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Abstract.  The hybrid architecture, HM-Hybrid can be an effective solution 
for a high volume stateful event processing that requires searches and updates 
to be consistent. The hybrid architecture provides high throughput by enabling 
batch update, but in the situation batch update is usually regarded as unsuitable 
because of its asynchronous characteristics. Therefore the hybrid architecture 
can be efficient for applications that must handle high volumes of searches and 
updates in a consistent manner. However, the range of its efficiency is still 
unclear, since its advantages depend on the application’s characteristics.  We 
provide a methodology to estimates break-even points between advantages and 
disadvantages of the hybrid architecture. To compare them we introduce 
performance comparison models, and figure out the significant parameters to 
determine the throughputs of performance bottlenecks on the models. The range 
of efficiency of the hybrid architecture is clarified by this method, and it is 
shown to be applicable for a broad range of application patterns in our 
experiments. 

Keywords: application cache, performance evaluation, software engineering, 
software architecture, materialized views, and model-driven development 

1 Introduction 

There are certain applications which produce high volumes of searches and updates 
simultaneously. A typical application of this type is stateful event processing for 
monitoring. Monitoring essentially requires search and update processing for each 
event. To track suggestive key performance indicators, each event should be 
correlated with multiple types of other events, and the current state of the calculation 
should also be saved in a database at the time when that event occurred. Therefore 
each event causes at least one search for correlations and one update for saving the 
current state. 

If the database accesses become very frequent, read-only and write-only accesses to 
the database can achieve high throughputs by applying well known solutions. Read-
only accesses can be accelerated with simple cache solutions. Write-only accesses can 
be accelerated with batch solutions. Batch update collects the write requests over an 
interval, and then executes them asynchronously as a large, fast job. 
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However such solutions often fail when read and write accesses to a database are 
mixed. The batch update cannot be used because of its asynchronous characteristics. 
For example, the monitor always needs the latest data to process the next event. The 
event must be correlated with the most recent events because of the real-time 
requirements for monitoring. There are no efficient general solutions for the mixed 
read-write cases. 

Also the result cache is inefficient. When write accesses occurred frequently, the 
result cache cannot be simply updated like a write-through cache, because the result 
cache must store the search results of SQL select statements. Therefore, the cached 
results may be invalidated after very short intervals and the cache hit ratio will be low. 

We suggested a hybrid architecture, HM-Hybrid which uses a maintained result 
cache and a batch update function to solve these problems. The hybrid architecture 
was used for event processing, and in our experiments handled 1,207 events per 
second, with about 43,000 queries per second. This is 6 times better performance over 
a naive caching architecture. Therefore the hybrid architecture seems to be effective 
for high volumes of select/update query processing while maintaining consistency. 

However the range of efficiency of this architecture is still unclear when we reuse it 
for other applications. The application of the hybrid architecture to monitoring 
succeeded because its benefit from batch update exceeded the maintenance costs and 
because all of the required data for the monitor was in memory. However the 
maintenance cost depends on the application patterns, including the update frequency 
and the number of indexes. Also, the overhead of fetching data from the database 
must be covered when all of the required data is not in memory.  

In this paper, we provide a methodology to evaluate whether or not the hybrid 
architecture will be efficient for the given conditions of an application. To clarify the 
efficiency of the hybrid architecture, we introduce performance comparison models to 
compare the performance effects of the advantages and the disadvantages of the 
hybrid architecture. Because they are on the different criteria, we must transform 
them into the same standard. In the performance comparison models, these effects are 
transformed into the throughputs. These throughputs are determined by significant 
parameters which are derived from the application characteristics. We figure out the 
ranges of the significant parameters indicating the application characteristics for 
which the hybrid architecture is efficient. To measure these throughputs with various 
significant parameters, we conducted three experiments. As a result, the hybrid 
architecture is shown to be applicable for a broad range of the applications.  

