
July 3, 2007
RT0736
Computer Science; Security 8 pages

Research Report
Secure Behavior of Web Browsers to Prevent Information
Leakages

Takaaki Tateishi, Naoshi Tabuchi
IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It
has been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or
copies of the article legally obtained (for example, by payment of royalities).

Secure Behavior of Web Browsers to Prevent Information Leakages

Takaaki Tateishi Naoshi Tabuchi
IBM Research, Tokyo Research Laboratory

{tate,tabee}@jp.ibm.com

Abstract

Recently Web browsers are widely used as client-side
application platforms beyond the traditional use of Web
browsers. One of main reasons for such evolution of the
browsers is a client-side JavaScript language that can exe-
cute programs embedded in a document. However, Web ap-
plications with client-side JavaScript programs have prob-
lems in leaking private information (such as cookie infor-
mation) due to interactions between a browser and scripts
embedded in a document. In order to prevent Web browsers
from leaking information, we propose a calculus represent-
ing browser behavior with considering information flows.
The proposed calculus can deal with script rewriting and
higher-order functions. In addition, our calculus has a non-
interference property depending on a security policy stati-
cally given by a user.

1 Introduction
Web browsers are widely used as application platforms

beyond simply showing structured documents. One of main
reasons for this evolution of browser usage is that a client-
side JavaScript supported in Web browsers can execute pro-
grams embedded in documents. However the interactions
between scripts and documents can cause security prob-
lems.

Information Leakage from Browsers
Client-side JavaScript programs can retrieve highly con-

fidential user information, such as passwords stored in
cookies. In addition, these programs can modify the doc-
uments themselves. By combining these two functions, we
can embed the confidential information into a document and
then send that information to an arbitrary server by exploit-
ing the browser’s default behavior. Let us consider the fol-
lowing document as an example, and suppose that the doc-
ument was received from a Web serverdomainB.

<body><script>
document.write(

’<img src="http://domainA/’

+ document.cookie + ’" />’);
</script></body>

The JavaScript program in this document generates the
following document including the cookie information
cookie .

A browser interprets the generated document, and then
reads an image file from the URL specified in the docu-
ment by sending a request containing the cookie informa-
tion. Thus the cookie information is exposed to the server
in domainA.

Preventing Information Leakage by Infor-
mation Flow

Information flow control[8] is useful for detecting infor-
mation leakages. The common technique of keeping track
of information dependencies in traditional programs is to
annotate values or variables with security labels. Noninter-
ference, which means that changes in high security input
data does not cause any change in low security output data,
ensures the safety of information flows. In order to benefit
from such secure information flows to prevent information
leakage, we consider the security labels as levels of con-
fidentiality, and check the security levels of data passed to
security sensitive operations such as a function sending data
outside from a program.

Information Flows in Browsers
In the Web browser a hierarchal document called a DOM

instance is like a target program executed by the browser
and it represents a program state. This means that the doc-
ument can be modified by a program embedded in the doc-
ument itself, similar to a self-modifying program. To intro-
duce information flow control to the Web browser, we have
to consider (1) how to annotate DOM nodes with security
labels, (2) how to formalize a noninterference property for
a DOM instance, and (3) how to deal with self-modifying
features that affects information flows. At far as we know,
there is no information flow control handling the above con-
siderations.

1

In this paper we propose a calculus to represent the
behavior of the Web browser considering the information
flow control, and then prove that a noninterference property
holds for the calculus. In the calculus a set of URLs rep-
resents a security label and is assigned to a DOM node. If
we suppose that the confidentiality level of the cookie infor-
mation isB = {local, domainB} for the previous exam-
ple, thenB[document.cookie] represents the fact that the
cookie information can be observed by the browser (local)
and from the server indomainB. Such a security label is
propagated to all of the DOM nodes appended by the pro-
gram as follows.

B[]

To detect information leakage we can check if the string
value “http://domainA/cookie” of thesrc attribute can
be observed by the domaindomainA, before the browser
sends any request to the domain, checking the resulting se-
curity label of the string value. In the above example the
browser should not send the request todomainA since it
includes information that should be observed only by the
domains specified byB and{domainA} 6⊆ B holds.

