
August 8, 2007
RT0739
Human-Computer Interaction 8 pages

Research Report
Automatic Accessibility Transcoding for Flash Content

Daisuke Sato, Hisashi Miyashita, Hironobu Takagi, Chieko
Asakawa
IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It
has been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or
copies of the article legally obtained (for example, by payment of royalities).

Automatic Accessibility Transcoding for Flash Content

Daisuke Sato Hisashi Miyashita Hironobu Takagi Chieko Asakawa

Tokyo Research Laboratory, IBM Research.
1623-14 Shimo-tsuruma

Yamato, Kanagawa, 242-8502, Japan
+81-46-215-4793

{dsato, himi, takagih, chie}@jp.ibm.com

ABSTRACT
It is not surprising that rich Internet content, such as Flash and

DHTML, is some of the most pervasive content because of its
visual attractiveness to the sighted majority. Such visually rich

content has been causing severe accessibility problems, especially

for people with visual disabilities. For Flash content, the kinds of
accessibility information necessary for screen readers is not

usually provided in the existing content. A typical example of

such missing data is alternative text for buttons, hypertext links,
widget roles, and so on. One of the major reasons is that the

current accessibility framework of Flash content imposes a burden

on content authors to make their content accessible. As a result,
adding support for accessibility tends to be neglected, and screen

reader users would be left out of the richer Internet experiences.

Therefore, we decided to develop an automatic accessibility

transcoding system for Flash content to allow users to access a

wider range of existing content, and to reduce the workload for
content authors by using an automatic repair algorithm. It works

as a client-side transcoding system based on the internal object

model inside the Flash content. It adds and repairs accessibility
information for existing Flash content, so screen readers can

present more accessible information to users. Our experiment
using the pilot system showed that 54% of the missing alternative

texts for buttons in the tested websites could be added

automatically.

Categories and Subject Descriptors
K.4.2 [Social Issues]: Assistive technologies for persons with

disabilities; H.3.4 [Online Information Services]: Web-based

services; H5.2 [User Interfaces]: Graphical user interfaces (GUI),
Style guides.

General Terms
Algorithms, Design, Human Factors, Standardization

Keywords
Accessibility, Flash content, automatic repair, transcoding,
visually impaired

1. INTRODUCTION
These days, Internet content is dramatically changing from static

to dynamic, supported by improvements in computer performance

and network bandwidth. Flash and Dynamic HTML (DHTML)
are representatives of these rich content types, and they appeal to

sighted people with their fascinating audio and visual

presentations. Although Flash was only a format for simple
vector-based animations in 1996, over the following decade, it

was enhanced to support high quality audio, scripts with user
interactions, built-in GUI components, powerful image processing,

and now streaming video support is the latest enhancement. Flash

is no longer an animation format, but rather a platform for
providing interactive content, and the Flash player is installed in

over 98% of the computers in the world as of March 2007

(according to Adobe’s survey1).

Meanwhile, the content owners using Flash are under pressure to

support accessibility. Screen reader users frequently ask for Flash
content to be made accessible. In addition, Section 508 of the US

Rehabilitation Act [1] came into effect in 2001, calling for

improved accessibility for government websites. In response to
these requirements, an accessibility framework was designed and

built into Flash authoring tools and the Flash player. The

architecture is based on the Windows accessibility API, MSAA
(Microsoft Active Accessibility). This API is used by a wide

range of assistive technologies with screen reading capabilities. If

an author of Flash content embeds the appropriate accessibility
information into the content by using the Flash authoring tools,

then the Flash player can expose that information for screen

readers through MSAA. This means that this architecture requires
content creators to study methods to make content accessible and

to apply them in their daily authoring tasks.

However, it has been very difficult to make the Flash content

accessible [4] compared to other formats such as HTML and PDF.

The causes can be classified into three kinds of problems. First,
the Flash content itself is used to create visually intuitive content

using animations and movies. It is not static and the content is
dynamically created and frequently changed in response to the

1 http://www.adobe.com/products/player_census/flashplayer/

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

Conference’04, Month 1–2, 2004, City, State, Country.

Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

users’ operations and the content’s timeline. Accessibility-

enabling methodologies for such rich Internet applications are not
mature. Second, there is no tool to evaluate accessibility for

existing Flash content [5]. Currently the only method is to use

screen readers, which imposes a heavy burden on developers.
Third, Flash content developers are unfamiliar with accessibility

problems. Based on our preliminary investigation [4], most of

them do not even know that Flash has accessibility features.