First, we review related works in Section 2, and then describe the concept and 
components of our hybrid architecture in Section 3. Then, in Section 4, the evaluation 
methodology is illustrated in details, and designed three experiments to estimate the 
value of the throughputs that indicate performance boundaries of the hybrid 
architecture. In Section 5, we discuss how to use the experimental results to classify 
the application patterns for which the hybrid architecture will be efficient. The 
classification methodology is summarized in a chart to apply to other applications. 



2 Related Works 

In our previous work, we suggest the hybrid architecture as a solution to solve a 
performance problem for model-driven business performance management [1]. In this 
paper, by applying a practical and established evaluation method, we will show the 
hybrid architecture can be applied to broad range of applications. Finally we provide a 
classification methodology to determine whether the hybrid architecture can be 
efficient for a concrete application on a concrete system. 

Batch update is a technology that has been frequently used for a long time in almost 
all computer systems, and is still efficient in improving the throughput of block 
devices with limited bandwidth, such as networks and storage. It collects the write 
requests over an interval, and then executes them asynchronously as a large, fast job. 
While it greatly improves throughput, its usage scenarios are strongly limited because 
of its asynchronous characteristics. In this paper, we propose extending the usage of 
our hybrid architecture to other applications which requires consistency in update and 
search. 

The hybrid architecture can be considered as an application of materialized views 
for high volume task processing. For each search statement, it incrementally 
maintains consistent memory-resident indexes. There are many research reports on 
view maintenance in the field of materialized views. They include useful algorithms 
to maintain our results cache.  

Gupta and Mumick [2] categorized maintenance algorithms by the amounts of 
information that can be utilized when the views are refreshed. Ceri and Widom [3] 
provided a method to derive production rules to maintain materialized views 
incrementally. Their system accepts a language which is a subset of SQL, and the 
derived rules are also represented and computed in the same language. The 
maintenance function we used to keep result cache fresh is a kind of incremental 
maintenance. 

Quass et al. [4] provides a method to derive a set of self-maintainable views which 
can be maintained without accessing the underlying database. This concept is 
important for any hybrid architecture to maintain the consistency of the result cache 
using only update notifications. Our model-driven approach can provide a complete 
set of access patterns by compilation as described in [1]. These access patterns, the 
full set of SQL statements used in the application, are equivalent to full information 
about the constraints for view maintenance. Hence our method can use almost all of 
the constraints, and self-maintainable views such as the result cache can be derived. 

Ross et al. [5] develop an optimization method using additional views to maintain 
the target views. It includes a cost model of the incremental view maintenance to 
estimate whether keeping such additional views is efficient. In contrast to our 
approach, their cost model of materialized views assumes that the views are created in 
the database system, but we use a cost model for memory resident indexes. 

Event correlation is an important idea for recent-event-processing systems. Event 
correlation is traditionally researched in the system management field. Hasan et al. [6] 
describe simple models for causal and temporal correlation. Because of the 
characteristics of diagnosis, the event correlation engines in this field usually do not 
mention persistency for correlation states, in contrast to our requirements. 



Continuous queries [7] have been proposed for querying data streams. They 
essentially require the same processing mechanisms provided by our hybrid 
architecture. They usually assume insertion only in contrast to our approach, which 
allows all queries. This is due to differences in the available information and the 
constraints in processing queries. 

3 Hybrid Architecture with Model-driven Approach 

The basic concepts of our hybrid architecture, HM-Hybrid are covered in this section. 
The model-driven approach which makes it efficient is also shown. First, the model-
driven result cache is illustrated. The model-driven result cache realizes the hybrid 
architecture. Then the way the hybrid architecture works at runtime is described. The 
last section describes a generalized maintenance algorithm which was developed to 
generate the maintenance functions from the given access patterns. 