The proposed behavior model of browsers is also de-
signed so as to restrict any information flows caused by
control dependencies, called implicit flows[8], in addition
to the direct dependencies. This is necessary to avoid infor-
mation leakages through such implicit flows. Suppose that
x is a public variable that can be read from any domain in
the following JavaScript program.

var x = false; // x is not confidential.
if (document.cookie == "xyz")

x = true;
document.write(

’<img src="http://domainA/’
+ x + ’" />’);

The information that the value of the cookie equals to “xyz”
is leaked even though the request todomainA doesn’t con-
tain the value of the cookie. Using a binary search tech-
nique in the similar code an unauthorized party could indi-
rectly obtain complete information, as described by Vogt et
al.[9]. When confidential values are used in the conditions
of conditional branches and loops, such indirect information
leakages are common. In our behavior model we prevent
indirect information leakages by monitoring that confiden-
tiality levels of values affecting control flows never violate
a pre-determined security policy.

Related Work
SLam calculus [6] proposed by Heintze and Riecke is a

typed lambda calculus extended with security types for in-
formation flows. Abadi et al. proposed dependency core
calculus (DCC) [1] that provides a common framework for

type-based dependency analyses similar to that of SLam
calculus.

For procedural program languages, one of the well
known languages is JFlow[7] by Myers, which is a stat-
ically typed language based on Java. Pistoia et al. pro-
posed an access control mechanism based on a combina-
tion of the stack inspection[5] and an information flow tech-
nique. Their semantics satisfies a noninterference property.
Banerjee and Naumann also proved that a noninterference
property[3] holds for their procedural language. In addi-
tion, Barthe and Rezk proposed a security-typed calculus
for JVM and proved a noninterference property holds for
their calculus[4].

All of these prior results are based on a traditional
lambda calculus or procedural languages, but don’t deal
with the feature of higher-order program where values are
evaluated as programs. In addition, our model monitors
information flows at runtime, which is different from the
techniques of the prior research, since they rely on static or
dynamic analyses.

There are some browser implementations or extensions
to prevent information leakages. Netscape Navigator 3 with
JavaScript 1.1 provided us with a data tainting mechanism.
Anupam and Mayer proposed a security framework [2] for
browsers, and Vogt et al. implemented a combination of a
data tainting and static analyses[9] in Firefox.

There is a formal model for browser behavior called
CoreScript[10] proposed by Yu et al. With CoreScript they
describe constraints on browser behavior in the edit au-
tomata and check if a browser’s execution satisfies the con-
straints by using program instrumentation. Their model re-
flects the behavior of thedocument.write() function
that append a text into the document and execute a script
embedded in the text as our model also reflects the same
behavior. However they mainly addressed problems of re-
source usage, for example when programs tries to open in-
finitely many browser windows. They didn’t deal with in-
formation leakages directly.

Organization

The rest of this paper is organized as follows. In the
next section we describe our approaches to security labels
and a noninterference property for DOM instances. In Sec-
tion 3 we define the syntax and the operational semantics of
a calculus representing browser behavior and in Section 4
we apply the calculus to a simple example to show how to
detect an information leak. In Section 5 we conclude this
paper and consider some future work.

2 Our Approach

This section describes how to keep track of information
flows in documents and how to formalize the noninterfer-
ence property for documents.

2

Figure 1. Noninterference for a DOM instance

2.1 Security Labels
In our information flow control, we annotate DOM nodes

with security labels and each DOM node is represented by
a tuple ofg andh whereg is a mapping@from parent nodes
to child nodes,h is a mapping from nodes to tuples of a
security labelB and a node namev, and such a tuple(B, v)
is denoted byB[[v]]. For the example in Section 1, the DOM
instance is formally represented as follows.

g = {(l1, l2), (l2, l3), (l3, ε)}
h = {(l1,P[[body]]), (l2,P[[script]]),

(l3,P[[“document.write(. . .)′′]])}
Intuitively the security labelB represents a set of autho-
rized observers who are allowed to obtainv and it would be
represented by the domain of the document origin. A larger
security label represents a lower confidentiality level since
more observers can obtain that information. In addition the
largest set of observers is denoted byP. Thus highest and
lowest confidentialities are represented by the security label
∅ andP respectively. The confidentiality level for an asso-
ciation from a parent node to a child node is defined to be
the higher one. Thus such a security label is calculated by
Rp ∩Rc.

2.2 Noninterference
A traditional noninterference property states that more

confidential information is not affected by less confidential
information. This property is formalized with two execu-
tions for a program, where(P, σ) ⇓ σ′ represents the fact
that if a programP executes from a program stateσ, then
the program terimnates in a stateσ′.

