
March 5, 2007
RT0725
Computer Science 8 pages

Research Report
A Tool Framework for KPI Application Development

Mari Abe, Jun-Jang Jeng and Yinggang Li
IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It
has been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or
copies of the article legally obtained (for example, by payment of royalities).

A Tool Framework for KPI Application Development

Mari Abe
IBM Tokyo Research Laboratory
1623-14 Shimo-tsuruma, Yamato

Kanagawa 242-8502, Japan
maria@jp.ibm.com

Jun-Jang Jeng
IBM T.J. Watson Research Center

Yorktown Heights,
New York 10598, United States

jjjeng@us.ibm.com

Yinggang Li
Computer Science Department

Indiana University
Bloomington, Indiana 47404, United States

yinli@cs.indiana.edu

Abstract

This paper describes a KPI modeling environment,
coined as Mozart, where modelers can use formal models
to explicitly define the services of KPI and their relation-
ships which are depicted by KPI net. Mozart provides us
with methods for mining and modeling KPIs and supports
smooth model transformation for generating monitoring ap-
plications based on a model driven approach. It also pro-
vide us with methods for service composition for KPI ap-
plications. We showed how it works with an example sce-
nario for automobile data and found that “mpg” is most
strongly influenced by four KPIs. The result showed which
KPI should be focused for human monitoring, and it can be
an initial model of monitoring applications.

1. Introduction

Managing an SOA is becoming a critical task for an en-
terprise. Multiple factors need to be taken into considera-
tion: underlying physical resources, applications, services.
There is an increasing focus on the measurement of busi-
ness value, which requires the toolkit for SOA management.
Traditional IT resources tend to be more monolithic com-
pared with SOA services that actually manifest themselves
at different levels of abstraction in a more dynamic manner.
Most systems management tools are mainly oriented toward
middleware, network, operating system and hardware re-
sources. On the other hand, services are application layer
components and impose different management requirement
than traditional systems management.

Moreover, a service can participate in multiple business
processes. The service level agreements associated with
services vary according to the business process in which
it participates. For example, variations of a service may
be bound to different service level agreements; two ser-
vices may provide the same function, but one may be opti-
mized for ”gold” customers as opposed to those at silver- or
bronze-levels. Therefore, the way to measure the values of
services is also different than normal systems management.
Multiple levels of metrics need to be designed and attached
to appropriate levels of service stack: business processes,
services, transaction performance, infrastructure health and
security. For example, at the process level, an SOA manage-
ment tool will provide the functions such as (1) designing
key performance indicators for target business processes;
(2) deploying models into SOA runtime; (3) monitoring the
execution of individual processes and overall behavior of a
set of processes; (4) ensuring the performance is compliant
with committed service quality based on key performance
indicators; (5) adapting services behavior if service quality
deviates from intended range; (6) feeding information back
into process models for continuous process improvement.

Among the above steps, KPI modeling, deployment and
monitoring are key steps to management services in the con-
text of business processes. Both design tools and runtime
are expected to be improved and go beyond current systems
management counterpart. This paper is aimed to address
the issues of modeling KPIs.

Unfortunately, modeling KPIs is not regarded as main
elements of existing business process modeling approach.
Monitoring solutions based on business processes were pro-
posed in [3, 11] where the goal is to help designers specify
process monitoring rules as assertion codes that are based

on business process execution models. The monitoring sys-
tem will inform users about the status of the process with
KPIs. These process-based KPI modeling approaches con-
sidered KPI as a side effect of business process modeling
rather than one of the core elements of business service
modeling.

