier as shown in Fig. 3. The con-
sistency of the security qualifiers is verified with the pro-
cess flows. Fig. 5 defines a process flow for the oper-
ation submitOrder of the Retailer service, and Fig. 6
shows its BPEL description. The operation receives an or-
der PartsOrder submitted by theCustomer, and in-
vokes the three Warehouse services A, B, and C. When
a Warehouse service has enough stock for the order,
then the operationsubmitOrder returns a response of
OrderResponse. If any Warehouse service does not
have sufficient stock, the operation returns a response of
OrderResponse with the value 0. Note that the process
flow does not consider the partial shipping.

Figure 5. A Process Flow

<process>
<sequence>
<receive variable="PartsOrder"/>
<flow>
<sequence>
<invoke partnerLink="A" operation="shipGoods"

outputVariable="ShipResponse"/>
<if>
<condition>
ShipResponse.quantity > PartsOrder.quantity

</condition>
<assign>
<copy>
<from expression="PartsOrder.quantity"/>
<to variabe="OrderResponse.quantity"/>

</copy>
</assign>
<else>
<invoke partnerLink="B" operation="shipGoods"
outputVariable="ShipResponse"/>

<if>
<condition>
ShipResponse.quantity > PartsOrder.quantity
</condition>
<assign>
<copy>
<from expression="PartsOrder.quantity"/>
<to variabe="OrderResponse.quantity"/>

</copy>
</assign>
<else>
<invoke partnerLink="C" operation="shipGoods"

outputVariable="ShipResponse"/>
<if>
<condition>
ShipResponse.quantity > PartsOrder.quantity

</condition>
<assign>
<copy>
<from expression="PartsOrder.quantity"/>
<to variabe="OrderResponse.quantity"/>

</copy>
</assign>
<else>
<copy>
<from expression="0"/>
<to variabe="OrderResponse.quantity"/>

</copy>
</else>

</if>
</else>

</if>
</else>

</if>
</sequence>

</flow>
<reply/>

</sequence>
</process>

Figure 6. A Process Flow in BPEL

Variables in the process flow are typed with secu-
rity types defined as the security qualifiers. As de-
scribed above, the Retailer services has the security qual-
ifier SQ1 and the Warehouse service has the security
qualifier SQ2. Therefore, the variablesPartsOrder,
Customer, andOrderResponse are typed with SQ1,
and ShipResponse (which is the return value of
shipGoods in the Warehouse service) is typed with SQ2.
By using type inference, the information flow of the process
flow is analyzed. As the result of the analysis, an incon-
sistency in the integrity is found in the process flow. The
security type for the integrity of the conditional expression

<condition>
ShipResponse.quantity > PartsOrder.quantity
</condition>

is normal because the security type for the integrity of

the variablePartsOrder is strong, but the variable
ShipResponse is normal. It is the consequence of rule
(2). The program context for the integrity of this branch is
normal because the conditional expression isnormal. This
is an implicit flow. The rule (9) holds in the description.
The branch of the condition reaches the assignment

<assign>
<copy>
<from expression="PartsOrder.quantity"/>
<to variabe="OrderResponse.quantity"/>

</copy>
</assign>

The security type for the integrity of this assignment is
strong. It is the consequence of rule (5) and (9). That causes
the inconsistency in the integrity.

This inconsistency means that there is a certain level of
risk that the messages exchanged between the Retailer ser-
vice and the Warehouse service could be tampered with. It
follows that the assignment in the unintended branch may
be executed by an attacker to tamper with the response mes-
sage from the Warehouse service to the Retailer service.

4. Related Work

A method to the verify security policies by introduc-
ing an abstract link specification language was proposed in
[11]. A high-level link specification describes the intended
secrecy and authentication goals for messages flowing be-
tween SOAP processors. The link specification is compiled
into WS-SecurityPolicy configuration files. Then it is ver-
ified to check whether or not the security goals of the link
specification are met by a given set of WS-SecurityPolicy
files by using�-calculus. The method is not targeting the
WS-SecurityPolicy files written by the security developer
directly, but the WS-SecurityPolicy files generated from the
abstract link specifications. Our method can verify the WS-
SecurityPolicy files written by the security developer di-
rectly.

In [12] a framework for securing Web service composi-
tions in BPEL by using aspects is proposed. The framework
consists of three major components: A security service, a
process container and a deployment descriptor. The pro-
cess container is implemented as a set of aspects that are
specified in AO4BPEL [13], an aspect-oriented extension
to BPEL offering more modularity and adaptability. These
aspects are generated from a generic aspect library at devel-
opment time according to the deployment descriptor, which
specifies the security requirements of BPEL activities along
with the required security parameters such as keys and cer-
tificates. This method is an extension of BPEL interpreta-
tion framework, and the security is tackled by the generated
aspects at the execution time. Our method verifies the se-
curity policies statically at the time of development by ab-
stracting them.