σ1 ∼ σ2

⇒ ((P, σ1) ⇓ σ′1 ∧ (P, σ2) ⇓ σ′2)
⇒ σ′1 ∼ σ′2

The relation∼ is called an indistinguishability, which de-
fines that low-confidentiality values are the same as each
other. 1 This definition indicates that high-confidentiality
values are not comparable with each other since the values
cannot be observed.

In accord with the above idea we formally define a non-
interference property for DOM instances as follows

(h1, g1) ∼ (h2, g2)
⇒ ((P, (h1, g1)) ⇓ (h′1, g

′
1) ∧ (P, (h2, g2)) ⇓ (h′2, g

′
2))

⇒ (h′1, g
′
1) ∼ (h′2, g

′
2)

where(h1, g1) and(h2, g2) are DOM instances andP is a
program that modifies the DOM instances.

The relation∼ in the above expression defines an equal-
ity (indistinguishability) for documents in which some por-
tions cannot be compared with each other because of they
are confidential. Figure 1 shows such a noninterference
property in which the high security nodes, denoted by gray
circles, are affecting two nodes and the low security nodes
are the same as each other before and after the execu-
tion. Such indistinguishability characterizes the observa-
tional power of attackers and we formally define the indis-
tinguishability in Section 3.

3 Calculus for Browser Behavior
A primary behavior of browsers is to handle embedded

JavaScript programs. In this section, we model this browser
behavior while considering information flows.

3.1 Syntax
We first define the syntax of our language used to rep-

resent browser behavior (as shown in Figure 2). The target
which the browser interprets is a DOM instance. A DOM
node is represented by its tag namet and an HTML attribute
is represented by its attribute name with the prefix symbol
@. A valuev handled by the browser is a number literaln,
a string literalstr, a functionf , or a boolean valueb. R[v]
describes the valuev with the security labelR. A func-
tion with arguments~x is denoted byfun(~x){P ;E}, where
P is a body of the function andE is a return value. An ex-
pressionE consists of variablesx, valuesv, and operators
op. The vectored~x means a sequence of elements such as
x1, x2, · · · , xn. A path expressionpe is expressed by a vari-
ablex with postfix .n wheren is an integer value. In this
path notationx.n means then-th child node of the node
pointed by the variablex.

A program P is made up of common program con-
structs such as conditional branches, DOM operations, and
check statements. In our model, we introduce three primi-
tive DOM operations:write, append, andremove, corre-
sponding to the JavaScript functionsdocument.write ,

1The equality of initial states is not always the same as the equality of
final states. Refer to Section 3.A of the paper[8] written by Sabelfeld et al.
for details.

3

(V ariable) x ∈ X
(Number) n ∈ N
(Boolean) b ∈ B = {true, false}
(String) str ∈ Σ∗
(Tag) t ∈ T = {script, p,@href, . . .}
(Security) R ⊆ P
(Script) P ::= skip

| E | x = E | x = pe | P ;P
| if E then P else P
| check R for E
| write(E) | append(pe, pe)
| remove(pe, pe)

(Expression) E ::= x | v | op(~E) | E(E) | E(pe)
(PathExpression)pe ::= x | pe.n | create(E)
(Function) f ::= fun(~x){P ;E}
(V alue) v ::= n | str | f | b | t | R[v]
(Operator) op ::= + | − | ∗ | /

Figure 2. Syntax

appendChild , and removeChild respectively. A
check statement checks the security label of a value. In
addition, we drop any loop syntax from the definition,
since we can use recursive function calls such asf =
fun(~x){. . . ; f(~E); . . .} instead of loops.

3.2 Semantics
The semantics of the language is defined in a big-step

style with a security policyQ ⊆ P. In the semantics, a
program stateis denoted by(s, h, g). A stores ∈ (X →
L) is a partial mapping from variablesX to locations(or
addresses)L. A heaph ∈ (L → P×V) is a partial mapping
from locationsL to the tuples of security labelsP and the
valuesV whereV = N ∪ Σ ∗ ∪B ∪ T ∪ (V → V). A
tuple such as(R, v) ∈ 2P × V is denoted byR[[v]], and we
use the notationR1[[R2[[v]]]] to expressR1∩R2[[v]]. A DOM
instanceg ∈ (L → ~L) is a partial mapping from locations
to the sequences of locations.

In addition, we can annotate DOM nodes with differ-
ent security labels, since each set of values contains tags
T . This means that we can annotate a password input field
<input type=password .../> with a higher confi-
dentiality label than other nodes. We are sure that it is not
so easy to appropriately configure security labels for DOM
nodes in practical applications, since we have to consider
how server-side programs deal with security labels and they
should be consistent with client-side programs. However
we suppose that security labels for DOM nodes are appro-
priately configured, and that issue is beyond the scope of
this paper.

