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Failure Prediction of Computer Systems Based on

Point Process

Toshiyuki Yamane∗, Hideki Tai and Takayuki Kushida

Abstract

A method is presented for predicting the critical events which can lead
to system down. This method is based on the point processes and online
estimation of intensity function. By fitting a model of intensity function
to the latest part of the point process data, we can predict the expected
number of occurence of events after time T . We can also estimate how
likely the system will go down after time T . Simulation results are also
presented for artificially generated point process data.

1 Introduction

In recent years, a huge number of computational resources available for high-
performance computing. In such computational environment, these systems
inevitably suffer from relatively frequent system failures, such as disk failures,
processor malfunctioning and memory errors. Therefore, proactive actions in
system management are becoming more and more critical to prevent jobs from
interruption or restart caused by failures. In particular, failure prediction tech-
nique is quite useful to enable us to take actions such as detatchment or re-
placement of suspicious component prior to critical failures. There exist some
techniques to predict the future behavior of computer systems such as time
series prediction. However, all methods based on stationary models cannot
work for failure prediction because failures are sporadic events and are accom-
panied by usually non-stationary signs. In [7], some predictive algorithms for
computer system activity are discussed including threshold violation. However,
their method uses stationary models and may fail to catch the non-stationary
sign of failures.

In this paper, we mainly pay our attention to memory failures. It is reported
that memory failures account for 12% of root cause of system failures and con-
sidered to be one of the major cause of failures [5]. The degradation of memory
modules generally follows gradual and phased process. In normal state, the
errors rarely happens and the memory operates normally. However, some acci-
dental exogenous factor such as cosmic rays can ocassionaly affect the memory
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cells and convert the content of the momory cells. This is called soft errors, and
can be detected and corrected as long as the number of errors stays within ECC
capability. In this case, errors are called to be latent, that is, they are invisibe
to system. On the other hand, the physical memory suffers from some faults
due to aged deterioration, more and more momory cells become unreadable or
unwritable in an accelarated pace. This is called hard errors and involves more
frequent ECC events. When the memory deterioration finally transceneds the
ECC capability, the memory cells become totally unavailable. So we can assume
that the sign of system failure can be captured by increase of ECC frequency. In
addition, we assume systems with more errors than ECC capability is unreliable
and may go down. This picture of life of memory modules have the same view
of bathtub curve used in reliability engineering.

The first step is to model the error events as a point process. The point
process is an record of time stamps when events of interest happened. In our
case, the time stamp is an occurence of ECC. To catch this signs of memory
failures beyond ECC capability, we use a non-stationary Poisson process. If
we can predict the frequency of the ECC in a online manner by non-stationry
Poisson process, we can take some proactive actions while errors are latent.

2 Existing Failure Management Techniques

In this section, we summarize the existing failure management techniques which
are embedded in commercially available systems.

2.1 First Failure Data Capture

First Failure Data Capture(FFDC) is a built-in reliability feature for self-healing
and self-diagnosing, and employed by IBM eServer pSeries[2]. FFDC is com-
posed of multiple error checking devices embedded in the system and used for
recording persistent records of failures and significant software incidents. On
occurence of the first error, it captures various log files, trace files, dumps and
snapshots that describe where and when problems are detected. It also provides
a means of associating failures to one another and thereby enable discovery of
the root cause of a failure. Therefore, FFDC can eliminate time-consuming task
of reproducing errors at the problem determination by identifying the parts to
be replaced. FFDC can prevents critical failures from leading to a system failure
and thus reducing repair time.

2.2 Predictive Failure Analysis

IBM eServer xSeries and Netfinity employ a dedicated service processor for
reliability prediction called Predictive Failure Analysis (PFA), which generate
early warnings when fault tolerant function catches recoverable error events.
PFA-enabled hardwares include hard disk drives, cooling fans, processors, phys-
ical memories, and power supplies. Using advanced heuristic techniques and
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periodic self-diagnostics, Predictive Failure Analysis (PFA) can detect when
components operate abnormally out of specifications or approaching historical
failure thresholds. PFA can predict the failure of supported components, often
48 hours before it occurs. Therefore, administrators are allowed to take imme-
diate actions such as replacement of parts, or backups of valuable data, prior
to actual failures. For example, as for hard disk drives, PFA measures several
attributes, such as head flying height, to predict failures. When PFA finds aber-
ration of flying height, PFA generates a warning to the host that a failure may
occur in the near future. Since PFA basically relies on threshold logic, PFA can
be useful for short term prediction. However, since it cannot predict how latent
errorneous states evolve in the future, it is not helpful for scheduled action. If
we can predict the future state while errors are latent, it can lead to planned
system management action.