This paper describes a KPI modeling environment,
coined as Mozart, where modelers can use formal models to
explicitly define the services of KPI and their relationships
which are depicted by KPI net. KPI service models can
be consequently translated and mapped into service imple-
mentation modules. Model driven approach is exploited by
leveraging integrated multi-level KPI models for represent-
ing the business process level KPIs, platform-independent
application KPIs, and the platform-specific implementation
level KPIs. The specific functionality within Mozart that
is dedicated for monitoring and controlling business / IT
systems has been critical factors for the success of an enter-
prise. Business level monitoring and control is a near real-
time, model-based discipline to, proactively and reactively,
optimize and adapt business operations and IT infrastruc-
tures based on dynamic performance targets. This paper ar-
ticle presents the approach of defining KPI nets as services,
analyze KPI nets, and translating KPI nets into service im-
plementations.

The following sections are organized as follows: Sec-
tion 2 describes KPI modeling with its design cycle and re-
quirements. Section 3 introduces a tool framework for KPI
service composition and Section 4 introduces an example
scenario of automobile. Finally, we will conclude our paper
by Section 5.

2. KPI modeling

In this section, we will discuss design cycle and re-
quirements of KPI modeling. These are some of the ba-
sic requirements for modeling environments for KPI ser-
vice composition. KPI design cycle and requirements of
KPI modeling is important for continuous improvement of
enterprises.

2.1. KPI design cycle

Process mining is a technique for exploring process
flows in running applications. As many researchers have
reported, the benefits of process mining are: 1. Mining pro-
cesses shows the actual situation of the business process that
can be used for analytic purposes. 2. Users do not need to
design a process from scratch, but can use rough process
descriptions [2, 15, 16]. The same benefits can be reaped
from the KPI design cycle, as shown in Figure 1.

Mining KPIs and their correlations: KPIs are mined
from a knowledge database with historical data. The initial

Analyzing & Designing
KPI net

Mining KPI Transforming
& Deploying to RT

Figure 1. KPI design cycle.

monitor-enabled KPI is given by the knowledge database
schema. Examples of mining KPI and their correlations
were proposed in the area of data mining, where learning
algorithms identify KPIs (or just variables) that are most
significantly correlated with other variables [8].

Analyze and designing a KPI net: The mining step usu-
ally counts a large number of KPI correlations and does not
identify which KPI should be focused for human monitor-
ing. In this step, the number of monitor-enabled KPIs is
reduced via impact analysis, sensitivity analysis, and other
business-oriented analytic methods. We call the output of
the analytics a KPI network or a “KPI net” for short, that de-
scribes KPI elements and the relations between them. This
step also includes comparing the monitor-enabled KPIs and
the to-be-monitored KPIs.

Transform and deploy KPI net to runtime: Even if an en-
terprise decides that the organization structure changes for
reasons such as outsourcing, it might use the same KPIs to
measure business performance. How the business process
works and what kinds of measurement should be used are
different. Therefore KPI should be designed to be insulated
from the change of process model and be designed indepen-
dently on process modeling at first, then models of the KPIs
and of the processes can meet in the middle of the deploy-
ment or model transformation process.

2.2. KPI modeling requirements

To provide KPI design cycle support, the modeling re-
quirements of KPIs should be defined. We believe that the
following requirements should be satisfied for KPI model-
ing.

Why is a KPI monitored?: A KPI elements should be
linked to the business goals of an enterprise. The Goal-
Question-Metric (GQM) [4, 17] approach is known as an

effective approach to maintaining meaningful metrics for
software measurements. The business goals linked to a KPI
should be defined explicitly in a model. That goal model
gives the monitoring applications a focus for KPI monitor-
ing.

What kinds of KPI should be monitored?: The defined
KPI in a goal model is a high-level KPI and usually de-
rived from finer-grained, operational KPIs. The KPI net in
the previous subsection describes KPI elements and the re-
lations among them. There are predefined types of func-
tions: 1. computational relations that are defined arithmeti-
cally and 2. dependency relations that are discovered as
correlations by mining engines. A set of KPIs might be de-
fined during consultations with business managers. A KPI
net provides the structure for KPIs and thus allows drilling
down from a high-level KPI to low-level ones.