Due to these problems, not even the basic accessibility

enablement requirements have been met in existing Flash content,
requirements such as alternative text, controlled reading order, or

widgets role information (e.g. for buttons). Unaddressed, Flash

accessibility will continue decreasing, and screen readers will be
left out of the richer Internet experiences forever. It is very

important to develop new technologies to help both developers

and screen reader users.

Therefore, we decided to develop an automatic accessibility repair

algorithm for Flash content and a transcoding tool based on this
algorithm. The tool can automatically add useful accessibility

information, which is then presented by the Flash player to the

screen readers through MSAA. This approach seeks to allow
screen reader users to access a wide range of existing content

without asking authors to modify the content. Simultaneously, this

makes it possible to reduce the workload for content authors by
using the automatic repair algorithm. This is the first tool with

functions to enhance the accessibility of existing compiled Flash
content.

Our approach works as a client-side transcoding system between a
Web server and a Flash player. This tool directly changes the

object model in the Flash player and controls the player’s MSAA

output. The current implementation focuses on adding alternative
texts and information about buttons. This is some of the most

basic accessibility information, but it is often missing or

inappropriate in existing Web content.

In this paper, after introducing related work and the issues of

Flash content accessibility, an overview of our automatic
transcoding method for the Flash will be described. Then

experimental results using our pilot system are presented,

followed by a discussion of the results to date and future work.

2. RELATED WORK
There have been several research projects on automatic Web

content analysis and adaptation [6, 7, 8, 9, 10], but there are few

studies applicable to Flash content.

CSurf [6] is a client-side Web content adaptation system that
automatically analyzes the visual structure and document content

and offers an accessible user interface. Although the concept of

this work is also useful for our work, using it to provide an
alternative accessible user interface for Flash content involves

other problems. Harper and Patel proposed an automatic method
to make Web content accessible by extracting “gist” summaries.

Asakawa et al. [7] proposed a transcoding server for accessible

Web content adaptation, which also supports automatic content
transformation. However, it only supports static HTML content.

The work in [8] discusses an automatic HTML content analysis

method based on visual cues. WebInSight [9] automatically
produces alternative texts from images by using Optical Character

Recognition (OCR). It is able to annotate 43% of the images with

94% accuracy. Accessmonkey [10] is a client-side scripting

framework in a Web browser that is useful for providing an
alternative accessible user interface. Users as well as Web

developers can contribute to make webpages accessible. Some of

the scripts on Accessmonkey automatically make Web content
accessible. The WebInSight Accessmonkey script is one example

and automatically generates alternative texts from images.

Not at run time but at authoring time, some tools can be used to
provide accessibility to Flash content. Saito [5] et al. proposed a

Flash accessibility checking tool applicable for existing Flash

content. The AccRepair from HiSoftware [11] checks accessibility
problems and offers helpful methods to repair the inaccessible

Flash content. This accessibility tool is tightly integrated with the

authoring features.

3. ACCESSIBILITY ISSUES FOR FLASH

3.1 Flash Accessibility Architecture
The accessibility architecture of Flash is based on the object
model used by Flash content. Figure 1 shows an example of an

accessible Flash presentation.

What is presented by the Flash player includes objects in the
Flash content such as buttons, texts, and graphics, and each object

belongs to one class. Though there are several predefined classes

in Flash, we focused on the Button and MovieClip classes

that may play the role of buttons. There are 3 objects of concern

here, “clickButton” in the Button class and “assetsButton” and

“imgButton” in the MovieClip class, as shown in Figure 1.

The behaviors of objects are described in their properties by

scripts in ActionScript. For example, the following script code
moves an object named “assetsButton” 10 pixels to the right when

it is clicked and released.

assetsButton.onRelease = function() {
 this._x += 10;
}

Flash player outputs accessibility information via MSAA the

visible objects and based on the properties of the objects such as
their name and role. If an object is in the Button class then the

role of the object in MSAA is PUSHBUTTON. If the object is in

the MovieClip class then the role of the object is basically
GRAPHICS, and if the GRAPHICS object is also associated with

some active behavior then the role of that object is

PUSHBUTTON. Therefore, the content in Figure 1 should be
read as “click button, ASSETS button, graphics image”.

clickButton

assetsButton

imgButton

name: click

name: ASSETS

name: image

MSAAFlash Player

role: PUSHBUTTON

role: PUSHBUTTON

role: GRAPHICS

Button

MovieClip

MovieClip

Figure 1: An example of MSAA output

At the same time, the property value for the name can be set with

ActionScript or an auto-label function. For example, in
ActionScript the script producing that result could include

assetsButton._accProps.name = “ASSETS”;

The auto-label function analyses the content and labels the
buttons with text. The result for the objects in Figure 1 is “click

button, ASSETS button, graphics image” will be read by screen

readers.

