
April 24, 2007
RT0728
Engineering Technology 8 pages

Research Report
A Hybrid Event-Processing Architecture based on the
Model-driven Approach for High Performance Monitoring

Yosuke Ozawa, Teruo Koyanagi, Mari Abe, Liangzhao Zeng
IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It
has been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or
copies of the article legally obtained (for example, by payment of royalities).

A Hybrid Event-Processing Architecture based on the Model-driven Approach
for High Performance Monitoring

Yohsuke Ozawa, Teruo Koyanagi, Mari Abe, Liangzhao Zeng

IBM Tokyo Research Laboratory,

Yamato-shi, Kanagawa-ken, Japan
E-mail :{ ozawaysk, teruok, maria}@jp.ibm.com

IBM T.J. Watson Research Center,
Yorktown Heights, New York, United States

E-mail:lzeng@us.ibm.com

Abstract

Business Activity Monitoring (BAM) is a concept for
computer systems which support monitoring situations
and the performance of business processes as they
execute. The monitoring system needs to capture and to
process numerous events while correlating them with
other events stored in a database. If the database
accesses become very frequent, read-only and write-only
accesses can achieve high throughputs by applying well
known solutions; a result cache and a batch update.
However, the event processing of the monitoring includes
both simultaneously. It is the case that is hard for the
existing solutions to achieve high throughputs.

Here, we introduce a new architecture, HM-Hybrid, to
process events for monitoring efficiently. It is a hybrid of
a result cache and a batch update. And our model-driven
approach makes it possible for them to work together in
situations that are normally regarded as being unsuited
for them. It processed 1207 events per second, about
43000 queries per second. It is 6 times better
performance over a naive caching architecture in our
experiments. The architecture seems useful for
monitoring applications where there are many update
and select queries.

1. Introduction

In modern management, it is increasingly necessary for
managers to respond quickly to its dynamic and fast-
changing business circumstances. Gartner [1] defines
"Business Activity Monitoring" (BAM) as:

BAM is how we can provide real-time access to
critical business performance indicators to improve
the speed and effectiveness of business operations.
Unlike traditional real-time monitoring, BAM draws
its information from multiple application systems and
other internal and external (inter-enterprise) sources,

enabling a broader and richer view of business
activities. As such, BAM will be a natural extension of
the investments that enterprises are making in
application integration. It calculates Key Performance
Indicators (KPI) by capturing events which is
generated along with execution of business operations,
and evaluates whether the KPIs meet the user defined
business goals or not.

As described above, BAM is based on the integrated

applications, because measuring the performance of
today’s enterprise is not possible without considering it as
a cooperation of many of its sub-businesses. Service
Oriented Architecture is a key to integrate the enterprise
applications [2]. The enterprise applications are published
as Web Services, and the business processes described by
BPEL [3] integrates them. The uniformed interface
conformance of Web Services enables composition and
execution of business processes and such a unified system
environment allows developing a monitoring system. For
the concept of BAM, as many as possible related systems
should be connected with the process engine. And richer
information about broader business activities is calculated
from numerous events generated by the connected
systems.

However, we face performance problems in processing
huge numbers of events. In order to understand business
situations, the monitor correlates each event with other
events, following rules described in an observation model
or other rule descriptions [4, 5]. For persistence, the
temporary states of calculations have to be saved in a
database. This means at least one select query for the
correlation and one update query of a calculated KPI are
required for monitoring. Huge number of read and write
accesses to the database will occur simultaneously when
thousands of events are processed. For our clients, such
as manufacturers, stockbrokers, and security companies,
these systems generate thousands of events each second.

The monitor must have enough performance to process
such large number of events.