2.3 Error Checking and Correction

In general, fault-tolerant system refers to a system design which enables the
system to keep running, possibly at a reduced performance, rather than failing
completely, even when some part of the system fails. That is, the system as a
whole is not stopped even in the presence of hardware or the software failures
as long as they stay within the fault tolerance of the system. The heart of fault
torelant system lies in the redundancy of the system which prevents the errors
from manifesting themselves and leading the system down. For example, HDD
RAID system, memory chipkillTM. In this case, the errors are called to be latent
and are not visible from the oustside of the system. In our context, the fault
tolerant feature gives us signs of crucial failure events in the future because it
enables the system to continue to work under not so severe erroneous state.

Error checking and correction (ECC) has been widely and successfully used
in a number of practical applications such as storage and communication sys-
tems. ECC circuitry for testing the accuracy of data as it passes in and out
of memory. ECC appends extra parity bits to the original data bits to correct
single error bit and detect double-bit errors and some triple-bit errors. In recent
years, error detection and correction (EDAC) are supported at the Linux kernel
module level [1]. EDAC can capture the events of error detection and correction
and report them to syslog of Linux. Figure 1 shows the example of syslog record
of Linux EDAC messages.

Figure 2 shows the timestamp of events of error correction or detection.

3 Fault prediction technique based on point pro-
cess

3.1 A short review of point process

A point process is a type of stochastic process and represents a sequence of time
stamps when events of our interest happened. The realization of a point process
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1/7 7:38:49 percs-kb kernel: EDAC MC0: UE page 0x2c, offset 0x0, grain 4096, row 0...
1/7 11:52:31 percs-kb kernel: EDAC MC0: UE page 0x2c, offset 0x0, grain 4096, row 0...
1/7 18:37:28 percs-kb kernel: EDAC MC0: UE page 0x2c, offset 0x0, grain 4096, row 0...
1/9 7:09:01 percs-kb kernel: EDAC MC0: UE page 0x2c, offset 0x0, grain 4096, row 0...
1/9 10:35:52 percs-kb kernel: EDAC MC0: UE page 0x2c, offset 0x0, grain 4096, row 0...
1/10 2:16:20 percs-kb kernel: EDAC MC0: UE page 0x2c, offset 0x0, grain 4096, row 0...
1/10 10:31:16 percs-kb kernel: EDAC MC0: UE page 0x2c, offset 0x0, grain 4096, row 0...
1/10 23:26:09 percs-kb kernel: EDAC MC0: UE page 0x2c, offset 0x0, grain 4096, row 0...
1/11 14:31:39 percs-kb kernel: EDAC MC0: UE page 0x2c, offset 0x0, grain 4096, row 0...

Figure 1: Example of syslog output of EDAC

Figure 2: Point process data of EDAC. Each spike shows the timestamp of
EDAC event.
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is denoted as (t1, t2, · · · , tN ), where the number of events N can be different for
different observations. A point process is characterized by its intensity function
(also called hazard function) λ(t) defined by

λ(t) = lim
∆t→0

1
∆t

P (N(t, t + ∆t] = 1). (1)

or equivalently
P (N(t, t + ∆t] = 1) = λ(t)∆t, (2)

where N(t, t+∆t] is the number of events that happens during the time interval
(t, t + ∆t]. Intuitively, the intensity function shows the degree of tendency for
just one event to happen in a very short period of time. The relation between
the interval distribution for successive events and the intensity fucntion is given
as follows:

λ(t) = lim
∆t→0

1
∆t

P (N(t, t + ∆t] = 1)

= lim
∆t→0

1
∆t

P (t < L < t + ∆|L > t) (L is the timestamp of an event)

= lim
∆t→0

1
∆t

P ((t < L < t + ∆) and (L > t)))
P (L > t)

=
1

P (L > t)
lim

∆t→0

P (t < L < t + ∆)
∆t

=
1

P (L > t)
lim

∆t→0

F (t + ∆t)− F (t)
∆t

(F (t) is the cumulative distribution function of L.)

=
F ′(t)

1− F (t)
.

The above differential equation can be solved analytically and the solution is
given by

F (t) = 1− exp
(
−

∫ t

0

λ(s)ds

)
. (3)

3.2 Non-stationary Poisson process modelling and its es-
timation

Suppose we have point process data t1, · · · , tn during period of time of length
T . The probability that no events occur during time interval (ti−1 + ∆ti−1, ti]
and just one event occurs during time interval (ti, ti + ∆ti] is given by

exp

(
−

∫ ti

ti−1+∆ti−1

λ(t)dt

)
λ(ti)∆ti (4)

Since each occurence of events are independent, the joint probability is given by
the product of all the terms shown above:

f(t1, · · · , tn)∆t1 · · ·∆tn = exp
(
−

∫ t1

0

λ(t)dt

)
λ(t1)∆t1 · · · exp

(
−

∫ T

tn

λ(t)dt

)
λ(tn)∆tn
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=
n∏

i=1

λ(ti) exp

(
−

∫ T

0

λ(t)dt

)
∆t1 · · ·∆tn.