How should a KPI be calculated?: A KPI is calculated
from other KPIs and/or business event attributes. Busi-
ness events are retrieved from business process workflow
engines, log file adapters, legacy applications implemented
to emit events, and other sources [10] during monitored op-
erations. At design time, event sources are identified with
adaptation elements called sensors in a KPI net. A sensors
sometimes refers to a repository of event metadata, histor-
ical data of simulations, etc. based on the kinds of events
that can be retrieved from an event source. Users need to
design computational relations from events for KPIs, with
preconditions and post conditions to evaluate relations.

What is the context of a KPI?: When a KPI is defined,
the context of monitoring the KPI should be defined as well.
For example, if a KPI “product sales” is defined, categories
of products can be one of contexts for monitoring, because
business managers want to see what kinds of products are
selling well. Such business concerns should be defined at an
early stage of modeling and then transformed to a runtime
configuration based on the model-driven approach. Oth-
erwise software developers will be forced to identify the
source code related to the business concerns when contexts
are changed.

When should a KPI be evaluated?: Relations between
KPIs consist of formulation of the relation, preconditions,
and postconditions to evaluate those functions. The tim-
ing of evaluation depends on the meaning of a KPI and the
functions. If a KPI is “1Q Sales” then the time to evaluate
it is at the end of March. But if the KPI is something like
“Sales by each representative”, then the timing depends on
when the sales events occurred. We believe the timing of
evaluation must include at least three types and their com-
binations: periodic (e.g. once a month), triggered when in-
put data satisfies conditions (e.g. when data is updated), or
specific times (e.g. the end of March).

Who can monitor the KPI?: In monitoring applications,
users do not make decision or take actions until they see

a KPI on a dashboard. For this reason, a KPI has to have
an access control policy as an attribute to be transformed
into security policies on a runtime platform. However it
is not always satisfactory if it only supports“who can ac-
cess which KPI”and does not consider contextual infor-
mation. For example, if a user can access KPI A and it
reaches a threshold, then perhaps that person should not be
allowed to access KPI B in that same monitoring context.
Access control mechanisms for inter-organizational work-
flows have been proposed to separate inter-organizational
workflow security from concrete organization-level security
enforcement [12]. Similarly, access control mechanisms
and runtime platforms for business performance monitor-
ing are needed apart from modeling access control for KPI
to reflect dynamic demands.

These are some of the basic requirements for modeling
environments for KPI applications. In the next section, we
will introduce a tool framework for KPI application devel-
opment and show how it works with an example scenario.

3. Mozart: Tool framework for KPI applica-
tion development

In this section, we describe a tool prototype called
Mozart. Mozart provides us with a means of mining and
modeling KPI net, analyzing KPI net and supports smooth
model transformation to KPI applications based on the
model driven approach. Mozart is implemented as a set
of plugins for the Eclipse platform [7]. Some of the plu-
gins depends on Rational Software Architect (RSA) [9] to
exploit UML [13] editing functions.

Mozart consists of core plugins and extension plugins.
Figure 2 shows the architecture of Mozart with a control
flow from a data warehouse to a monitor model. The core
plugins, the upper part of the figure, provide editing, view-
ing, and validating functions for designing models. The
extension plugins, the lower part, provide mining engines,
analytic modules, monitor model generators indicating ser-
vices. The extension plugins can be added with service in-
terfaces to adapt to users’ needs. Thus, Mozart can be a
powerful platform to compose services and build KPI ap-
plications.

An important feature of Mozart is that the control flow
can be also designed in the editor. Figure 2 describes a
control flow from a data warehouse (DW) to a monitor
model [19], from the left to the right in the figure, through
extension plugins indicating services. To start, a set of KPIs
is extracted from the data warehouse with a data mining en-
gine. The data warehouse can be replaced with a business
process depending on the application scenario. Then a KPI
net consisting of a set of KPIs and their relations is cal-
culated from the mined KPIs and the Goal model. The goal
model determines the focal KPIs according to the enterprise

analytic
module

KPI net
(initial) KPI net

mining
engine

monitor model
generator

validator

DW

Goal
model

Context
model

Monitor
model

Mozart core

Mozart plugin

editor

viewer

Figure 2. Mozart architecture with a control
flow from data warehouse to monitor model.