5. Concluding Remarks

By using a bottom-up methodology like CBM, applica-
tions can be built up from existing service components in an
SOA environment. It is necessary to determine if the appli-
cation can be built from existing service components. How-
ever this is difficult because not only the functional consis-
tency of the existing services, but also the consistency of
their non-functional aspects such as security must be ver-
ified. Since every service component has its own security
policy given in advance, verifying the consistency of the
security policies is called for. However, since the Web Ser-
vices Security Policy Language is intricate, it is difficultto
verify the consistency of the security policies directly.

In this paper, we have proposed a method to verify the
consistency of security policies by abstracting them. The
possible abstraction method must be defined by the security
developer in advance. Defining an abstraction method is
constrained based on the semantics of the policy language.
Every security policy is abstracted with a defined abstrac-
tion method, and translated into the corresponding security
qualifier. The security qualifiers are attached to the service
components in the application model in order to verify their
consistency with the process flow in BPEL by using an in-
formation flow analysis technique.

Since applications are becoming more complex in the
SOA environment, it is becoming harder to develop them. A
bottom-up methodology like CBM makes the development
easier by reusing existing service components. As SOA-
based applications are being more widely adopted, their se-
curity is becoming more important. The verification method
we have proposed will decrease the difficulty at the time of
building up applications from existing service components.

References

[1] CBDI Forum Ltd. A CBDI Report Series - Guid-
ing the Transition to Web Services and SOA,
http://www.cbdiforum.com/bronze/
downloads/ws roadmap guide.pdf, 2003.

[2] P. Devanbu and D. Stubblebine. Software Engineering
for Security: a Roadmap,Proc. of the 22nd International
Conference on Software Engineering (ICSE 2000), 227–
239, Limerick, Ireland, 2000.

[3] R. J. Anderson.Security Engineering: A Guide to
Building Dependable Distributed Systems, John Wiley &
Sons, Inc., 2001.

[4] IBM Corporation. Component-based approach to
strategic change,
http://www.ibm.com/services/us/igs/cbm/
html/cbm jump.html, 2005.

[5] G. Della-Libera, M. Gudgin, P. Hallam-Baker,
M. Hondo, H. Granqvist, C. Kaler, H. Maruyama,
M. McIntosh, A. Nadalin, N. Nagaratnam, R. Philpott,
H. Prafullchandra, J. Shewchuk, D. Walter,
and R. Zolfonoo. Web Services Security Pol-
icy Language (WS-SecurityPolicy) Version 1.1,
http://specs.xmlsoap.org/ws/2005/07/
securitypolicy/ws-securitypolicy.pdf,
2005.

[6] Web Services Interoperability Organization (WS-I).
Supply Chain Management Sample Application Archi-
tecture,http://www.ws-i.org/
SampleApplications/SupplyChainManagement/
2003-12/SCMArchitecture1.01.pdf, 2003.

[7] D. Volpano, C. Irvine, and G. Smith. A Sound Type
System for Secure Flow Analysis,Journal of Computer
Security, 4(2-3):167–187, 1996.

[8] A. Sabelfeld and A. C. Myers. Language-Based
Information-Flow Security,IEEE Journal on Selected
Areas in Communications, 21(1):5–19, 2003.

[9] T. Andrews, F. Curbera, H. Dholakia, Y. Goland,
J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, and S. Weer-
awarana. Business Process Execution Language
for Web Services (BPEL4WS) Version 1.1,
http://www-128.ibm.com/
developerworks/library/specification/
ws-bpel/, 2005.

[10] OASIS Open. Web Services Business Process Execu-
tion Language Technical Committee (WS-BPEL TC),
http://www.oasis-open.org/committees/
tc home.php?wg abbrev=wsbpel

[11] K. Bhargavan, C. Fournet, and A. D. Gordon. Veri-
fying Policy-Based Security for Web Services,Proc. of
the 11th ACM Conference on Computer and Communi-
cations Security (CCS’04), 268–277, Washington DC,
U.S.A., 2004.

[12] A. Charfi and M. Mezini. Using Aspects for Secu-
rity Engineering of Web Service Compositions,Proc.
of the IEEE International Conference on Web Services
(ICWS’05), 59–66, Orlando, Florida, U.S.A., 2005.

[13] A. Charfi and M. Mezini. Aspect-Oriented Web
Service Composition with AO4BPEL,Proc. of the
European Conference on Web Services (ECOWS’04),
LNCS 3250, Springer-Verlag, 168–182, Erfurt, Ger-
many, 2004.