Such requirements are hard to satisfy with existing
architectures. However, if the database accesses become
very frequent, read-only and write-only accesses to the
database can achieve high throughputs by applying well
known solutions. Read-only accesses can be accelerated
with simple cache solutions. The results of select queries
can be cached in the application server in a result cache,
and the cached data need never expired, because no
modification will be attempted to the original data. Write
-only accesses can be accelerated with batch solutions.
Batch update collects the write requests over an interval,
and then executes them asynchronously as a large, fast
job. This is known to be extremely efficient for write
accesses using database management systems.

However such solutions fail when read and write
accesses to a database are mixed. There are no efficient
general solutions for the mixed read-write cases. In the
mixed case, batch update cannot be used because of its
asynchronous characteristics. The monitor always needs
the latest data to process the next event. The event must
be correlated with the very recent events because of the
real-time requirements for monitoring.

Also the result cache is inefficient. When write
accesses occurred frequently, the result cache cannot be
simply updated like write-through cache, because the
result cache stores search result of SQL select statements.
Therefore, the cached results may be invalidated at very
short intervals and the cache hit ratio will be low.

Rather than separate solutions, our idea is to combine
them. Batch update can defer updates, as long as fresh
results can be retrieved from the result cache. This is
possible by maintaining result sets in the cache with
reflecting the update queries without accessing the base
tables. This requires application information about any
constraints on the data access patterns. The model-driven
approach we used can provide such information.

Here we introduce HM-Hybrid, a new architecture to
process events for monitoring systems. It is a hybrid of a
kind of result cache with batch updates to a database. It
automatically and efficiently maintains a result cache and
this result cache allows batch update by responding to the
monitor’s queries as a substitute for the unsynchronized
state of database.

In the second section, the position of our work is
described with related works. In the third section, we
describe the concept and architecture of HM-Hybrid
including the model-driven approach. The fourth section
describes our evaluation of the architecture. In our
experiment, HM-Hybrid realizes six times higher
performance over a naive cache architecture. In the last
section, we conclude that our architecture is quite
effective to process high volume event streams, such as
the monitoring components in BPM services.

2. Related works

Recently, several monitoring systems have been
developed. Baresi et al. [6] illustrates a monitoring
solution for composed services described as BPEL
processes. They present two implementations. One is a
dynamic link approach based on an object-oriented
language, and the other is an interpreted approach based
on an assertion rule language. Mahbub et al. [7] also
shows an implementation of a monitoring system on an
execution engine for BPEL. It captures the events
generated by the engine, and detects whether or not the
requirements described in a rule language are satisfied in
running business processes. Zeng et al. [4] introduced a
compilation approach to the model-driven monitoring
system. It showed that an observation model could be
transformed into a simple executable model based on
SQL.

These systems save monitored states in databases. As
mentioned above, batch update is extremely efficient to
process high volumes of events. However, the latency of
the batch update constitutes a limiting factor for use in
runtime monitoring, because BAM requires monitoring to
provide real-time information.

In this paper, HM-Hybrid solves such dilemma of
batch update by resolving the correlations using memory
resident structured indexes as a results cache. These
indexes must be maintained consistently for all insert,
delete, and update queries without accessing the base
tables. This prevents access to the database except for
executing batch updates.

Event correlation is an important idea for the recent
event processing systems. And the event correlation is
traditionally researched in the system management field.
Hasan et al. [8] describes simple models for causal and
temporal correlation. Because of the characteristics of
diagnosis, the event correlation engines in this field
usually do not mention about persistency for correlation
state, in contrast to the monitoring systems for BAM.

Continuous queries [9] have been proposed for
querying data streams. They essentially require the same
processing mechanisms as used with monitors. They
usually assume insertion only in contrast to HM-Hybrid,
which allows all queries. This is due to differences in the
available information and the constraints in processing
queries.

There are many research reports on view maintenance
in the field of materialized views. They include useful
algorithms to maintain our results cache [10, 11, 12].
Gupta and Mumick categorized maintenance algorithms
by the amounts of information that can be utilized when
the views are refreshed.