3.2 Accessibility Issues
Our recent survey of Flash content accessibility [4] shows that

half of the buttons had no alternative text, and none of the buttons
had _accProps attributes. These results show that Flash content

accessibility is not widespread, and this content has even worse
issues related to the MSAA exposure of buttons. In addition there

are many accessibility issues such as uncontrolled or incorrect

reading orders and keyboard operability for GUI widgets.

In this study, we first focused on the issues of buttons, their
alternative texts and links, because these fundamental problems to

make Flash content accessible and they are frequently

encountered in real-world environments. Therefore their repair
should be beneficial for blind users.

3.2.1 Unexpectedly Unexposed Buttons and Links
Some buttons and links are not exposed through MSAA. They are
exposed as just text objects or nothing is exposed. This issue is

caused by the rules for exposing buttons that are followed in the

Flash player. We found the following three major problems.

• Up-frame of a Button object is blank

A button object has four states, up-frame, over-frame, down-frame,

and hit-frame, each of which may have distinct graphics. The
status is changed by mouse interactions. From the state of up-

frame, if the mouse is moved into the area of the button, the state

is changed to over-frame. A problem occurs when up-frame has
no graphic. In this case, the Flash player ignores the button and

does not present the button to MSAA. This situation is not rare,

and this issue is mentioned in Adobe’s guideline [2]. Such a

button appears suddenly when the mouse pointer is moved into
the area of the button.

Figure 2 is an example of such buttons in Time Warner page2. In

this case, the visual feedback for the button is likely to be a link

anchor in an HTML page shown in “Appearance” column, but
there are two objects, a button object and a text object, and the

button object has an underline which appears when the mouse is

over the object.

• _visible attribute of a button object is false.

The Flash player does not expose invisible buttons whose _visible

attribute is false, but sometimes this attribute is used as part of a
scripting technique. For example, after the mouse pointer is

moved into a certain area an event will change the _visible

attribute of the button to true, so the button is now “visible” for
interactions and its MSAA information is also available. Sighted

users can access such buttons by observing the appearances

around the buttons. However, blind users cannot interact with the
mouse or any pointing devices without visual feedback, and

therefore blind users cannot access such buttons and remain

unaware of their existence.

• HTML elements described in Flash text object are not

accessible.

Flash player supports a small subset of HTML tags: <a>, ,

, , , <i>, , <p>, , and <u>,

and these elements are rendered like HTML. The Flash player,
however, only supports exposing plain text without tags.

Therefore, the user cannot access links with <a> tags or

alternative texts for tags. Also, an tag can embed

not just graphics but also a Flash MovieClip object, and the

embedded object is not visible from MSAA for blind users.

3.2.2 Unnecessary Buttons
The Flash player exposes information about all MovieClip

objects having one or more active behaviors and each Button

object, even if the Button object has no active behavior. This

means unnecessary information is exposed by interactive GUI

objects such as slider bars. Since the Flash player uses these
simple strategies to expose information, the creators have to

consider how the content will actually be exposed.

For example, in a YouTube page 3 , the video player shows 5
buttons for play/pause, rewind, mute, fill the frame, and full

screen, and 2 sliders for the timeline and volume (Figure 3).

However, the MSAA information says that there are 13 buttons.
Eight of these buttons are useless to blind users, because 2 sliders

(represented by 4 buttons) are have no keyboard access and four

others are not functional buttons, but merely represent indicator
lines for the volume. Although these buttons have no alternative

text, if there were only 3 buttons for play/pause, rewind and mute,

then blind users could try clicking the buttons to discover their
behaviors. However, so many unnecessary and mostly unused

buttons just confuse blind users and discourage them.