3.1 Generating Result Cache from the Model 

Fig. 1 shows the concepts of the model-driven approach for cache generation. The 
approach requires full information on data access patterns. Once we have all of the 
data access patterns, we can generate a result cache which has optimized maintenance 
functions for the data access patterns. The data access patterns can be considered as 
constraints representing when and which target results in the cache are maintained. 
The maintenance functions are generated by using information about such constraints. 
For the details, the methods for deriving maintenance functions are well known in the 
field of materialized views. 

In our approach, both the indexes for the SQL select statements and the 
maintenance functions are generated as a result cache from the application model. We 
call the generated result cache the “Model-driven result cache”. 
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Fig. 1. Model-driven cache generation. 

 
At least one index is generated from each prepared SQL select statement. The 

index for a select statement consists of a key and a condition (Fig. 2). The key is from 



the parameterized predicates of a where-clause, and the key is used for the index entry. 
The value of the index entry will be a result set of IDs for instances. The instance is a 
database record itself, or an application object which is restored from the database 
records. The condition is from the static predicates of the where-clause and the 
instances must satisfy the conditions when they are added to the index. 

C1 = ? C2 = ? C3 > 5and andselect * from t1 where

key: <C1, C2>
condition: C3 > 5

<4, 3>

<3, 3>
<4, 2>

Result set (instance IDs)
Result set (instance IDs)
Result set (instance IDs)

C1 = ? C2 = ? C3 > 5and andselect * from t1 where

key: <C1, C2>
condition: C3 > 5

<4, 3>

<3, 3>
<4, 2>

Result set (instance IDs)
Result set (instance IDs)
Result set (instance IDs)

 
Fig. 2. Deriving an index from a where-clause. 

3.2 Runtime Components of the Hybrid Architecture 

The hybrid architecture consists of the model-driven result cache and a batch 
processor for the batch update function (Fig. 3). Asynchronous batch updates are not 
usually allowed when the database should be responding to user queries with recent 
data. In this architecture, the facade of the model-driven result cache substitutes for 
the database when users query with select statements, and this allows asynchronous 
batch update. 

The model-driven result cache is a combination of the result cache and its 
maintenance functions. The result cache contains indexes to store every search result 
that can be selected by the given access patterns.  
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Fig. 3. Runtime components of hybrid architecture. 



When an instance is updated by the application, the update information is sent to 
the maintenance functions to keep the result cache fresh. At the same time, the update 
is sent to the batch processor to add this update to the next batch update. The batch 
updates are executed periodically by the batch processor. 

3.3 Maintenance algorithm for result cache 

The maintenance algorithm for an index of the result cache is described in 
pseudocode in Fig. 4. The code assumes that the index rc has add, remove, and 
contains methods as index manipulations. This algorithm has three open methods, 
createKey, isKey, and testCondition. They are derived from the given 
access patterns, and belong to rc as part of its maintenance functions. 

When the maintenance function is called with update information, i, m, vold and 
vnew as its arguments, it creates two keys kold and knew from corresponding updated 
attributes. The kold is used to remove the existing entry in the result cache, and knew 
is used to add the new entry. 

In line 3, the function checks whether the index contains the target instance i. Then 
the derived condition is tested to decide if the updated i should be indexed in the 
result cache by considering the new value vnew. 
 

rc: an index of the result cache 
i: an updated instance 
m: the name of the updated attribute of i 
vold: the old value of the updated attribute 
vnew: the new value of the updated attribute 
 

01. kold = rc.createKey(i, vold) 
02. knew = rc.createKey(i, vnew) 
03. if (rc.contains(i)) then 
04.  if (! rc.testCondition(i, vnew)) then 
05.   rc.remove(kold, i) 
06.  else 
07.   if (rc.isKey(m)) then 
08.    rc.remove(kold, i) 
09.    rc.add(knew, i) 
10.   endif 
11.  endif 
12. else 
13.  if (rc.testCondition(i, vnew)) then 
14.   rc.add(knew, i) 
15.  endif 
16. endif 

Fig. 4. Maintenance algorithm. 