Dividing both sides by ∆t1 · · ·∆tn and letting ∆ti −→ 0 in (4), we can
obtain the joint probability density function as

f(t1, · · · , tn) = λ(t1) · · ·λ(tn) exp

(
−

∫ T

0

λ(t)dt

)
(5)

3.3 Models of intensity function and its estimation

We fit some models of λ(t) to the latest part of point process data to see if
the intensity is increasing or decreasing. In reliability engineering, the failure
rate of system in its entire life follows a U-like profile, which is called bathtub
curve. The Weibull distribution is often used to describe the bustub curve. The
Weibull distribution is a interval distribution of point process with intensity
function

λ(t) = λp(λt)p−1. (6)

The interval distribution for this intensity function is given by equation (3) as
follows:

F (t) = 1− exp
(
−

∫ t

0

λ(s)ds

)

= 1− exp(−(λt)p),

which is known as Weibull distribution.
The parameter p controls how likely failures occur. That is,

・p < 1 gives decreasing failure rate (called early infant mortality failure),
・p = 1 gives constant failure rate,
・p > 1 gives increasing failure rate (called wearout failure).
Therefore, the choice of λ(t) = λp(λt)p−1 as intensity fucntion is natural from
the viewpoint of reliability engineering. We can estimate parameters using max-
imization of likelihood method. Taking logarithm of the likelihood function, we
can obtain

L(λ, p) = np log λ + n log p + (p− 1)
n∑

i=1

ti − λpT p. (7)

The maximum likelihood estimator of λ0 and λ1 are given by solving the fol-
lowing likelihood equation

(Tλ)p = n

np log λ + n + p
n∑

i=1

log ti = n log n.
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The parameter p and λ are given by

p =
n

n log T −∑n
i=1 log ti

,

λ =
n1/p

T
.

Note that in the stationary case where λ(t) = λ, the above procedure reduces
to the estimation λ̂ = n/T .

Remark We can use other functions for λ(t). Here we present two other
possible models for λ(t) One is linear models of the form

λ(t) = λ0 + λ1t. (8)

The other is exponential model of the form

λ(t) = θ1e
θ2t. (9)

As with Weibull type model, we can estimate parameters using maximization of
likelihood method. Taking logarithm of the likelihood function of linear model,
we can obtain

L(λ0, λ1) =
n∑

i=1

log(λ0 + λ1ti)− λ0T − λ1T
2

2
. (10)

The maximum likelihood estimator of λ0 and λ1 are given by solving the fol-
lowing likelihood equation

n∑

i=1

1
λ1ti + λ0

= T

n∑

i=1

ti
λ1ti + λ0

=
T 2

2
.

As for exponential model, we can obtain

n∑

i=1

ti + n

(
1
θ2
− Teθ2T

eθ2T − 1

)
= 0

θ2
n

eθ2T − 1
= θ1.

The shortcoming of these models is that the above equations is inherently non-
linear and we must handle them with the help of numerical solvers such as
Newton-Raphson method. This is not preferable from the viewpoint of compu-
tational load for data analysis platform. In contrast, the intensity function 6
can give analytical solution of maximum likelihood estimator and therefore more
efficient. Therefore, we use Weibull type model in the subsequent arguments.
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Figure 3: Prediction technique based on non-stationary Poisson process

The estimated λ(t) can be used for failure prediction as shown in the graph.
We extend the estimated lambda toward the future, and calculate the black
area, which gives the expected number of events in ∆t. Figure 3 shows our
approach based on non-stationary Poisson process. The black area gives the
expected number of ECC events which happen in time interval (T, T + ∆t).
The black area grows as time T evolves into the future. When the black area
exceeds ECC capability, we consider the system will be unreliable and generate
alerts for potential failures.

The choice of parameter N relates to the precision of estimation. Since
the maximum likelihood estimator θ̂ aymptotically approaches to normal dis-
tribution N(θ, N−1I(θ)−1), where I(θ) is a Fisher Information matrix, we can
compute the necesarry number of data to achieve predefined accuracy. More
important thing is that determination of parameters T . This parameter should
be determined depending on the time scale of the target failure mode. For ex-
ample, ECC events occur normally once in several hours. Therefore, T should
be at least as long as 24 hours.

3.4 Utilization of side information

The intensity function λ(t) can change due to fluctuation of memory access rate,
which does not reflect real state of memory module. If memory access rate is
available, we can adjust the λ(t) to remove the factor of memory access rate.