2 http://www.timewarner.com/corp/

3 http://youtube.com/, actuary you would have to select a video to
browse the video player.

Appearance

Button object

Over-frameUp-frame

Text object

Figure 2: An example of unexposed buttons

Indicators

Play/Pause
Rewind

Full screen
Fill the frame

Timeline Volume

Legend: Keyboard-controllable button

Mouse-only button

Mute

Figure 3: An example of unnecessary buttons

3.2.3 Buttons without Alternative Texts
Buttons without alternative texts are shown as nameless buttons
for MSAA output. JAWS [12], one of the most popular screen

readers numbers these buttons such “16 button”. Blind users

cannot tell what to do with a numbered button unless they
memorize the numbers and functions.

As already stated, our investigation shows that half of the buttons

have no alternative text, though some are labeled with images of

text or symbols that represent actions such as play, stop, or pause.
Many buttons are completely unlabeled.

4. AUTOMATIC TRANSCODING SYSTEM

4.1 IMPLEMENTATION
We propose a new type of accessibility enablement for Flash

content by a transcoding technique. A typical system setting of
our repair method is shown in Figure 4. In our implementation,

the proxy is implemented in Java and the content loader and the

repair script are implemented in ActionScript. The flow of the
system is:

1) When the user specifies the URL of a webpage, the Web

browser requests and loads the HTML content referring to
the Flash content.

2) The browser creates a Flash player for the <object> tag in

the HTML content, specifying the location of the target Flash
content.

3) When the Flash player tries to load the target Flash content,

the proxy returns a “content loader” which is our special
Flash content, instead of returning the target content. Our

content loader redefines some of the built-in functions in the

Flash player so it can inspect the object model in the target
content.

4) The content loader loads some scripts from the proxy, which

are also Flash content. In our configuration, the loader loads
a “repair script” to repair the content. For other functions, the

loader could load other scripts. For example, it might load

bridge scripts for accessible user agents to access the internal
Flash object model [13].

5) Finally, the content loader is ready to load the target content.

The target location of the request is actually still the same as
the request in 3), but now the proxy will actually pass the

request to the Internet.

The repair script currently does not support analyzing dynamic
changes of the content, though the repair tool could be launched

whenever a repair is needed. Therefore the content could be

repaired whenever the MSAA information is requested.

The repair algorithm is not limited to this particular configuration.
It could be applied to other repair situations, such as while

authoring, or to the Flash player itself. We will discuss these

possibilities in the discussion section (see Section 6).

4.2 Automatic Repair Method

4.2.1 Expose Unexposed Buttons and Links
To expose unexposed buttons, the up-frame of these buttons
should have some graphics. ActionScript, however, has no

functionality to add graphics into the buttons. Therefore we insert

alternative buttons to expose the information about such buttons
such as a name. If the user clicks an alternative button, it executes

the scripts describing the behavior of the original target button.
For link anchors, a similar alternative button approach is used.

When the user clicks such an alternative button, it changes the

location of the Web browser to the location indicated in the target
link anchor.

4.2.2 Hide Unnecessary Buttons
It is easy to hide unnecessary buttons by setting the silent property

in a button’s _accProps to true. However, it is difficult to be

sure whether or not a target button is needed. In our method, we

use these heuristics:

a) A MovieClip object is a button when it meets conditions

a1, a2, and a3. A Button object is a button when it meets

conditions a2 and a3.

a1) The object has either an onPress or onRelease

property.

a2) The object’s area is bigger than 50 square pixels

)50(>× heightwidth .

Internet

MSAA

Output

Content

Loader

Flash

Content

HTML

Content

1

Content

Loader
3

4

2

1. Web browser requests HTML content.
2. Flash player is created for <object> tag.

3. The player requests Flash content but

the proxy returns the content loader.

4. The content loader requests the repair script.

5. The content loader requests the Flash content.

Proxy Web Browser

Flash Player

Repair

Script Repair

Script
5

Flash

Content

HTML

Content

Screen

Reader

User

Figure 4: Overview of automatic transcoding system

a3) The object does not form a “bar”. One exception is that if

the object forms a bar with any text information then it is
a button. A bar is defined as an object whose width is

more than 8 times its height or its height is more than 8

times its width:

(widthheight <× 8 or heightwidth <× 8)

Condition a1) implies what users expect from a button. The
onPress and onRelease properties are essential for button

behavior, so the button can respond to the user’s click actions.