(b) KPI net editor

(a) Catalog
view

(d) Problems view(c) Property view

Figure 3. Screenshot of Mozart.

strategy, so it might be replaced with a different goal model
for each enterprise. Finally the KPI net is transformed to
generate a monitor model by adding a context model with
the generator. The context model might be customer seg-
ments for a customer relationship management application,
or product categories for a supply chain management appli-
cation. Such a control flow diagram can be edited in Mozart
and applied as a powerful tool for developing KPI applica-
tions.

Figure 3 shows a UI screenshot of Mozart. Mozart con-
sists of several views and editors. To exploit standard tech-
nology, the metamodel of KPI net is defined in a UML class
diagram so that an instance is serialized in the XML Meta-
data Interchange (XMI) format [14] using the Eclipse Mod-
eling Framework [6].

When users open the model file, elements are listed in
the Catalog view, (a) in the figure. There is a set of KPI
elements in the “KPI Catalog”. Users can drag and drop
elements into the KPI net editor (b) which displays the KPI
net. The KPI net editor can be switched to other editors such
as the Goal editor, Control flow editor, etc., responding to

the selections of elements in the Catalog view. If the KPI
elements do not have any relationships to others, the set of
KPI elements are displayed as shown in the example. The
element attributes are shown in the Property view, (c) in the
figure. A validator validates the model before it is saved. It
shows the validation results in the Problems view (d) with
any validation error messages.

4. Example scenario of automobile

In this section, we describe a scenario from a mining KPI
to generate a monitor model from automobile data. Once a
monitor model is generated, it can be transformed and de-
ployed on the runtime [19]. In this scenario, we explain two
steps of the design cycle explained in Section 2: 1. Mining
a KPI and 2. Analyzing and designing a KPI net. The step
3. Transforming and deploying to runtime is described in
our previous works [1].

This scenario involves three steps: 1. Discovering KPI
correlations, 2. Finding the most influential chains in a de-
pendency graph, and 3. Saving results of the analytic tool as
a KPI net for refinement. The original dataset can be down-
loaded from the UCI Machine Learning Repository [5].
Suppose that an automobile maker needs to check if a KPI,
miles per gallons (mpg), of a new car can be improved to
meet an environmental fuel efficiency objective. The ques-
tion is which KPIs should be paid attention to reach such
a goal in a process of assembly. The motivation is that it is
difficult to design a KPI net from scratch. Also, it is difficult
to predict how much each KPI influences the others.

4.1. Step1: Discovering KPI correlations

Table 1 shows sample values of automobile parameters
or KPIs for each model of car. There were originally eight
types of KPIs and the number of data entry is 406. From
this historical data, KPI correlations were discovered by us-
ing simple linear regression, most often used for prediction
between pairs of parameters.

Figure 4 is Dependency learner screenshot. It is one of
the mining engine services registered in Mozart. It shows
correlations between two KPIs. In this figure, it illustrates a
mined correlation between cylinders and mpg with a slope
-3.6, where the X-axis is the number of cylinders and the Y-
axis is mpg. One cross dot on plot corresponds to one record
in Table 1. The points are grouped on discrete numbers
on the X-axis because the number of cylinders has discrete
values. This figure shows that as the number of cylinders
increases, the mpg generally decreases.

A part of WSDL [18] file of Dependency learner ser-
vice is shown in Figure 5. The header, namespace decla-
ration, definitions of types, encoding style and namespaces
of soap are omitted in the figure due to space restriction.