Our model-driven approach can provide a complete set
of access patterns by compilation as described in [4].
These access patterns, a full set of SQL statements, are
equivalent to full information about the constraints for
view maintenance. Hence our method can use almost full
constraints, and the simplest and most effective
maintenance functions can be derived from the full
constraints.

In essence, our system works based on the constraint
information. Thus it can be applied to any model and any
rules from which such information can be extracted.

3. Hybrid event-processing architecture
based on the model-driven approach

The basic concept of our hybrid architecture and its
implementation HM-Hybrid are shown in this section.
The model-driven approach which makes it efficient is
also shown.

First, we describe the observation model underlying
our model-driven approach. Then the model-driven result
cache is illustrated. The model-driven result cache
realizes the hybrid architecture. Finally, we describe how
the hybrid architecture works.

3.1. Starting point: Observation model

To grasp business situations, a user defines an
observation model that indicates which attribute of which
event is to be used for the calculation of some KPI. One
of the simplest and most typical KPI is “Turnaround-
Time” for service orders, and its abstract observation
model is shown in Figure 1.

end-time – start-time

Start-Event
order-id
timestamp

start-time end-time
order-idtimestamp timestamp

End-Event

timestamp
order-id = id

Turnaround-Time

id

end-time – start-time

Start-Event
order-id
timestamp

Start-Event
order-id
timestamp

start-time end-time
order-idtimestamp timestamp

End-Event

timestamp
order-id = id
End-Event

timestamp
order-id = id

Turnaround-Time

id

Figure 1. Observation model for “Turnaround-Time”

A “Start-Event” will be emitted when a customer buys

a product, and an “End-Event” will be emitted when the
enterprise ships the product. “Turnaround-Time” is
calculated from these two events, which have at least two
attributes, “order-id” and “timestamp”. To calculate
“Turnaround-Time” of an order, you can simply subtract

the “timestamp” of a “Start-Event” from the “timestamp”
of an “End-Event” when both events have the same
“order-id”. However, since the monitor system can never
know when events make a pair, it saves the state as an
object named “monitoring-context-instance” that has
“order-id” as a primary-key and “timestamp” as an
attribute when each “Start-Event” arrives. It correlates the
state by querying the database with “order-id” when an
“End-Event” arrives, calculates “Turnaround-Time”, and
saves the state again.

3.2. Generating result cache from the model

Figure 2 shows the concept of the model-driven
approach for cache generation. The user first defines an
observation model for monitoring. Since the given
observation model describes all behaviors of the monitor
application, we can extract all of its data access patterns
by using the compilation approach. We can tell how many
select or update statements can be used, and which
columns of which tables might be changed.

Observation Model

Data Access Patterns

Model Driven Result Cache
Optimized for the Data Access Patterns

Model Transformation/Extraction

Code Generation for Result Cache

Observation Model

Data Access Patterns

Model Driven Result Cache
Optimized for the Data Access Patterns

Model Transformation/Extraction

Code Generation for Result Cache

Observation Model

Data Access Patterns

Model Driven Result Cache
Optimized for the Data Access Patterns

Model Transformation/Extraction

Code Generation for Result Cache

Figure 2. Model-driven cache generation

Once we have all of the data access patterns, we can

generate a result cache which has optimized maintenance
functions for the data access patterns. The data access
patterns can be considered as constraints representing
when and which target results in the cache are maintained.
The maintenance functions are generated by using
information about such constraints. In details, methods
for deriving maintenance functions are well known in the
field of materialized views [10, 11, 12].

In our approach, both the indexes for SQL select
statements and the maintenance functions are generated
as a result cache from the observation model. We call the
generated result cache the “Model-driven result cache”.

An index for an SQL select statement consists of a key
and a condition (Figure 3). The key is from the
parameterized predicates of a where-clause, and the key is
used for the index entry. The value of the index entry will

be a result set of IDs for monitoring-context-instances.
The condition is from the static predicates of the where-
clause and the monitoring-context-instances must satisfy
the condition when they are added to the index.