Condition a2) eliminates very small objects as buttons, since even
sighted users are unable to click on such small objects. The thin

indicators in Figure 3 are examples of small objects that should

not be regarded as buttons. Condition a3) implies slender objects
tend to be a vertical slider or a horizontal slider widget rather than

buttons. The timeline and volume sliders are good examples of

such objects.

4.2.3 Provide Alternative Texts for Buttons
This problem is similar to the problem of alternative texts for

images in HTML, and various techniques have been developed to
automatically insert alternative texts. WebInSight [9] is an

integrated system using various techniques. Many of these

techniques can be applied to Flash content as well.

In our implementation, we use text information that is not used by

auto-label function of the Flash player. There is a lot of text

information within the Flash content in the form of dynamic text
and static text. We analyze the overlaps between buttons and text

strings and link them under in certain conditions.

Also, we can use the names of objects in the scripts, the “instance

name” data. They are often meaningful as alternative text, because
the content creator named them to help remember the meanings or

uses of the objects while writing the script. All MovieClip

objects and Button objects have an instance name, and the

creator often names an object in a way that represents its role in

the content. For example, a button that starts playing a movie is
often named “play”.

In our prototype system, buttons without alternative text are

repaired according to the following heuristics:

a) A button and a text are linked if B/I > 0.1 and T/I > 0.5,

where B is the button area, T is the text area, and the I is the

area of intersection between B and T (Figure 5a). This
condition implies the text overlaps the button, so it can be

used as a label, but it excludes relatively small labels for the

button.

b) A button which is not exposed because of the up-frame
problem has no area, so such a button is associated with the

nearest text such that D < d, where D is the distance to the
candidate text and d is the distance from the closest corner

of that text to its own center, as shown in Figure 5b.

5. EXPERIMENT

5.1 Experimental Method
Using our transcoding proxy described in Section 4, we

conducted an experiment. For our experiment, 28 English
webpages and 9 Japanese webpages were selected, all including

Flash content. Of the 28 English webpages, 25 were used in our

previous experiment to investigate the Flash content accessibility

[4], but some of the content had changed or disappeared since that

time. In this sample, there were 29 Flash objects with buttons in
23 of the English webpages, with a total of 428 buttons, and 62%

(265) did not have alternative text. There were 9 Flash objects

with buttons in the 9 Japanese pages, contain 81 buttons, and 93%
(75) had no alternative text.

The method of the experiment was the following:

1. Record the MSAA output of the content before repair, and

count how many buttons should be exposed, how many
buttons should be hidden, and how many buttons lack

alternative text.

2. Repair the content automatically, exposing buttons, hiding
buttons, and adding alternative text.

3. Record the MSAA output of the content after repair, and

count the correctly exposed buttons, the correctly hidden
buttons, and the buttons receiving useful alternative text.

5.2 Results

5.2.1 Detailed Comparison of MSAA Output
First, we will report the details of the repairs for two sample pages,

the Time Warner (TW) home page4 and the Disney Fairies’ (DF)

page5. The TW page has some links to related companies and a
relatively simple Flash movie, and the DF page has Flash content

that includes buttons and streaming video with controls.

Table 1 shows the details of the MSAA output, both before and
after repair, and Table 2 shows statistics about the MSAA output.

Before repair, 4 buttons were exposed in the TW page, and 19

buttons were exposed in DF page. In the TW page, 8 buttons were
not exposed because they had no graphics in the up-frame. Of the

8 visible buttons, one is a link to another page and the rest are

buttons to change the graphics and the targets of the links. In the
DF page, the button named “45 Button”, the handle of the slider

to change the video position, is an unnecessary button because the

button can only be controlled with the mouse. Therefore, in the
TW page, 12 buttons (4 exposed and 8 unexposed) had no

alternative text, and in the DF page, 15 buttons (excluding the “45

Button”) should have alternative text.

After repair, the 8 buttons are exposed correctly with proper

alternative text in the TW page, and all of the texts were found in

4 http://www.timewarner.com/corp/
5 http://disney.go.com/fairies/movies/videos.html

The location of an unexposed button.

D
d Text

Button area (B)

Text Area (T)

Intersection (I)

(a)

(b)

Figure 5: Illustrations for condition used in repair

the text objects in the content, as indicated by T in the table.