4 Evaluation of the Hybrid Architecture 

In this section, we evaluate our hybrid architecture. First, we describe the overall 
strategy of the evaluation methods. Detailed experiments and their results are shown 
in the following sections. 

For the sake of comparison, two alternative architectures are considered and tested 
to help define the limits of effectiveness of the hybrid architecture. We determine the 
significant parameters in a test environment by considering the pros and cons of each 
architecture, and compare them in order to estimate the breakeven points for the 
advantages and disadvantages of the hybrid architecture. 

We focused on applications that need to process many updates and simultaneously 
process as many searches as updates, because the hybrid architecture was developed 
to address problems in such situations. 

4.1 Evaluation Methodology 

The hybrid architecture consists mainly of the batch processor and the incremental 
maintenance functions for the result cache, and relies on two major premises to enable 
batch update. The first premise is that the result cache is always maintained as the 
base table changes. The second premise is that the entire result cache, including all 
indexes, can be stored in memory. This means that the maintenance costs of the 
hybrid architecture increases as the update queries increase. And also means the 
instance cache may run out of memory because of the pressure of the index cache, it 
reflects to the cache hit ratio of the instance cache. In other words, the total 
performance of the hybrid architecture may depend on the maintenance cost and the 
memory size of the instance cache. 

It is always the case that disks are the bottleneck of the system when updates are 
frequent. Because batch update removes the disk performance bottleneck, the hybrid 
architecture is efficient when the performance bottleneck is the disk. However, if the 
maintenance of the result cache or the read accesses to the database becomes the new 
performance bottleneck replacing with disk bottleneck, then the hybrid architecture 
can be inefficient. 

Thus in order to evaluate efficiency of the hybrid architecture, we should estimate 
the performance boundaries that can be observed as these potential bottlenecks, more 
specifically, (1) the maximum throughputs of the write accesses without batch update, 
(2) the maximum throughputs of maintenance for the result cache, and (3) the 
maximum throughputs of the read accesses with a size restriction for the instance 
cache. Comparing these throughputs reveals the range that the hybrid architecture can 
be efficient.  

To estimate these throughputs, we introduce performance comparison models to 
figure out the significant parameters. The significant parameters are the parameters 
that mainly determine these throughputs. In particular, the batch size is a significant 
parameter for (1), and the number of indexes is for (2), and the cache hit ratio is for 
(3). Detailed relations between the significant parameters and the throughputs are 
described using the performance comparison models in the following subsections. 



To figure out the significant parameters, we must assume the same condition other 
than the features which generate the target performance bottlenecks. We use three 
different architectures to make the performance comparison models. They have the 
corresponding performance bottlenecks. Table 1 summarizes these architectures and 
their performance bottlenecks. The bottlenecks are derived from the respective pros 
and cons of the architecture described in the table.  

The hybrid architecture has a result cache and batch update but it has maintenance 
cost to keep its result cache consistent to prevent database accesses for the search 
queries. The simple-index architecture has a result cache but no maintenance 
functions. Thus the architecture has no maintenance costs but cannot do any batch 
updates. The no-index architecture has no index cache, so all of the memory can be 
used for the instance cache. While this also disables batch update for the no-index 
architecture, the no-index architecture has better throughput of read accesses.. On the 
other hand, the simple-index architecture’s throughput of read accesses is the same as 
the hybrid architecture’s one, because both of them have the same restriction of 
available memory size for the instance cache.  

We conducted three experiments. They are described in the following subsections 
with performance comparison models and their results. Subsection 4.3 shows an 
evaluation for the maximum throughput with and without batch update. Subsection 
4.4 shows an evaluation for the throughput of the maintenance for various numbers of 
indexes. And Subsection 4.5 shows an evaluation for the maximum throughputs of 
read accesses for various cache hit ratios. 