Table 1. A part of values of automobile pa-
rameters for each type.

name mpg cylinders displacement horsepower weight
amc-ambassador-brougham18.0 8.0 307.0 130.0 3504.0

amc-ambassador-dpl 15.0 8.0 350.0 165.0 3693.0
amc-ambassador-sst 18.0 8.0 318.0 150.0 3436.0

amc-concord 16.0 8.0 304.0 150.0 3433.0
amc-concord 17.0 8.0 302.0 140.0 3449.0

amc-concord-d/l 15.0 8.0 429.0 198.0 4341.0
amc-concord-dl 14.0 8.0 454.0 220.0 4354.0

amc-concord-dl-6 14.0 8.0 440.0 215.0 4312.0
amc-gremlin 14.0 8.0 455.0 225.0 4425.0
amc-gremlin 15.0 8.0 390.0 190.0 3850.0

Figure 4. Dependency learner screenshot. It
shows mined correlation between cylinders
and mpg (slope:-3.6).

Figure 5 shows the interface of how to get a dependency
and a dependency graph. In the figure, there are two opera-
tions “getDependency” and “getDependencyGraph”. It also
shows message formats of the two operations.

From these dependencies, you can get a dependency
graph. Figure 6 is another extension tool for a service “KPI
net explore”. that shows 8 KPIs and their correlations in
one graph. Each node indicates a KPI and each weighted,
directed edges represents correlations as influence between
those two nodes. The weight is the numeric influence be-
tween KPIs, which may be positive or negative. Users can
analyze the graph interactively with this tool. In the next
step, we will show how to analyze a dependency graph with
this tool.

<wsdl:message name="getDependencyResponse">
<wsdl:part name="getDependencyReturn"

type="xsd:double"/>
</wsdl:message>
<wsdl:message name="getDependencyGraphResponse">

<wsdl:part name="getDependencyGraphReturn"
type="impl:DependencyGraph"/>

</wsdl:message>
<wsdl:message name="getDependencyRequest">

<wsdl:part name="x" type="impl:ArrayOf_xsd_double"/>
<wsdl:part name="y" type="impl:ArrayOf_xsd_double"/>

</wsdl:message>
<wsdl:message name="getDependencyGraphRequest">

<wsdl:part name="KPIList_X" type="impl:ArrayOfKPI"/>
<wsdl:part name="KPIList_Y" type="impl:ArrayOfKPI"/>
<wsdl:part name="dependencyList"

type="impl:ArrayOf_xsd_double"/>
</wsdl:message>
<wsdl:portType name="DependencyLearner">

<wsdl:operation name="getDependency"
parameterOrder="in0 in1">

<wsdl:input message="impl:getDependencyRequest"
name="getDependencyRequest"/>

<wsdl:output message="impl:getDependencyResponse"
name="getDependencyResponse"/>

</wsdl:operation>
<wsdl:operation name="getDependencyGraph"

parameterOrder="in0 in1 in2">
<wsdl:input

message="impl:getDependencyGraphRequest"
name="getDependencyGraphRequest"/>

<wsdl:output
message="impl:getDependencyGraphResponse"

name="getDependencyGraphResponse"/>
</wsdl:operation>

</wsdl:portType>
<wsdl:binding name="DependencyLearnerSoapBinding"

type="impl:DependencyLearner">
<wsdlsoap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="getDependency">

<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getDependencyRequest"/>
<wsdl:output name="getDependencyResponse"/>
</wsdl:output>

</wsdl:operation>
<wsdl:operation name="getDependencyGraph">

<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getDependencyGraphRequest"/>
<wsdl:output name="getDependencyGraphResponse"/>

</wsdl:operation>
</wsdl:binding>
<wsdl:service name="DependencyLearnerService">

<wsdl:port
binding="impl:DependencyLearnerSoapBinding"

name="DependencyLearner">
<wsdlsoap:address location="http://localhost:8080/

axis/services/DependencyLearner"/>
</wsdl:port>

</wsdl:service>

Figure 5. WSDL file of Dependency learner.