C1 = ? C2 = ? C3 > 5and andselect * from t1 where

key: <C1, C2>
condition: C3 > 5

<4, 3>

<3, 3>
<4, 2>

Result set (MCI IDs)
Result set (MCI IDs)
Result set (MCI IDs)

C1 = ? C2 = ? C3 > 5and andselect * from t1 where

key: <C1, C2>
condition: C3 > 5

<4, 3>

<3, 3>
<4, 2>

Result set (MCI IDs)
Result set (MCI IDs)
Result set (MCI IDs)

Figure 3. Generating an index from a where-clause

3.3. A new architecture: HM-Hybrid

HM-Hybrid consists of the model-driven result cache
and a batch processor for the batch update function
(Figure 4). For the monitor’s requirement and real-time
understanding of business situations, asynchronous batch
updates are not usually allowed when the database should
be responding to user queries.

In this hybrid architecture, the facade of the model-
driven result cache substitutes for the database when
users query with select statements, and this allows
asynchronous batch update.

Monitor

Batch Processor

Database

Model Driven Result Cache

Maintenance
Functions

Indexes

Monitor Context Instances

Result Cache

Monitor

Batch Processor

Database

Model Driven Result Cache

Maintenance
Functions

Indexes

Monitor Context Instances

Result Cache

Figure 4. HM-Hybrid architecture for monitor

The model-driven result cache is the combination of

the result cache and its maintenance functions. The result
cache stores the search results of select statements as
indexes which are linked to monitoring-context-instances.
Maintenance functions are notified when the monitoring
context instances are updated and this keeps the result

cache fresh. When the monitoring-context-instances are
updated, the updates are sent to the batch processor, and it
executes periodic batch updates.

The detailed runtime architecture of HM-Hybrid is
shown in Figure 5. HM-Hybrid consists of a model-
driven result cache and a batch processor for batch
updates.

When an event is emitted to the runtime, the event
needs to be either correlated with existing monitoring
context instances or creates a new monitoring-context-
instance. For correlation, the correlation processor
determines the index for the event from its event type and
the key generation function corresponding to the index
generates its key, and selects a result set from the index
for that key. The result set includes monitoring-context-
instance IDs of each monitoring-context-instance, and
finally the event is correlated with these monitoring-
context-instances.

The result set of the monitoring-context-instances
passes to the instance processor. The instance processor
calculates the KPIs from the correlated events and writes
the updates back into the HM-Hybrid cache manager.

Then, the HM-Hybrid cache manager has two
important roles. The first role is maintaining the result
cache. The HM-Hybrid cache manager sends update
requests to the maintenance functions. The maintenance
functions evaluate the update requests with the target
monitoring-context-instance and changes the
corresponding indexes to keep them consistent. The
second role is sending the update requests to the batch
processor. The batch processor manages the updates as
new record states, and consequently reduces the number
of update queries. Because the multiple updates which
updates the same record will be managed as a one state. It
also periodically executes the batch update of the
database.

3.4. Maintenance algorithm for result cache

The maintenance algorithm for the result cache is
described in the pseudo code in Figure 6.

The code assumes that the result cache object rc
provides add, remove, and contains methods as index
manipulations. The derived three methods from
observation model, createKey, isKey, and testCondition,
belong to rc as part of its maintenance functions.

First, the maintenance function creates two keys kold
and knew from the corresponding values of the modified
KPI. The kold is used to remove the existing entry in the
result cache, and knew is used to add the new entry.

In Line 3, the function checks whether the result cache
contains the target monitoring-context-instance mci. Then
the derived condition is tested to decide if the updated
mci should be indexed in the result cache, by considering
the new value vnew.