A sequence of locations is denoted by(l1, · · · , ln) and

the empty sequence is denoted byε. For convenience, we
eliminate the parentheses for a sequence and flatten a se-
quence of sequences when it doesn’t conflicts with other
notations. For example,(~l) means(l1, · · · , ln) where~l =
(l1, · · · , ln), and (~l, ε,~l) means(l1, · · · , ln, l1, · · · , ln). In
addition, undefined value is denoted by⊥ for the partial
mappings.

The policyQ intuitively indicates a set of trusted do-
mains. 2 We require the policy to prohibit implicit flows
that possibly cause information leakages to untrusted do-
mains, which are not included inQ. This is because we
need a static analysis technique to investigate all of execu-
tion paths[8, 9] to track the implicit flows if we don’t use a
static policy. However such a static analysis is not practical,
since our calculus allows program modifications at runtime.

Finding Scripts
The browser constructs a DOM instance by interpreting
an HTML document. We represents that operation with
parseD. parseD(v, h, g,R) returns a triple(l, h′, g′) where
l is a location pointing to the root node of a constructed
DOM instance represented by the tuple(h′, g′). In addition,
every created locationl and the corresponding valuev rep-
resenting tags or strings are supposed to satisfy the equation
h′(l) = R[[v]]. Suppose that(sinit, hinit, ginit) represents
a browser’s state after the DOM construction, and the vari-
abledoc points to the root node of the DOM instance, then
the following formal statement represents the fact that the
browser executes embedded JavaScript programs and ter-
minates at the final state(s′, h′, g′).

(sinit(doc), sinit, hinit, ginit) ⇓ (s′, h′, g′)

The evaluation rules for calculating the final state are de-
scribed in Figure 3. The rules of X-NODE and X-LEAF
represent traversing a DOM instance in depth first order,
and the rule of X-SCRIPT represents script executions. In
the rules the variablecurrent and parent point to a cur-
rently visited node and the parent node of the current node
respectively. P = parseS(str) in the rule of X-SCRIPT
represents the fact that a programP is obtained by parsing
the stringstr. In addition, we define the rules of X-NODE
and X-SCRIPT so as to traverse each node only when the
security label is greater than the policyQ to prevent oc-
currences of implicit flows caused by dynamically updated
DOM nodes.

Script Execution
The semantics of the script executions consists of rules for
expressions, scripts and DOM operations as described in

2In general, the policyQ and the security labelsR ⊆ P might be
an infinite set of domains. However, it is required here that the judgment
of R1 ⊆ R2 should terminates in finite steps for all security labelsR1

andR2. From a practical perspective, we could use regular expressions to
denote a set of domains such asQ = {http://[a-z]+.ibm.com }.

4

h(l) = R[[v]] v 6= script g(l) = (l1, l2, · · · , ln) h(li) = Ri[[vi]] 1 ≤ i ≤ n s0 = s h0 = h g0 = g{
(li, s(i−1)[parent 7→ l, current 7→ li], h(i−1), g(i−1)) ⇓ (si, hi, gi) R ∩Ri ⊇ Q
(s(i−1), h(i−1), g(i−1)) = (si, hi, gi) (otherwise)

(l, s, h, g) ⇓ (sn, hn, gn)
X-NODE

h(l) = R[[script]] R ⊇ Q g(l) = ls h(ls) = Rs[[str]] Rs ⊇ Q
P = parseS(str) (P, s, h, g) ⇓ (s′, h′, g′)

(l, s, h, g) ⇓ (s′, h′, g′)
X-SCRIPT

g(l) = ε

(l, s, h, g) ⇓ (s, h, g)
X-LEAF

Figure 3. Rules for finding embedded scripts

Figure 4, 5 and 6 respectively. The rules for expressions are
defined so as to implement call-by-value and left-to-right
evaluation.

(E, s, h, g) ⇓ (v, s′, h′, g′) means that the expressionE
in the state(s, h, g) evaluates to the valuev ∈ L ∪ (2P ×
V) and terminates in the state(s′, h′, g′). As for rules for
scripts and DOM operations, we use the form(P, s, h, g) ⇓
(s′, h′, g′). In addition, “l is fresh” means thatl is a newly
generated location.