However, 4 of the previously exposed buttons were associated

with names that are meaningless for blind users (X), because these

buttons are merely graphical objects. In the DF page, 12 buttons

received useful alternative text and 3 buttons were not repaired

(X). Nine text objects (T) and 3 instance names (N), “Pause”,

“Rewind” and “SoundController”, were used in the repair.

Unfortunately, the “45 button” was not properly hidden by our

current heuristics, because it is bigger than the size we used in the

heuristics.

For the TW and DF pages, the MSAA output was effectively

repaired and the accessibility was improved over the original

content. In contrast to our expectations, the auto label function of

the Flash player does not use effectively, so there is much text

information can be used for repair.

5.2.2 Overall Results
In this section, we will describe the overall results for the 29 Flash

objects in the 23 English pages.

Table 3 shows the status of buttons exposed or hidden, before and

after repair. There were 20 unexposed buttons and 26 unnecessary

buttons before repair. After the repairs, all 20 of those buttons

were exposed properly, and 16 of the unneeded buttons are

properly hidden, but 10 buttons were not hidden and 4 buttons

were hidden as false positives. As a result, 428 buttons were

exposed to MSAA.

Table 4 shows the fractions of accessible and inaccessible buttons

and the numbers for three different repair statuses, repaired with

text, repaired with instance name, or incorrectly broken. Buttons

with invalid text (265 buttons) and unexposed buttons (20

buttons), making a total of 285 buttons were the targets to be

repaired. Of these, 54% (155 buttons) were labeled with the

correct text. Also, 4 buttons were labeled incorrectly, although

they had valid text before the repairs. The alternative texts of the

155 repaired buttons came from 113 pieces of text information in

the content and from 42 instance names in the scripts. There were

422 buttons in total, and 137 (32%) were accessible before repair,

but 288 (68%) were accessible after repair.

Figure 6 shows the fractions of repaired buttons for various

webpages, showing some of the content patterns and effects of our

repair method. There are three patterns in the content, totally

repairable, partially repairable, and not repairable.

Our results for the 9 Japanese pages were quite different from the

results for the English pages. Of a total of 81 buttons, 10

unexposed buttons were repaired and 9 alternative texts were

repaired with 2 texts and 7 instance names. Only 7% (6 buttons)

were accessible before repair and 16% (15 buttons) were

accessible after repair.

Table 1: Details of MSAA output before and after repair.

After After

View the Company Fact Sheet Button T1 Meet the Fairies Button T1

thumb2 Button X1 Books Button T2

thumb3 Button X2 Movies Button T3

thumb4 Button X3 Movies Button -

thumb5 Button X4 Games & Activities Button T4

AOL Button T2 Create a Fairy Button T5

HOME BOX OFFICE Button T3 Home Button -

TIME WARNER CABLE Button T4 Parents Button T6

NEW LINE CINEMA Button T5 Videos Button T7

TURNER BROADCASTING SYSTEM Button T6 Photo Gallery Button T8

TIME INC. Button T7 History Button T9

WARNER BROS. ENTERTAINMENT Button T8 Pause Button N1

handle Button X1

Rewind Button N2

SoundController Button N3

Repaired with Text Send to a friend Button -

Repaired with Instance Name item_1 Button X2

Xn : Not Repaired item_2 Button X3

item_3 Button X4

47 Button

50 Button

Send to a friend Button

53 Button

24 Button

28 Button

Home Button

34 Button

4 Button

7 Button

9 Button

Movies Button

Tn :

Nn :

41 Button

42 Button

43 Button

44 Button

45 Button (Unnecessary)

56 Button

58 Button

-

-

-

-

-

-

9 Button

10 Button

11 Button

-

Status

Status

http://www.timewarner.com/corp/

TimeWarner: Home (TW)

http://disney.go.com/fairies/movies/videos.html

-

Disney Fairies - Videos - (DF)

8 Button

MSAA Output

Before Before

MSAA Output
Status

Table 2: Number of buttons before and after repair.