Table 1. Cache architectures and their potential bottlenecks 

 Hybrid 
Architecture 

Simple-index 
Architecture 

No-index 
Architecture 

Features Instance cache,  
Result cache,  
Maintenance,  
Batch update 

Instance cache,  
Result cache,  
Simple eviction 

Instance cache 

Pros Faster update No maintenance No maintenance,  
Larger instance 
cache 

Cons Maintenance,  
Smaller instance 
cache 

Slower update,  
Smaller instance 
cache 

Slower update 

Bottlenecks Batch update,  
Read,  
Maintenance 

Update,  
Read 

Update 
Read 

4.2 Testing Platform 

The testing platform for following experiments consists of one 2.2 GHz CPU dual 
core machine and one 2.4 GHz CPU dual core machine connected via a 1 Gbps LAN 
(Fig. 5). The first machine was the application server, and the second was the 
database server. The detailed specifications of each machine are shown below. 



 
 Application Server 
- CPU: 2.2 GHz dual core Opteron 275 x2, 2 MB 2L cache 
- Main Memory: 4 GB PC3200 RAM 
- Hard Disk: 80 GB SATA 7200 rpm 
- Operating System: Windows 2000 Service Pack 4 
- WebSphere Process Server 6.0.1.2 

 
 Database Server 
- CPU: 2.4 GHz Opteron 250 x2, 1 MB 2L cache 
- Main Memory: 4 GB PC3200 RAM 
- Hard Disk: 73.4 GB 15 Krpm Ultra320 SCSI 
- Operating System: Windows 2000 Service Pack 4 
- DB2 UDB Enterprise Edition 8.1.8 

 

Application Server
Database Server

1000BaseT

Application Server
Database Server

1000BaseT

 
Fig. 5. Testing platform. 

4.3 Evaluation for Batch Update 

The greatest advantage of using the hybrid architecture is the feasibility of batch 
update. This feature removes the disk performance bottleneck and allows for high 
throughput. Thus the efficiency of the hybrid architecture can be determined by 
measuring how much the throughput of the hybrid architecture exceeds the maximum 
throughput without batch update. Even if the two other potential bottlenecks than the 
batch update bounds the throughput of the hybrid architecture, still it is cost-effective 
while these exceeds the maximum throughput without batch update. 

We measure how many updates can be processed each second for various batch 
sizes. The batch size defines how many SQL statements are sent together using the 
add-batch instruction. It is a first significant parameter to figure out the throughput 
with and without batch update. They are used as the maximum performance of the 
hybrid architecture and the maximum performance of the other two architectures that 
we use in the performance comparison models. 
 
Method. We executed an experiment to estimate batch update throughput when all of 
the statements are updates. Of course, general applications tend to issue various 
combinations of SQL statements, but for simplicity we only considered updates in this 
experiment. The target table has 6 columns, and each column consumes 8 bytes for 



each record. The update statement fills in the remaining 2 columns by selecting a 
record with a primary key. 

As batch size increases, we observed how many statements were processed in a 
second. To measure the throughput of the batch updates in an appropriate manner, the 
numbers of generated statements are multiples of the batch size from 1,000 to 14,000. 
For a smoother graph, we changed the intervals of the batch size. For regions that 
change rapidly, we used shorter intervals. Each of the throughput results is the 
average of ten trial runs. 

 
Result. The results of the experiments are shown in Fig. 6. The vertical axis 
represents the number of update statements which are processed in a second. The 
horizontal axis represents the batch size. The throughput curve starts being satiated 
around the batch size of 2,000, and the throughput is about 10,000 (actually 9,892) 
updates/second. And it is almost satiated around the batch size of 6,000, and the 
throughput is about 11,000 (11,045) updates/second. Thus we say the maximum 
throughput of the batch update is 11,000.  