In the rule of P-APPEND in Figure 6, when a DOM
node is appended to a DOM tree and its root node isdoc,
the browser finds scripts in the tree. This behavior is for-
mally defined by the functionE wherereachable(l, l′, g)
is a predicate that means that there exists a path froml to
l′. For example, the following script appends a script to a
DOM node, and then the appended script is evaluated.

sn = create(script);
sb = create("script code")
append(sn, sb);
append(doc.0, sn)

Notice that if we remove the last command
append(doc.0, sn), the generated script is not evalu-
ated until it is appended to the subtree ofdoc.

The rules of P-IF, E-APP, and EL-APP is defined so as to
apply if and only if the security labelR for a condition value
or an application function is greater than or equal to the
policyQ. This is because we prohibit implicit flows caused
by variations of condition values and application functions.

3.3 Noninterference

In this section we show how to prove the noninterference
property [8, 3] that ensures that data of higher security lev-
els thanQ don’t affect the lower security levels. For this
purpose, we first define which information can be retrieved
by observers who are allowed to access data of security lev-
els that are lower than or equal toQ. We call such observers
Q-observers.

Definition 1

LowQ(s, h, g) ≡ (s′, h′, g′)
where
s′ = {(x, l) | l = s(x), R[[v]] = h(l), R ⊇ Q}
h′ = {(l, v) | R[[v]] = h(l), R ⊇ Q}
g′ = {(lp, (lc1 , · · · , lck

)) |
g(lp) = l1, · · · , lc1 , · · · , lck

, · · · , ln,
h(lp) = Rp[[vp]], h(lci

) = Rci
[[vci

]], 0 ≤ i ≤ k,
Rp ∩Rci ⊇ Q}

In this definition,s′ is a relation between variables and val-
ues,h′ is a relation between DOM nodes and its names and
g′ is a parent-children relation including a sibling relation
of DOM nodes.

In general, if the equationLowQ(s1, h1, g1) =
LowQ(s2, h2, g2) holds, it is natural to useLowQ to
express the noninterference property, since the equation
means thatQ-observers cannot distinguish(s1, h1, g1) from
(s2, h2, g2). However, fresh locations are generated non-
deterministically. This means that locations newly gener-
ated at the same state are not always the same. Thus we
define the following equality=β on locations using a bijec-
tive correspondenceβ ∈ (L → L) between those locations,
as described by Barthe et al.[4].

Definition 2

(s1, h1, g1) =β (s2, h2, g2)
≡ dom(s1) = dom(s2) ∧ β(dom(h1)) = dom(h2)
∧(∀x ∈ dom(s1) . β(s1(x)) = s2(x))
∧(∀l ∈ dom(h1) . h1(l) = h2(β(l))

∧β(g1(l)) = g2(β(l)))

In this definition, we extend the definition ofβ to the set of
locations and to the sequence of locations for convenience:
β(dom(h1)) denotes{β(h1(l))|l ∈ dom(h1)}. Intuitively,
(s1, h1, g1) =β (s2, h2, g2) means that two states are equiv-
alent if the memory layout of the data is ignored.

Next we define the indistinguishability∼β
Q usingLowQ

and=β as follows.

5

v ∈ V alue
(v, s, h, g) ⇓ (P[[v]], s, h, g)

E-VAL
v ∈ V alue

(R[v], s, h, g) ⇓ (R[[v]], s, h, g)
E-SVAL

l = s(x) l 6∈ dom(g)
R[[v]] = h(l)

(x, s, h, g) ⇓ (R[[v]], s, h, g)
E-VAR

(pe, s, h, g) ⇓ (lp, s′, h′, g′) l1, · · · , ln, · · · , lm = g(lp)

(pe.n, s, h, g) ⇓ (ln, s′, h′, g′)
E-LPATH

l = s(x) l ∈ dom(g)

(x, s, h, g) ⇓ (l, s, h, g)
E-LVAR

(E, s, h, g) ⇓ (R[[v]], s′, h′, g′) l is fresh h′′ = h′[l 7→ R[[v]]] g′′ = g′[l 7→ ε]

(create(E), s, h, g) ⇓ (l, s′, h′′, g′′)
E-CREATE

op ∈ {+,−, ∗, /} (E1, s, h, g) ⇓ (R1[[v1]], s1, h1, g1) (E2, s1, h1, g1) ⇓ (R2[[v2]], s2, h2, g2)
v is the result of corresponding numeric/string operation onv1 andv2