MCI

MCI

MCI

MCI

iID
iID
iID
iID

iID

key
key
key

Index for access pattern 1

Index for access pattern 2

key
key
key
key

iID
iID

iID
iID

Result Cache
Indexed by
Instance ID

Record
State

Record
State

Record
State

Record
State

rID
rID
rID
rID

Indexed by
Record ID

Batch Processor

Database

update

Correlation
Processor

Instance
Processor

select

events

execute
batch

HM-Hybrid
Cache Manager add batch

update

Instance Cache

Model Driven Result Cache

Record
State

rID

maintenance

Monitor

MCI

MCI

MCI

MCI

iID
iID
iID
iID

iID

key
key
key

Index for access pattern 1

Index for access pattern 2

key
key
key
key

iID
iID

iID
iID

Result Cache
Indexed by
Instance ID

Record
State

Record
State

Record
State

Record
State

rID
rID
rID
rID

Indexed by
Record ID

Batch Processor

Database

update

Correlation
Processor

Instance
Processor

select

events

execute
batch

HM-Hybrid
Cache Manager add batch

update

Instance Cache

Model Driven Result Cache

Record
State

rID

maintenance

Monitor

Figure 5. Event-processing flows and components of HM-Hybrid

Even if mci is still in the result cache, its entry may

have been remapped to another key. Line 7 checks if the
updated KPI was used to build the key of the index.

rc: the result cache object
mci: an updated monitoring-context-instance
m: the name of the updated KPI
vold: the old value of the updated KPI
vnew: the new value of the updated KPI

1. kold = rc.createKey(mci, vold)
2. knew = rc.createKey(mci, vnew)
3. if (rc.contains(mci)) then
4. if (! rc.testCondition(mci, vnew)) then
5. rc.remove(kold, mci)
6. else
7. if (rc.isKey(m)) then
8. rc.remove(kold, mci)
9. rc.add(knew, mci)
10. endif
11. endif
12. else
13. if (rc.testCondition(mci, vnew)) then
14. rc.add(knew, mci)
15. endif
16. endif

Figure 6. Maintenance algorithm

4. Preliminary evaluation

The testing environment, the scenario, and the results
of our preliminary evaluation are described in this section.
The results show that the HM-Hybrid monitor works six
times faster than a non-hybrid one.

4.1. Evaluation method

We conducted performance tests for the evaluation of
this hybrid architecture using a test scenario. We
measured the performance by counting how many events
could be processed. The event emitter driver on the
application server emits as many events as the monitor
system could process. A total of 17.5 select queries and
18.6 update queries were produced on average for each
event. The batch update sends the update request which
corresponds to an event as a unit to the database. The
batch size defines how many units are sent together. To
measure the effects of batch update, we varied the batch
size from 1 to 800.

For comparison, we also conducted performance tests
for a non-hybrid architecture (with a result cache only)
using the same scenario. We chose to use the result cache
alone for the comparison, although there are four possible
combinations of result cache and batch update. This was
because batch update alone is meaningless for monitoring,
and the case of none is also meaningless since it is
obviously inferior to the other cases in this scenario.

4.2. Testing environment

4.2.1. Testing platform. The testing platform consists of
one 2.2 GHz dual core CPU machine and one 2.4 GHz
dual core CPU machine connected via a 1 Gbps LAN
(Figure 7). The first machine was the application server,
and the second was the database server. The detailed
specifications of each machine are shown below.

 Application Server
- CPU: 2.2 GHz Dual core Opteron 275 x2, 2 MB

2L cache
- Main Memory: 4 GB PC3200 RAM
- Hard Disk: 80 GB SATA 7200 rpm
- Operating System: Windows 2000 Service Pack 4
- WebSphere Process Server 6.0.1.2

 Database Server
- CPU: 2.4 GHz Opteron 250 x2, 1 MB 2L cache
- Main Memory: 4 GB PC3200 RAM
- Hard Disk: 73.4 GB 15 Krpm Ultra320 SCSI
- Operating System: Windows 2000 Service Pack 4
- DB2 UDB Enterprise Edition 8.1.8

Application Server
Database Server

1000BaseT

Figure 7. System Configuration

4.2.2. Testing scenario. The testing scenario is a business
process to manage medical charts for patients (Figure 8).
It uses 17.5 SQL select statements and 18.6 SQL insert,
update, or delete statements for each event (on average).