Figure 6. KPI net explore shows dependency
graph of automobile data with 8 KPIs and
their correlations. It also shows the most in-
fluential chain.

4.2. Step 2: Finding the most influential
chains in a dependency graph

A goal model is needed to recognize the crucial KPIs
and their relations among the other KPIs. In this scenario,
“Environmental goal” is linked to mpg in goal model that
gives the dependency graph a focal KPI, mpg, to start the
analysis. Figure 7 shows a control flow in the Control flow
editor with three inputs, which are the goal model, a set
of KPIs, and the dependency graph. The last two of these
were prepared in the Step 1. The element in the center of
the figure shows KPI net explore, one of analytic services
in Mozart. It can find the most influential chain from these
three inputs and output a KPI net.

A part of WSDL file of KPI net explore is shown in Fig-
ure 8. It includes two operations that is “getInfluenceIn” and
“getInfluenceOut”. “getInfluenceIn” can find KPIs which
influence the focal KPI. “getInfluenceOut” can find KPIs
which the focal KPI influences. These two operations take
three inputs described in the control flow in Figure 7 and
one threshold. The threshold is used to limit the number of
KPIs to save a new KPI net explained in the next step.

The example scenario is to discover which KPIs should
be paid attention to drive the goal in a process of car as-
sembly. It will not be sufficient to monitor mpg only given

Figure 7. Control flow to find the most influ-
ential chain.

other KPIs might influence to it directly or indirectly. In
Figure 6, there is an functional option to find the most in-
fluential chain in the lower right. It enables impact anal-
ysis by selecting a starting KPI node and an ending node.
With dependency graph in place, it then runs an algorithm
to find concurrently the paths of most negative and posi-
tive influence. Selection can be obtained from a goal model
as well when it is invoked. In the figure, selected nodes
are highlighted and the most influential chains are shown
as dotted line. As outlined in Figure 9, the most influen-
tial chain algorithm is an adaptation of the classic shortest
path algorithm, where two ”influence” metrics, positive and
negative, are kept at each node as distance metric, and mul-
tiplication replaces summation at each relaxation step. For
instance, two consecutive negative influences may turn into
a positive one. The algorithm will find both paths with most
positive impact and negative impact the starting KPI may
have on the ending KPI.

4.3. Step 3: Saving the results of the ana-
lytic tool as a KPI net for refinement

The analytic tool supports not only discovering the most
influential chains but can also save the result as a KPI net
based on a threshold. Figure 10 shows a resulting KPI net
saved by the analytic tool. The threshold of absolute values
for impacts was set to be> 1.0. The righthand element in
the KPI net editor is an element for mpg, which is most
strongly influenced by four KPIs, the origin (where the car
was made), the number of cylinders, the model year, and
acceleration. Users need to refine the KPI net using Mozart
editing functions to input which event source is used, how
the KPI is calculated from the events, and so on. But at least

<wsdl:message name="getInfluenceInRequest">
<wsdl:part name="goalModel" type="impl:GoalModel"/>
<wsdl:part name="dependenchGraph"

type="impl:DependencyGraph"/>
<wsdl:part name="kpiNet" type="impl:KPINet"/>
<wsdl:part name="threshold" type="xsd:double"/>

</wsdl:message>
<wsdl:message name="getInfluenceInResponse">

<wsdl:part name="getInfluenceInReturn"
type="impl:KPINet"/>

</wsdl:message>
<wsdl:message name="getInfluenceOutResponse">

<wsdl:part name="getInfluenceOutReturn"
type="impl:KPINet"/>

</wsdl:message>
<wsdl:message name="getInfluenceOutRequest">

<wsdl:part name="goalModel" type="impl:GoalModel"/>
<wsdl:part name="dependencyGraph"

type="impl:DependencyGraph"/>
<wsdl:part name="kpiNet" type="impl:KPINet"/>
<wsdl:part name="threshold" type="xsd:double"/>