(op(E1, E2), s, h, g) ⇓ (R1 ∩R2[[v]], s2, h2, g2)
E-OPS-NUM

(Ef , s, h, g) ⇓ (Rf [[f]], s0, h0, g0) Rf ⊇ Q f = fun(x){P ;Er} x 6∈ dom(s)
(E, s0, h0, g0) ⇓ (Rv[[v]], se, he, ge) l is fresh s′e = se[x 7→ l] h′e = he[l 7→ Rv[[v]]]

(P, s′e, h
′
e, ge) ⇓ (sf , hf , gf) (Er, sf , hf , gf) ⇓ (Rr[[vr]], sr, hr, gr)

(Ef (E), s, h, g) ⇓ (Rf ∩Rr[[vr]], sr, hr, gr)
E-APP

(Ef , s, h, g) ⇓ (Rf [[f]], s0, h0, g0) Rf ⊇ Q f = fun(x){P ;Er} x 6∈ dom(s)
(pe, s0, h0, g0) ⇓ (l, se, he, ge) s′e = se[x 7→ l]

(P, s′e, he, ge) ⇓ (sf , hf , gf) (Er, sf , hf , gf) ⇓ (Rr[[vr]], sr, hr, gr)

(Ef (pe), s, h, g) ⇓ (Rf ∩Rr[[vr]], sr, hr, gr)
EL-APP

Figure 4. Semantics for expressions

(E, s, h, g) ⇓ (R[[v′]], s′, h′, g′)
(E, s, h, g) ⇓ (s′, h′, g′)

P-EXP
(E, s, h, g) ⇓ (Rv[[v]], s′, h′, g′) R ⊆ Rv

(check R for E, s, h, g) ⇓ (s′, h′, g′)
P-CHECK

(E, s, h, g) ⇓ (R[[v]], s′, h′, g′)
l is fresh s′′ = s′[x 7→ l] h′′ = h′[l 7→ R[[v]]]

(x = E, s, h, g) ⇓ (s′′, h′′, g′)
P-ASN

(pe, s, h, g) ⇓ (l, s′, h′, g′) s′′ = s′[x 7→ l]

(x = pe, s, h, g) ⇓ (s′′, h′, g′)
P-LASN

(skip, s, h, g) ⇓ (s, h, g)
P-SKIP

(P1, s, h, g) ⇓ (s′, h′, g′) (P2, s
′, h′, g′) ⇓ (s′′, h′′, g′′)

(P1;P2, s, h, g) ⇓ (s′′, h′′, g′′)
P-SEQ

(E, s, h, g) ⇓ (R[[v]], se, he, ge) R ⊇ Q
P ′ =

{
P2 (v = false ∨ v = 0)
P1 (otherwise) (P ′, se, he, ge) ⇓ (s′, h′, g′)

(if E then P1 else P2, s, h, g) ⇓ (s′, h′, g′)
P-IF

Figure 5. Semantics for scripts

6

(E, s, h, g) ⇓ (R[[v]], se, he, ge) R ⊇ Q v ∈ Σ ∗ (l, hd, gd) = parseD(v, he, ge, R)
~l1, se(current), ~l2 = g(se(parent)) g′d = gd[se(parent) 7→ ~l1, se(current), l, ~l2]

(l, se, hd, g
′
d) ⇓ (sn, hn, gn)

(write(E), s, h, g) ⇓ (sn, hn, gn)
P-WRITE

(pep, s, h, g) ⇓ (lp, sp, hp, gp) (pec, sp, hp, gp) ⇓ (lc, sc, hc, gc)
~l = gc(lp) g′ = gc[lp 7→ ~l, lc]
sn, hn, gn = E(lc, sc, h

′
c, g

′)

(append(pep, pec), s, h, g) ⇓ (sn, hn, gn)
P-APPEND

(pep, s, h, g) ⇓ (lp, sp, hp, gp) (pec, sp, hp, gp) ⇓ (lc, sc, hc, gc)
~lc1, lc, ~lc2 = gc(lp) g′ = gc[lp 7→ ~lc1, ~lc2]

(remove(pep, pec), s, h, g) ⇓ (sc, h
′, g′)

P-REMOVE

E(l, s, h, g) ≡
{

(s′, h′, g′) reachable(s(doc), l, g) ∧ (l, s, h, g) ⇓ (s′, h′, g′)
(s, h, g) (otherwise)

Figure 6. Semantics for the DOM operations

Definition 3 (Q, β-indistinguishability)

(s1, h1, g1) ∼β
Q (s2, h2, g2)

≡ LowQ(s1, h1, g1) =β LowQ(s2, h2, g2)

Here, β is used for the correspondence of locations, and
Q is used for classifying security labels into low and high
security classes.