Even though the batch size of 1 (no batch) gave a throughput of 231 
updates/second, we used the minimum batch size of 10 with a throughput of 1,500 
(1,474) updates/second as the throughput without batch update, because applications 
usually have multiple updates in their smallest transactions. The throughputs of 1,500 
and 11,000 were compared with the results of the later experiments to estimate the 
boundary of the range which the hybrid architecture can be efficient. We consider that 
the value of 1500 update queries/second represents the bottleneck of the other two 
architectures, and the 11,000 updates/second is the maximum throughput which can 
be performed by the hybrid architecture. 
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Fig. 6. Throughput curve for batch size.  

4.4 Evaluation for Maintenance Cost 

In this section, we introduce one of the performance comparison models to estimate 
the performance boundary of the hybrid architecture. It shows that the number of 



indexes is the significant parameter for the throughput of the maintenance operation. 
And an experiment is conducted to estimate its value as the lower performance 
boundary of the hybrid architecture. 
 
Method. Fig. 7 shows the performance comparison model between the hybrid 
architecture and simple-index architecture. In this figure, u/s stands for update queries 
per second. The simple-index architecture has relatively small maintenance cost at 
update time compared to the hybrid architecture, though batch update cannot be used. 
In the simple-index architecture, the indexes are maintained in a simple way that the 
corresponding result cache entry is simply evicted when an update occurs. Thus the 
maintenance cost of the simple index is assumed to be almost zero compared to 
incremental maintenance. The hybrid architecture has maintenance costs for the result 
cache to allow the use of batch update. 

According to the model, the one of the lower performance boundaries appears at 
the point when the maximum throughput of the maintenance operation becomes less 
than the throughput of the simple-index architecture. It is the maximum throughput 
without batch update, 1500 update operations/second. 
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Fig. 7. Performance comparison model of hybrid and simple-index architecture.  

 
The maintenance cost C depends on the number of indexes N, so C = O(k N), where 

k is the average cost of one execution of the maintenance function. The value of k 
depends on the data structure of the indexes. In this experiment, we used a hash table 
where k is constant. If a tree structures were used, k would be O(n log n), where n is 
the number of index entries. In this model, we simply assume the worst case in which 
the indexes need to be maintained after every update. 

Thus the significant parameter for the throughput of the maintenance operation is 
the number of indexes. We conducted an experiment that estimates the maximum 
throughputs of maintenance operation with changing the number of indexes. We 
measured how many update queries per second were processed with maintenance. 
 



Result. The results of this experiment are shown in Fig. 8. The vertical axis 
represents the number of maintenance operations per second. The horizontal axis 
represents the number of indexes. The throughput for maintenance is in inverse 
proportion to the number of indexes, since the time for maintenance of the indexes is 
proportional to the number of indexes. This is consistent with the expression C = O(k 
N) as described above. 

The experiment determines two values of 11,000 maintenance operations/second 
for 250 indexes (actually 246) and 1,500 operations/second for 1,800 indexes (1,838). 
When the throughput for maintenance operation is less than 1,500 update queries per 
second, which is the throughput without batch update, then the hybrid architecture is 
never effective. In that range, the maximum throughput of the hybrid architecture is 
limited by the throughput of the maintenance operation and it is less than the 
maximum throughput of the simple-index architecture. 

Note when the throughput for maintenance operation is less than 11,000 update 
queries per second, then the maintenance operation becomes the bottleneck of the 
hybrid architecture. But it is better than the throughput of the simple-index 
architecture, since still hybrid architecture can be effective in this range. 
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Fig. 8. Throughput curve of maintenance for number of indexes.  

4.5 Evaluation for Efficiency of Instance Cache 

In this subsection, the other performance model is shown. It shows that the hit ratio of 
the instance cache is the significant parameter to determine the throughput of the read 
accesses from the database. And an experiment is conducted to estimate its value as 
the other performance boundary of the hybrid architecture. 