</wsdl:message>
<wsdl:portType name="KPINetExplore">

<wsdl:operation name="getInfluenceIn"
parameterOrder="in0 in1 in2 in3">

<wsdl:input message="impl:getInfluenceInRequest"
name="getInfluenceInRequest"/>

<wsdl:output message="impl:getInfluenceInResponse"
name="getInfluenceInResponse"/>

</wsdl:operation>
<wsdl:operation name="getInfluenceOut"

parameterOrder="in0 in1 in2 in3">
<wsdl:input message="impl:getInfluenceOutRequest"

name="getInfluenceOutRequest"/>
<wsdl:output message="impl:getInfluenceOutResponse"

name="getInfluenceOutResponse"/>
</wsdl:operation>

</wsdl:portType>
<wsdl:binding name="KPINetExploreSoapBinding"

type="impl:KPINetExplore">
<wsdlsoap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="getInfluenceIn">

<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getInfluenceInRequest"/>
<wsdl:output name="getInfluenceInResponse"/>

</wsdl:operation>
<wsdl:operation name="getInfluenceOut">

<wsdlsoap:operation soapAction=""/>
<wsdl:input name="getInfluenceOutRequest"/>
<wsdl:output name="getInfluenceOutResponse"/>

</wsdl:operation>
</wsdl:binding>
<wsdl:service name="KPINetExploreService">

<wsdl:port binding="impl:KPINetExploreSoapBinding"
name="KPINetExplore">

<wsdlsoap:address location="http://localhost:8080/
axis/services/KPINetExplore"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

Figure 8. WSDL file of KPI net explore.

¶ ³
Root KPI : s

Each vertex v has variable DPos[v], DNeg[v] where

DPos[v] : most positive influence s has on v

DNeg[v] : most negative influence s has on v

Link weight : d(u, v) 6= 0

d(u, v) : influence factor between u and v

Initially : DPos[s] = 1.0; DNeg[s] = 1.0;

v 6= s : DPos[v] = 0.0, DNeg[v] = 0.0

Relaxation step over edge(u, v) :

DPos[v]

= max{DPos[v], DPos[u] ∗ d(u, v)} if d(u, v) > 0

= max{DPos[v], DNeg[u] ∗ d(u, v)} if d(u, v) < 0

DNeg[v]

= min{DNeg[v], DNeg[u] ∗ d(u, v)} if d(u, v) > 0

= min{DNeg[v], DPos[u] ∗ d(u, v)} if d(u, v) < 0

µ ´

Figure 9. Basis of most influential chain algo-
rithm.

users do not need to design the KPI net from scratch.

5. Conclusion

In this paper, we discussed design cycle and require-
ments of KPI modeling. The KPI design cycle consists of
three steps; 1. Mining KPIs, 2. Analyzing and designing a
KPI net, and 3. Transforming and deploying it to a runtime.
Our design cycle supports efficient development of KPI ap-
plications since KPIs are mined from data repository. We
introduced the requirements for KPI modeling and a tool
framework, Mozart, aimed at satisfying these requirements.
Mozart provides us with methods for mining and modeling
KPIs and supports smooth model transformation for gener-
ating monitoring applications based on a model driven ap-
proach. Since Mozart is implemented by exploiting stan-
dard technology such as the Eclipse platform, it will not
enforce constraints that depends on proprietary technology.

We showed how it works with an example scenario for
automobile data with three steps: 1. Discovering KPI cor-
relations, 2. Finding the most influential chains in a de-
pendency graph, and 3. Saving the results of the analytic
tool as a KPI net for refinement. We showed “mpg” is most
strongly influenced by four KPIs, the origin, the number of
cylinders, the model year, and acceleration. In the future,
we will apply our tool to large-scale service compositions
in which a high volume of KPIs exists.