In this scenario, a process instance was created for each
visit of a patient. Seven activities and one conditional
branch were included in the process model. Each process
instance executes six activities while selecting one branch.
A medical chart includes forty primitive type properties,
and they are updated in every activity.

There are four types of events in this scenario, and two
of them are generated during the execution of each
activity. They are “Activity-Event”, “Data-Changed-
Event”, “Process-Start-Event”, and “Process-End-Event”.
An “Activity-Event” causes one select and three inserts to
create a new sub-monitoring-context-instance. A “Data-
Changed-Event” causes fifteen selects and fifteen updates
to calculate the KPIs. A “Process-Start-Event” causes two
inserts to create a new main monitoring-context-instance.
A “Process end event” causes sixteen deletes for all of the

monitoring-context-instances related to the process
instance.

Process-
Start-Event

Process ID

KPI1 KPI3KPI2 KPI15…

…

Activity-
Event 1

Process ID

Activity ID

Process ID

Activity ID

Data-
Changed-
Event

Activity-
Event 7

KPI3

Process-
End-Event

Data-
Changed-
Event

Process-
Start-Event

Process ID

KPI1 KPI3KPI2 KPI15…

…

Activity-
Event 1

Process ID

Activity ID

Process ID

Activity ID

Data-
Changed-
Event

Activity-
Event 7

KPI3

Process-
End-Event

Data-
Changed-
Event

Figure 8. Observation model for testing scenario

4.3. Experimental results

Figure 9 shows the comparison results of the HM-
Hybrid architecture and the non-hybrid architecture. The
vertical axis represents the number of events processed
each second. HM-Hybrid could process about six times as
many events as the non-hybrid architecture.

The non-hybrid architecture reached its throughput
peak around 200 events per second, because of the disk
access bottleneck. HM-Hybrid could process 1207 events
per second. It processed about 43000 queries totally in a
second, since each event causes 36 queries. This
incredible high throughput of processing queries is
accomplished by two reasons.

The first reason is removing the disk access bottleneck
by applying batch update. Batch update sends queries in a
certain unit (250 queries in this case) and it makes the
updates efficient, reducing the communication and
maximize the disk utilization. Furthermore the actual
number of update queries is reduced from the number of
queries that the application sent, because the update
queries which update a same record can be arranged into
one update query. The second reason is the load
balancing of the application server and database. Select
queries are processed by the application server and update
queries are processed by database server respectively on
the hybrid architecture, while all select and updates
queries are processed by the database server on the non-
hybrid architecture.

HM-Hybrid achieved six times better performance,
until the application server CPU became the new
bottleneck.

0
200
400
600
800

1000
1200
1400

Non-Hybrid
(Result Cache Only)

HM-Hybrid

ev
en

ts
 p

er
 s

ec
on

d

Figure 9. Comparison of throughput with and without

batch update

Figure 10 shows a line graph of throughput (events per
second) for each batch size with HM-Hybrid. The vertical
axis represents the number of events which are processed
in a second. The horizontal axis represents the batch size.
The throughput curve reached its peak at a batch size of
250, and declined as it increased. This fell short of our
expectations that the throughput curve of the simple
JDBC client would also decline as the batch size
increased rather than being almost satiated around the
batch size of 200 (Figure 11). We believe the throughput
degradation of HM-Hybrid above the batch size of 250 is
due to a transition problem in the application server, and
it needs to be investigated further.
However we reached almost the highest performance for

the disk-based system, because the simple JDBC client
was also satiated around a batch size 200.