The noninterference property for the browser behavior is
as follows whereQ ⊇ Q must hold for the static policyQ.

Theorem 1 (Q-noninterference)

∀β, s1, h1, g1, s2, h2, g2 . (s1, h1, g1) ∼β
Q (s2, h2, g2)

⇒ ∃s′1, h′1, g′1, s′2, h′2, g′2 . ∃β′ ⊇ β .
((s1(doc), s1, h1, g1) ⇓ (s′1, h

′
1, g

′
1)

∧(s2(doc), s2, h2, g2) ⇓ (s′2, h
′
2, g

′
2))

⇒ (s′1, h
′
1, g

′
1) ∼β′

Q (s′2, h
′
2, g

′
2)

In addition,∃β′ ⊇ β means that there exists a location map-
ping β′ that contains a mapping for freshly generated loca-
tions and preserves a location mappingβ. We outline the
proof of this theorem in Appendix A.

4 Case Study
Figure 7 shows how to apply the calculus proposed in

Section 3 to the example from Section 1, where we useB
as the static policy and we omit trivial conditions.

The triple (sinit, hinit, ginit) is an initial state con-
structed by the browser when interpreting a document, and
thus (l1, sinit, hinit, ginit) ⇓ (s2, h3, g3) means that the
browser traveses and executes the DOM instance and termi-
nates at a final state(s2, h3, g3). The relationship between

the initial state and the final state is derived from the evalu-
ation relationship(l2, s2, hinit, ginit) ⇓ (s2, h3, g3) by ap-
plying the X-NODE rule. In the same way, we can derive
the evaluation relationship from the other relationships by
applying appropriate rules.

Finally the browser tries to get an image file from the do-
maindomainA since the DOM instance obtained after the
execution is(h3, g3). At this time we can prevent a leakage
of confidential information by checking if the security la-
bel ofB[[”http://domainA/cookie”]] satisfies{domainA} 6⊆
B using thecheck statement. In addition, from theB-
noninterference property, we can ensure that the values
of the security labelB′ = {domainA, domainB, local},
which could possibly leak todomainA, don’t affect the val-
ues of the security labelB.

5 Conclusion and Future Work

In this paper we proposed a calculus representing
browser behavior. The calculus is defined to consider infor-
mation flow control so as to express interactive behaviors
between documents and embedded scripts. It also satisfies
the noninterference property depending on the static secu-
rity policy Q.

In addition, our semantics requires a restriction, under
which values varying control flows have to be less confiden-
tial than the security policyQ, in order to prohibit implicit
flows. We are aware that this restriction on the semantics is
not practical. To relax the restriction is one of the challenges
for the future. The other future goal is to model an access
control for integrity, since we think that some kinds of secu-
rity problems like cookie falsification can be prevented by
access control.

7

...
(l4, s2, h3, g3) ⇓ (s2, h3, g3)

(write(. . .), sinit, hinit, ginit) ⇓ (s2, h3, g3)
P-WRITE

(l2, s2, hinit, ginit) ⇓ (s2, h3, g3)
X-SCRIPT

(l1, sinit, hinit, ginit) ⇓ (s2, h3, g3)
X-NODE

sinit = [doc 7→ l1, cookie 7→ B[[”cookie”]]]
hinit = [l1 7→ P[[body]], l2 7→ P[[script]],

l3 7→ P[[“document.write(. . .)′′]]]
ginit = [l1 7→ l2, l2 7→ l3, l3 7→ ε]
s2 = sinit[parent 7→ l1, current 7→ l2]
h3 = hinit[l4 7→ B[[img]], l5 7→ B[[@src]],

l6 7→ B[[”http://domainA/cookie”]]]
g3 = ginit[l1 7→ (l2, l4), l4 7→ l5, l5 7→ l6, l6 7→ ε]

Figure 7. Example of an execution

References

[1] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A
core calculus of dependency. InPOPL ’99: Proceedings of
the 26th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 147–160, New York, NY,
USA, 1999. ACM Press.

[2] V. Anupam and A. Mayer. Security of web browser scripting
languages: Vulnerabilities, attacks, and remedies. Inthe 7th
USENIX Security Symposium, pages 187–200, 1998.

[3] A. Banerjee and D. A. Naumann. Stack-based access control
and secure information flow.J. Funct. Program., 15(2):131–
177, 2005.