Figure 10. Result showing KPI net with KPI
relations (Threshold of absolute values of im-
pacts > 1.0).

References

[1] M. Abe, T. Koyanagi, J. Jeng, and L. An. An Environment of
Modeling Business Centric Monitoring and Control Appli-
cations. InProceedings of IEEE International Conference
on e-Business Engineering (ICEBE 2006), October 2006.

[2] R. Agrawal, D. Gunopulos, and F. Leymann. Mining pro-
cess models from workflow logs. InAdvances in Database
Technology (EDBT’98), volume 1377 ofLecture Notes in
Computer Science, pages 467–483, 1998.

[3] L. Baresi and S. Guinea. Towards Dynamic Monitoring of
WS-BPEL Process. InProceedings of the 3rd International
Conference on Service Oriented Computing (ICSOC’05),
pages 269–282, December 2005.

[4] V. R. Basili and H. D. Rombach. The TAME project: to-
wards improvement-oriented softwareenvironments.IEEE
Transactions of Software Engineering, 14(6):758–773,
1998.

[5] C. B. D.J. Newman, S. Hettich and C. Merz. UCI repository
of machine learning databases.http://www.ics.uci.
edu/˜mlearn/MLRepository.html , 1998.

[6] Eclipse Foundation. Eclipse Modeling Framework.http:
//www.eclipse.org/emf/ .

[7] Eclipse Foundation. Eclipse Platform.http://www.
eclipse.org/ .

[8] M. Ettl, B. Zadrozny, P. Chowdhary, and N. Abe. Business
Performance Management System for CRM and Sales Exe-
cution. InProceedings of the 16th International Workshop
on Database and Expert Systems Applications (DEXA’05),
2005.

[9] IBM Corporation. IBM Rational Software Development
Platform. http://www-306.ibm.com/software/
info/developer/busvalue.jsp .

[10] IBM Corporation. Integrate event management with Com-
mon Event Infrastructure. http://www-128.ibm.
com/developerworks/library/ac-cei/ .

[11] A. Lazovik, M. Aiello, and M. Papazoglou. Associating
Assertions with Business Processes and Monitoring their
Execution. InProceedings of International Conference on
Service Oriented Computing (ICSOC’04), pages 94–104,
November 2004.

[12] J. S. P. Myong H. Kang and J. N. Froscher. Access Con-
trol Mechanisms for Inter-organizational Workflow. InThe
sixth ACM symposium on Access control models and tech-
nologies, pages 66–74. ACM Press, 2001.

[13] Object Management Group, Inc. OMG Unified Model-
ing Language Specification.http://www.omg.org/
technology/documents/formal/uml.htm .

[14] Object Management Group, Inc. XML Metadata Inter-
change(XMI) Specification. http://www.omg.org/
docs/formal/03-05-02.pdf .

[15] W. van der Aalst, T. Weijters, and L. Maruster. Work-
flow Mining: Discovering Process Models from Event Logs.
IEEE Transactions on Knowledge and Data Engineering,
16(9):1128–1142, September 2004.

[16] B. van Dongen, A. de Medeiros, H. Verbeek, A. Weijters,
and W. van der Aalst. The ProM Framework: A New Era in
Process Mining Tool Support. InApplications and Theory of
Petri Nets 2005, volume 3536 ofLecture Notes in Computer
Science, pages 444–454, 2005.

[17] F. van Latum, R. van Solingen, M. Oivo, B. Hoisl, D. Rom-
bach, and G. Ruhe. Adopting GQM-Based Measurement in
and Industrial Environment.IEEE Software, 15(1):78–86,
1998.

[18] Web Service Definition Language.http://www.w3.
org/TR/wsdl .

[19] L. Zeng, H. Lei, M. Dikun, H. Chang, K. Bhaskaran, and
J. Frank. Model-Driven Business Performance Manage-
ment. InIEEE International Conference on e-Business En-
gineering (ICEBE2005), pages 295–304, October 2005.