Page Title

Before After Before After

Total Buttons 4 12 19 19

Unxposed Buttons 8 0 0 0

Unnecessary Buttons 0 0 1 1

Buttons with Invarid Alternative Text 12 4 15 3

TimeWarner: Home (TW) Disney Fairies - Videos - (DF)

6. DISCUSSION

6.1 Practicality of the Transcoding Tool
The evaluation results (Section 5) showed the possibilities of the

tool in improving the accessibility of Flash content in the real

world. The automatic repair algorithm utilized only the

information existing inside the Flash content, but it was able to

drastically improve the accessibility of the buttons for screen

reader users. One of the important observations from the results is

the amount of text information inside the Flash content. In the

overall results, 155 buttons were repaired and 73% (113 out of the

155) buttons were repaired with text information that already

existed near the button object (Table 3). This ratio was higher

than our expectations, since Flash player already has an automatic

labeling function. This means there is room for improvement in

the accessibility of Flash content by simply implementing our

algorithms in the Flash player. Potential drawbacks should be

considered in such an implementation, such as the performance

impact and the ratio of false inferences. However, there are clear

possibilities for improvement.

Another observation involves the ratio of repaired buttons based

on instance names, 27% (42 out of 155) in the overall results

(Table 3), and 24% (42 out of 172) of the buttons that were not

repaired by the text extraction method were repaired using

instance names.

This method is comparable to a text extraction method

implemented in voice browsers for HTML documents. Each voice

browser has its own text extraction algorithm for URL strings for

image links that lack alternative text. This particular method was

invented for the earliest voice browser development in the 1990s,

and most screen readers still utilize the algorithm to compensate

for missing alternative texts. We could not find empirical results

on the ratios for HTML, but 54% seems to be much higher than

for HTML. We believe this is because programmers follow

naming conventions for objects in their programs, and tend to

name the objects in relation to their functions to make it easy for

the programmers themselves to understand and remember their

meanings, with the beneficial side effect of understandable names

for blind users. Therefore, integration of text extraction methods

from instance names should be generally useful to compensate for

buttons lacking alternative texts.

Our results also show that our methods of exposing unexposed

buttons worked well, since 100% (20 out of 20) were repaired by

our heuristic rules (Table 2). Since complete analysis of the

unexposed buttons requires highly accurate static analysis of the

scripts, which is not yet available for this type of application, it is

good that the heuristic rules are sufficiently accurate as an

alternative.

6.2 Effect of Ideographic Characters
The results for Japanese pages were significantly worse than for

English pages. The reasons seem to be related to the complexity

of ideographic characters. There are only around 50 characters

(including capital letters) for alphabetical languages, but there are

about 5,000 characters used in China and around 2,000 characters

used in Japan. Therefore, it is difficult to install a variety of fonts

in a personal computer compared to the range of alphabetic fonts.

One result is that content creators tend to use images to present

various fonts for ideographic characters, and that affects the ratio

of text information inside Flash content. Also, the instance names

are declared in English, not Japanese, since the scripts are

basically written in Latin-like characters. The problems with

ideographic characters are beyond the scope of our assumptions,

and future research will have to consider them.

6.3 Applicability of the Repair Algorithm
Our approach to improve the accessibility of Flash content is also

applicable in other configurations. The following are some

possible applications.

• Repair Tool for Authoring Time

Adobe’s authoring tool for Flash can extend the functions using a

JavaScript API. The AccRepair for Flash from HiSoftware [14] is

an extension for this authoring tool. This tool provides functions

to check errors and to show a list of errors using a dialogue

interface with messages like “The object has no alternative text”.

Although the tool only informs us about the errors, a newer tool

with our repair approach could offer repair candidates or

automatic repairs. Suggesting repair candidates could reduce the

content creator’s workload.

• Flash Player’s Algorithm for Exposing Buttons

Our approach could be applied to Flash player’s button-exposing

algorithms. Our application was not implemented with the

0

10

20

30

40

50

Repaired with text
Repaired with instance name
Broken by error
Not repaired

Figure 6: Fraction of repaired and not repaired buttons in

the each page.

Table 3: Status of buttons before and after repair

Before After

Total exposed buttons 428 428

Unexposed buttons 20 0

Unnecessary buttons 26 10

Hidden by error - 4

Table 4: Fraction of accessible and inaccessible buttons with

repaired status.

Accessible Inaccessible

Befor Repair 137 285

Repaired with text 113 △ 113

Repaired with instance name 42 △ 42

Broken by error △ 4 4

After Repair 288 134

player’s collaboration, though it could become a more effective

approach than our early system using a proxy and repair scripts.