4 Simulation results

To validate the effectiveness of our approach, we make a simulation using arti-
ficially generated point process data. The realization of non-stationary Poisson
process with intensity function λ(t) can be generated by time-scale change of
stationary Poisson process as follows:

T = Λ−1(U), (11)
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where U is a time-stamp of event occurence of stationary Poisson process with
E[U ] = 1 and Λ−1 is the inverse function of Λ(t) =

∫ t

0
λ(s)ds. This can be easily

checked by the following argument:

P (N(u, u + ∆u) = 1) = P (N(t, t + ∆t) = 1)

=
∫ t+∆t

t

λ(s)ds

= (u + ∆u)− u

= ∆u.

Using the above time-scale change, we can generate simulation data in the
following steps.

1. Generate uniform random numbers on [0, 1] as {u1, · · · , un}.
2. Transform {u1, · · · , un} into the data {e1, · · · , en} with exponential distri-

bution Ex(1) by inverse function method.

F (x) =
∫ x

0

e−xdx

ei = F−1(ui) = − log(1− ui).

3. Generate data for the stationary Poisson distribution {p1, · · · , pn} by

pi =
i∑

n=1

ei. (12)

4. Transform {p1, · · · , pn} into non-stationary Poisson process data {t1, · · · , tn}
by

ti = Λ−1(pi),

Λ(t) =
∫ t

0

λ(t)dt.

Figure 4 shows a typical transition of systems from normal state(flat part
of λ(t)) and abnormal state (increasing part of λ(t)). The following data is a
realization of timestamp data generated by Figure 4.
{1.31684, 3.19278, 5.18288, 6.01396, 6.1545, 8.04205, 8.29949, 8.81266,
9.83644, 12.1488, 12.1801, 12.573, 12.873, 13.1006, 13.6092, 15.7427,
17.1669, 18.2702, 19.3409, 19.583, 19.5871, 20.0274, 20.081, 20.2653, 20.6953}
The estimation result for the first 15 data is p̂ = 1.40, λ̂ = 0.438. On the other
hand, the estimation for the data from 16th to 25th is p̂ = 3.04, λ̂ = 0.425.
The value for lambda is almost the same for two estimations. However, the
estimation for p is significantly different. This is due to the increase of intensity
fucntion and the estimation can successfully cath the trend.
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Figure 4: An artificial example

5 Overview of Failure Prediction System

Failure predcition system can be implemented in two different ways - distributed
and centralized. In the first case, failure prediction system is implemented on
each server. However, it is undesirable to put an additional software or overhead
to managed node although it is expected to consume just a little computational
resource like CPU cycles and memory. In such a case, the second implementa-
tion is useful, that is, the failure prediction system is implemented on a central
management server and each managed node sends their events and status peri-
odically. Figure 5 shows the overview of centralized failure prediction system.
DAP (Data Analysis Platform) [4] is a runtime and framework for implement-
ing such centralized online analysis. It is designed to achieve higher analysis
throughput and scalability so that the central server can support large number
of nodes with its limited hardware resource. Each node just send events and
side information to the central management server, and the central management
server performs the analysis for multiple managed nodes. Event analyzer per-
forms online estimation of λ(t) either on managed node or a central management
server each time an event (execution of ECC) occurs to a managed node. If side
information like CPU load and memory access rate can be considered to affect
the occurrence rate of the events, event analyzer monitors the side information
at regular interval. We set the sliding window of fixed length and we move it
every time event analyzer receives a new event. The monitored side information
is kept for a while (e.g. several minutes) for later use when an event occurs.
The old side information can be discarded in sequence. If T can be fixed in
advance, the failure probability calculator updates failure probability each time
an event occurs to a node. If T cannot be fixed in advance e.g. job scheduler
wants to query each time it starts a job whose expected execution time is T ,
the failure probability calculator calculates the probabiliby on receiving a re-
quest using the current estimation of λ(t). Then, failure probability calculator
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outputs probability of system failure in time t at node k based on the estimated
λ(t).

Figure 5: Overview of Failure Prediction System

6 Discussion

Generally speaking, computer systems is full of various kinds of log files in
which the event descriptions with their timestamps are recorded. Our method,
which is based on point process, is easily extended to handle these timestamped
log file data. For the application of failure management, it is important to
see the correlation among various events. Since the point process data is not
collection of numerical data, which is treated in ordinary time series analysis, it
is not proper to compute the correlation of two point process data in the same
way as time series data. Instead, we can compute the event correlation as the
correlation of their intensity functions, which are ordinary time-dependent data.

7 Conclusion and future works

We have presented a method of predicting failure events in computer systems
before they become critical for system activity. Our method is based on model
of error events as point process and hence has generality for other error events
other than ECC. The application to real environment and data is left to future
work.
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