 
Method. Fig. 9 shows the performance comparison model between the hybrid 
architecture and the no-index architecture. In this figure, u/s stands for update queries 
per second. The hybrid architecture must have the all indexes of the result cache on 
the memory to enable batch update, because the search queries must be processed 
with fresh data in the maintained indexes rather than the database updated 



asynchronously. Thus the no-index architecture can use relatively more memory for 
the instance cache than the hybrid architecture. The lack of memory may cause more 
database accesses to read the data. Therefore the comparison between these two 
architectures corresponds with the comparison between the throughput of the read 
accesses with smaller instance cache and the throughput without batch update. 

To evaluate the effect of the smaller instance cache, we measured how many 
records could be read in a second while changing the cache hit ratio of the instance 
cache. The effect of the instance cache will differ depending on the application 
patterns, the reusability of records, the update frequency, etc. However such 
differences of application patterns will be summarized in the hit ratio of the instance 
cache. Thus we use this metric as the significant parameter for this evaluation.  

In this experiment, the load for read accesses is generated as requests to retrieve 
random records by their primary keys. It does not include the cost of selection. In 
order to find the lowest boundary of efficiency, we just took the worst case for the 
hybrid architecture, which can select more quickly by using the memory-resident 
index.  

The read cost from the memory is relatively very small compared with the read cost 
from the database. Thus the read cost from memory is assumed to be approximately 
zero. The throughput for reads is expressed as K/(1-R), where R is the cache hit ratio, 
and K is the raw throughput of reads from the database.  
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Fig. 9. Performance comparison model of hybrid and no-index architecture.  

  
Result. Fig. 10 shows the graph of throughput (reads per second) for each cache hit 
ratio. The vertical axis represents the number of reads processed in each second. The 
horizontal axis represents the cache hit ratio.  

The experiments determine one significant point which is 11,000 for the cache hit 
ratio of 60%. When the throughput of reads is less than 11,000 update queries per 
second, reads become the bottleneck of the hybrid architecture. But the hybrid 
architecture is still efficient in this range, because it is better than the throughput of 
the no-index architecture. There is no breakeven point for the cache hit ratio, because 



even if all of the data is read from database, which is the case for the cache hit ratio of 
0%, the throughput (around 5,000) was not less than 1,500. 
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Fig. 10. Read throughput versus cache hit ratio. 

5 Discussion 

We found the effective limits of the hybrid architecture through these three 
evaluations, and illustrate the limits using two significant parameters, the number of 
indexes and the cache hit ratio, in Fig. 11 and Fig. 12. Three ranges are shown in 
these figures. Range A represents the most effective range for the hybrid architecture, 
because the two parameters are not bounded by the throughput of batch updates. 
Range B represents the range where the hybrid architecture is still effective, because 
these two parameters bound the throughput of batch update. Range C represents the 
range where the hybrid architecture is ineffective.  

Fig. 11 shows the classification of ranges by the number of indexes. The figure 
shows that the hybrid architecture is most effective for less than 250 indexes and is 
still effective for less than 1,800 indexes. General applications are not likely to have 
more than 250 indexes, even if the multiple indexes are generated for each where-
clause. They are even less likely to have more than 1,800 indexes. Therefore the 
number of indexes is unlikely to pose real-world problems for the hybrid approach.  

Fig. 12 shows the classification of ranges by the cache hit ratio. The figure shows 
that the hybrid architecture is the most effective for cache hit ratio above 60% and is 
still effective at lower values. However, these results are based on the assumption that 
the number of updates and the number of reads are the same. Changing that 
assumption will also change these results. For example, if the number of reads is 4 
times the number of updates, then the hybrid architecture will become ineffective if 
the cache hit ratio is below 15% (Fig. 13). In such situations, the throughput for reads 
must be more than 4 times the throughput of updates. Thus, the hybrid architecture 
can be effective as long as all of the indexes are stored in memory. 
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Fig. 11. Classification of ranges by the number of indexes. 
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Fig. 12. Classification of ranges by the cache hit ratio. 