[4] G. Barthe and T. Rezk. Non-interference for a jvm-like lan-
guage. InTLDI ’05: Proceedings of the 2005 ACM SIG-
PLAN international workshop on Types in languages design
and implementation, pages 103–112, New York, NY, USA,
2005. ACM Press.

[5] C. Fournet and A. D. Gordon. Stack inspection: Theory and
variants.ACM Trans. Program. Lang. Syst., 25(3):360–399,
2003.

[6] N. Heintze and J. G. Riecke. The SLam calculus: pro-
gramming with secrecy and integrity. In ACM, editor,The
25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 365–377, New York, NY,
USA, 1998. ACM Press.

[7] A. C. Myers. Jflow: practical mostly-static information
flow control. InPOPL ’99: Proceedings of the 26th ACM
SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 228–241, New York, NY, USA,
1999. ACM Press.

[8] A. Sabelfeld and A. Myers. Language-based information-
flow security.IEEE Journal on Selected Areas in Communi-
cations, 21(1), 2003., 2003.

[9] P. Vogt, F. Nentwich, N. Jovanovic, C. Kruegel, E. Kirda,
and G. Vigna. Cross-site scripting prevention with dynamic
data tainting and static analysis. In14th Annual Network

and Distributed System Security Symposium (NDSS 2007),
2007.

[10] D. Yu, A. Chander, N. Islam, and I. Serikov. Javascript in-
strumentation for browser security. InPOPL ’07: Proceed-
ings of the 34th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 237–249,
New York, NY, USA, 2007. ACM Press.

A Proof of Theorem 1
The proof is derived from the following lemma that can

be proved by induction on⇓ where all the rules for scripts
and DOM operations are translated into the form for expres-
sions. For example, we consider(P, s, h, g) ⇓ (s′, h′, g′) as
(P, s, h, g) ⇓ (P[[0]], s′, h′, g′)

Lemma 1

∀β, s1, h1, g1, s2, h2, g2 . (s1, h1, g1) ∼β
Q (s2, h2, g2)

⇒ ∃s′1, h′1, g′1, s′2, h′2, g′2 . ∃β′ ⊇ β .
((E, s1, h1, g1) ⇓ (R1[[v′1]], s

′
1, h

′
1, g

′
1)

∧(E, s2, h2, g2) ⇓ (R2[[v′2]], s
′
2, h

′
2, g

′
2))

⇒ (s′1, h
′
1, g

′
1) ∼β′

Q (s′2, h
′
2, g

′
2)

∧(R1 ⊇ Q ∧R2 ⊇ Q ⇒ v′1 = v′2)

The proof of the induction step for the P-IF rule is as
follows: Let us consider two states(s1, h1, g1), (s2, h2, g2)
and the IF statementPif = if E then Pa else Pb. The
following formula holds from the induction hypothesis.

(s1, h1, g1) ∼β
Q (s2, h2, g2)

⇒ ((E, s1, h1, g1) ⇓ (R1[[v1]], sc1, hc1, gc1)∧
(E, s2, h2, g2) ⇓ (R2[[v2]], sc2, hc2, gc2)
⇒ ∃β′ ⊇ β . ((sc1, hc1, gc1) ∼β

Q (sc2, hc2, gc2))∧
∧(R1 ⊇ Q ∧R2 ⊇ Q ⇒ v1 = v2)

In addition,v1 = v2 holds because ofR1 ⊇ Q ⊇ Q and
R2 ⊇ Q ⊇ Q. Thus the same program (Pa or Pb) is exe-
cuted. IfPa is executed, the following formula holds from
the induction hypothesis.

(sc1, hc1, gc1) ∼β′

Q (sc2, hc2, gc2)
⇒ ((Pa, sc1, hc1, gc1) ⇓ (P[[0]], s′1, h

′
1, g

′
1)

(Pa, sc2, hc2, gc2) ⇓ (P[[0]], s′2, h
′
2, g

′
2))

⇒ ∃β′′ ⊇ β′ . ((s′1, h
′
1, g

′
1) ∼β′′

Q (s′2, h
′
2, g

′
2))

Therefore, the following formula holds.

(s1, h1, g1) ∼β
Q (s2, h2, g2)

⇒ ((Pif , s1, h1, g1) ⇓ (P[[0]], s′1, h
′
1, g

′
1)

(Pif , s2, h2, g2) ⇓ (P[[0]], s′2, h
′
2, g

′
2))

⇒ ∃β′′ ⊇ β . ((s′1, h
′
1, g

′
1) ∼β′′

Q (s′2, h
′
2, g

′
2))

We can prove the case forPb in the same way.

8