• Automatic Annotation Generator

We could provide an alternative interface for the Flash content by

annotation-based transcoding or with another specialized browser

for non-visual users. One prototype is our aiBrowser [13]. Also,

our repair method could be used to generate annotations for

aiBrowser. Annotation-based transcoding systems and alternative

interfaces can benefit from annotations which are often created by

people. Therefore, the automatic repair techniques could help the

authors of annotations.

7. CONCLUSION
In this paper, after discussing the existing accessibility problems

with Flash content, we described an automatic transcoding

method for Flash that works between a Web server and the Flash

player. It analyzes the object model of the Flash, directly changes

it, and thus controls the player’s MSAA output. As first steps, we

focused on supplementing the alternative text and repairing the

button information, both of which are often missing or

inappropriately extracted in existing Flash content. These two

items are still among the most important for Web accessibility,

and most Flash content tends to have these kinds of problems.

Our experiment using the pilot system showed that 54% of the

missing alternative texts could be added automatically for buttons

in the tested websites. We conclude that our approach could

drastically improve the accessibility of Flash content.

Our future work is first to expand the coverage of our approach.

For example, Flash content is often used in a “windowless” mode.

This makes the Flash content completely inaccessible to screen

readers, because in windowless mode there is no MSAA

information available. Another area needing work is to modify the

reading order, since this is complicated for screen readers. Next,

we plan to apply machine learning techniques, instead of just

applying heuristic algorithms.

Through these efforts, we hope to improve the accuracy of

automatic transcoding as much as possible. At the same time, we

will pursue the goal of completely accessible and usable interfaces,

not just for Flash, but also for any other types of dynamic content.

We plan to integrate metadata-based transcoding in the future.

8. ACKNOWLEDGEMENTS
We would like to thank Bob Regan and Andrew Kirkpatrick from

Adobe Systems, Inc., for their technical support and for sharing

their valuable experiences with Flash accessibility.

9. REFERENCES
[1] Section 508 of the Rehabilitation Act; see

http://www.section508.gov/.

[2] Regan, B. Best practices for accessible Flash Design, 2005.

http://www.adobe.com/resources/accessibility/best_practices/

best_practices_acc_flash.pdf

[3] W3C, Understanding WCAG 2.0. 2007.

http://www.w3.org/TR/UNDERSTANDING-WCAG20/

[4] Asakawa, C., Itoh, T., Takagi, H., and Miyashita, H.

Accessibility Evaluation for Multimedia Content. In

Proceedings of Universal Access in Human-Computer

Interaction (UAHCI 2007). To appear.

[5] Saito, S., Takagi, H., and Asakawa, C. Transforming Flash to
XML for Accessibility Evaluations. In Proceedings of the

8th International ACM SIGACCESS Conference on

Computers and Accessibility (ASSETS 2006). pp. 157-164.

[6] Mahmud, J., Borodin, Y. and Ramakrishnan, I. CSurf: A

Context-Driven Non-Visual Web Browser, In Proceedings of

the Sixteenth International World Wide Web Conference

(WWW2007).

[7] Asakawa, C., and Takagi, H. Annotation-Based Transcoding

for Non-visual Web Access. In Proceedings of the 4th

International ACM SIGACCESS Conference on Computers

and Accessibility (ASSETS 2000). pp. 172-179.

[8] Yang, Y. and Zhang, H. HTML Page Analysis Based on

Visual Cues. In Proceedings of the Sixth international

Conference on Document Analysis and Recognition, 2001,

pp. 859-864.

[9] Bigham, J. P., Kaminsky, R. S., Ladner, R. E., Danielsson, O.
M., and Hempton, G. L. 2006. WebInSight:: making web

images accessible. In Proceedings of the 8th international

ACM SIGACCESS Conference on Computers and

Accessibility, pp. 181-188.

[10] Bigham, J., and Ladner, R. Accessmonkey: A Collaborative

Scripting Framework for Web Users and Developers. In

Proceedings of International Cross-Disciplinary Workshop

on Web Accessibility (W4A 2007).

[11] HiSofware, AccRepair® for Flash.
http://www.hisoftware.com/accrepair_flash/

[12] Freedom Scientific, JAWS.

http://www.freedomscientific.com/

[13] Miyashita, H., Sato, D., Takagi, H., Asakawa, C. aiBrowser

for Multimedia – Introducing Multimedia Content

Accessibility for Visually Impaired Users. Submitted to

ASSETS 2007.