 

 

0
0

cache hit ratio

re
ad

s 
pe

r s
ec

on
d

44,000

90

AB

6,000
15

C

 
Fig. 13. Classification of ranges by the cache hit ratio when the number of reads is 

4 times the number of updates. 



 
Finally, we summarize a classification methodology for a given application to 

determine whether or not the hybrid architecture will be efficient for it (Fig. 14). The 
methodology consists of three major steps based on the evaluation methodology we 
discussed above. 

 

TR < Tmin

M(N)*(1-U) < Tmin

St < Sx

Evaluation for Maintenance Cost

Tmax: Throughput of batch update

Tmin: Throughput without batch update

N: Number of indexes

Ss : Size estimation of instances

U: CPU utilization of application logic

Sx : Size estimation of indexes

R: Cache hit ratio

TR > Tmax

M(N): Throughput of maintenance

St < Sx + Ss

P*G(R) < Tmin

G(R): Throughput of read data

TR: Required Throughput St : Total memory size

P: Number of reads per update

Evaluation for Batch Update

Evaluation for Memory Usage

Experimental Parameters

Application Characteristics

Hybrid architecture is NOT efficient

Hybrid architecture is efficient

 
Fig. 14. Classification methodology for a given application to determine the 

efficiency of the hybrid architecture. 
 
The first major step is the estimation of the efficiency of the batch update. The 

maximum throughput of batch updates Tmax and the maximum throughput without 
batch updates Tmin will be known from the experiments described in Subsection 4.3. 
Tmax is considered as an upper bound of the throughput that can be achieved by using 
the hybrid architecture. If the throughput requirement of the given application TR 
exceeds Tmax, then we should look for other solutions.. If TR is less than the 
throughput without batch update Tmin, then the hybrid architecture is not necessary. 

The second major step is the estimation of the maintenance costs for the result 
cache. The number of indexes N is estimated from the given set of SQL statements, 
and the throughput of maintenance for the indexes M(N) can be acquired by testing. 



Then we can compare M(N) with Tmin to estimate whether the hybrid architecture will 
be efficient when considering the maintenance costs of the generated indexes. In 
addition, the load of the application logic without maintenance should be considered 
based on the CPU utilization ratio U.  

The third major step is the estimation of memory usage. First, we need to check 
whether all of the indexes can be stored in the available memory of the system. A 
rough estimate of the required memory for the indexes Sx can be made from the 
number of indexes and the number of instances (or instance variations, if it is larger 
then the number of instances). Then we can estimate how many instances can be 
cached by comparing the total of Sx and the instance cache size Ss with the total 
memory available for the application St.  

A rough estimate of the cache hit ratio R can be made based on the memory size 
estimate. The throughput of reading data G(R) acquired from the experiment is used, 
multiplied by the ratio of the number of reads per update P. Finally, we figure out 
whether or not the hybrid architecture would be efficient by comparing this 
throughput with Tmin.  

6 Concluding Remarks 

We evaluated the hybrid architecture proposed in our previous work, and clarified that 
it is applicable for a broad range of application patterns. Though it requires enough 
memory to keep the entire result cache in memory, its efficiency is almost 
independent of access patterns. Thus the use of this hybrid architecture would be a 
major enhancement for applications that require processing many update and search 
queries in a consistent manner, including other event-driven applications, continuous 
queries, massive multi-agent systems, many personalized applications, and so on. 

In addition, we proposed a methodology to estimate the efficiency of the hybrid 
architecture for a given application. For this methodology, we introduce two 
performance comparison models and determine three significant parameters. The 
performance comparison model enables to compare the advantages and the 
disadvantages of the hybrid architecture in the same standards. And the significant 
parameters indicate the application characteristics for which the hybrid architecture is 
efficient. The methodology makes it possible for developers to decide whether the 
hybrid architecture can be used for their practical applications.  

The memory consumption of this architecture is the other problem to be addressed. 
We will address that problem as future work. 
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