0
200
400
600
800

1000
1200
1400

0 200 400 600 800

batch size

ev
en

ts
 p

er
 s

ec
on

d

Figure 10. Throughput curve for batch size of HM-hybrid

0
200
400
600
800

1000
1200
1400

0 200 400 600 800
batch size

ev
en

ts
 p

er
 s

ec
on

d

Figure 11. Throughput curve for batch size of simple

JDBC client

5. Concluding remarks

In this paper, we introduced HM-Hybrid, a new
monitor runtime architecture suitable for monitoring
applications in which huge number of events occur. The
combination of a result cache and batch update
simultaneously supported high-performance event
processing and persistence on the basis of a model-driven
approach, using generated code for the result cache,
which is optimized for data access patterns derived from
an observation model.

This hybrid architecture allows use of a batch facility
in a situation that is normally regarded as unsuitable.
Therefore the architecture should be effective even when
update accesses are numerous and select queries are also
numerous. The hybrid architecture succeeded in
processing about six times as many events as a naive
cache design (by removing a disk access bottleneck). It
will be the enhancement for monitoring in the dynamic
and fast-changing business circumstances.
In the future, we will conduct a comparative analysis by

constructing performance models of the architecture and
other alternative architectures to removing the new CPU
bottleneck.

References

[1] D.W. McCoy. "Business Activity Monitoring: Calm
Before the Storm", Gartner Research, ID Number: LE-15-
9727, 1st April, 2002.
[2] F. Leymann, D. Roller, and M.-T. Schmidt. "Web
Services and Business Process Management", New
Developments in Web Services and E-commercem, IBM
Systems Journal, Vol. 41, No. 2, pp. 198-211, 2002.
[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J.
Klein, F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte,
I. Trickovic, and S. Weerawarana. "Business Process

Execution Language for Web Services Specification
Version 1.1", 5th May, 2003.
[4] L. Zeng, H. Lei, M. Dikun, H. Chang, and K.
Bhaskaran. "Model-Driven Business Performance
Management", Proceedings of the 2005 IEEE
International Conference on e-Business Engineering,
October, 2005.
[5] L. Baresi and S. Guinea. "Towards Dynamic
Monitoring of WS-BPEL Processes", Proceedings of the
3rd International Conference on Service Oriented
Computing, December, 2005.
[6] L. Baresi, C. Ghezzi, and S. Guinea. "Smart
Monitors for Composed Services", Proceedings of the
2nd International Conference on Service Oriented
Computing, November, 2004.
[7] K. Mahbub, and G. Spanoudakis. "Run-time
Monitoring of Requirements for Systems Composed of
Web-Services: Initial Implementation and Evaluation
Experience", Proceedings of the 2005 IEEE International
Conference on Web Services, July, 2005.
[8] M. Hasan, B. Sugla, and R. Viswanathan. "A
Conceptual Framework for Network Management Event
Correlation and Filtering Systems", Proceedings of the
Sixth IFIP/IEEE International Symposium on Integrated
Network Management, pp. 233-246, May, 1999.
[9] S. Babu and J. Widom. "Continuous Queries over
Data Streams", SIGMOD Record, Vol. 30, No. 3,
September, 2001.
[10] A. Gupta, and I.S. Mumick. "Maintenance of
Materialized Views: Problems, Techniques, and
Applications", IEEE Data Engineering Bulletin, Special
Issue on Materialized Views and Data Warehousing, Vol.
18, No. 2, pp. 3-18, June, 1995.
[11] K.A. Ross, D. Srivastava, and S. Sudarshan.
"Materialized View Maintenance and Integrity Constraint
Checking: Trading Space and Time", Proceedings of the
ACM SIGMOD Conference, pp. 447-458, June, 1996.
[12] S. Ceri, and J. Widom. "Deriving Production Rules
for Incremental View Maintenance", Proceedings of the
1991 VLDB Conference, pp. 577-589, September, 1991.

