

June 11, 2007

RT0742

Computer Science; Security 16 pages

Research Report

SMash: Secure Cross-Domain Mashups on Unmodified

Browsers

Frederik De Keukelaere, Sumeer Bhola, Michael Steiner,

Suresh Chari, Sachiko Yoshihama

IBM Research, Tokyo Research Laboratory

IBM Japan, Ltd.

1623-14 Shimotsuruma, Yamato

Kanagawa 242-8502, Japan

Research Division

Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted.

It has been issued as a Research Report for early dissemination of its contents. In view of the expected

transfer of copyright to an outside publisher, its distribution outside IBM prior to publication should be

limited to peer communications and specific requests. After outside publication, requests should be filled

only by reprints or copies of the article legally obtained (for example, by payment of royalities).

SMash: Secure Cross-Domain Mashups on Unmodified Browsers

Frederik De Keukelaere
(i)

, Sumeer Bhola
(ii)

, Michael Steiner
(ii)

, Suresh Chari
(ii)

,

Sachiko Yoshihama
(i)

(i)

{eb41704, sachikoy}@jp.ibm.com, IBM Tokyo Research Laboratory, Japan

(ii)
{sbhola, msteiner, schari}@us.ibm.com, IBM T.J. Watson Research Center, USA

Abstract

Mashups mix and merge content (data and code) from multiple content providers in a user’s

browser, to provide high-value web applications that can rival the user experience provided by

desktop applications. The existing browser security model was not designed for supporting such

applications, and therefore they are typically implemented in an insecure manner. In this paper,

we present a secure component model, where components are provided by different trust domains,

and can interact using a communication abstraction that allows ease of specification of security

policy. We have developed an implementation of this model that works for all major current

browsers, and addresses challenges of communication integrity and component phishing. To the

best of our knowledge, this is the first work that achieves the goal of secure mashups without any

modifications to current browsers, and hence has the potential to achieve immediate and

widespread adoption.

1. Introduction

Web applications increasingly rely on extensive scripting on the client-side (browser) using

readily available client-side JavaScript libraries. One of the motivations for this is to enable a

browser user experience which is comparable to that of desktop applications. The extensive use

of scripting on the client side and programming paradigms such as AJAX [1] has also led to the

growth of applications, called mashups, which mix and merge content
1
 coming from different

content providers in the browser. Mashups are now prevalent in a number of application domains,

including news websites, which have integrity requirements, and web email, which handles

confidential information. They are essential to an advertising supported business model, and for

allowing user-generated content in Web 2.0 website. The tremendous additional value that can be

provided to users by mixing and merging content implies that such applications will eventually be

prevalent in domains with stricter data security requirements, like consumer banking sites and

enterprise applications. Since the existing browser security models were defined and developed

without anticipating such applications, these applications are pushing the boundaries of current

browser security models.

Given that the content in a mashup application stems from potentially mutually untrusting

providers, it is clear that they should be built on a sound security foundation protecting the

interests of the various involved parties such as the content providers and the end-user. For

example, consider a mashup application scenario of a car portal where information from multiple

car dealers, insurance companies and the user's bank could be combined and co-resident on the

user’s browser at the same time. It is clear that, at a minimum we want certain security

requirements to be enforced, such as the car dealer scripts not being able to modify each others

car prices, nor should they be able to spy on a user's bank account information.

1
 We use the term content to refer to active content, i.e., both data and JavaScript.

The traditional browser security model dictates that content from different origins
2
 cannot

interact with each other. This model does not support mashups, where a controlled interaction is

desirable. To overcome this restriction, mashup developers typically enable interaction by either

(1) using a web application proxy server which fetches the content from different servers and

serves it to the mashup, or (2) by directly including code from different origins (using <script>

tags). In both cases, it appears to the browser that the mashup originates from a single site, though

it contains content from different trust domains. Unfortunately, since the content is considered to

be from the same origin, the browser security model allows the content to arbitrarily interact with

each other, including reading, writing and modifying the other domain's content. Furthermore,

even for situation such as enterprise portals where information comes from the same origin and

same administrative domain, (unavoidable) programming errors, e.g., resulting in cross-site-

scripting vulnerabilities, mandate secure component separation to achieve “security-in-the-depth”.

Hence, the "all-or-nothing” browser security model [2] is clearly an undesirable situation.

In this paper we examine the problem of building secure componentized mashups. We propose

an abstraction that allows security policies to be specified and a design and implementation that

realizes this abstraction in unmodified browsers. By creating a higher level abstraction for cross-

component communication, we have ensured that the different communication technologies used

in our implementation can be replaced by, or even combined with, other technologies as they

become available on the browser platforms.

We have tested our approach on Internet Explorer (IE), Firefox, and Opera
3
. To the best of our

knowledge, this is the first approach that works without browser modifications. There are

multiple proposals for HTML and browser modifications to realize secure mashups, however the

long timeline of adoption by standards committees, browser vendors, and eventually by users,

makes these unviable for anyone wanting to build secure mashups in the near term. We discuss

these proposals in detail, in related work.

Our abstraction involves encapsulating content from different trust domains as components

running in a browser. Components are wired together using channels. The channel abstraction

and security policies associated with channels are implemented by an event hub that is part of the

Trusted Computing Base (TCB) from the mashup provider’s perspective
4
. The only inter-

component communication in the browser is realized using these channels.

We realize the component abstraction using the HTML <iframe> element [3], which was

designed as a container for loading sub-documents inside the main document. Some technical

challenges that we address are (1) enabling parent to child document communication links when

the parent and child are from different trust domains, (2) ensuring integrity and confidentiality of

information on these links, and (3) guarding against component phishing, where an untrusted

component in a mashup can change which component is loaded in another part of the mashup.

We believe that using our abstraction of components which communicate through a mediated

event hub, using channels, will provide a key primitive for secure componentized mashups. First,

the developer can use a high-level abstraction which is natural to build mashups. Secondly, the

use of this abstraction will substantially enhance the security of mashups. The mashup provider

does not need to proxy all the components so that they appear to be from the same origin, nor

resort to other unsafe practices, such as directly including scripts from different domains as with

2
 Origin is a pair of hostname (DNS domain or IP address) and URI-scheme (protocol) from a given URL.

The “same-origin policy” [2] usually includes also the port. However, this is not done by all browsers, e.g.,

IE6 ignores ports when comparing origins!
3
When referring to Internet Explorer, Firefox, and Opera throughout this paper, we are referring to Internet

Explorer 7.0, Firefox 2.0.0.4, and Opera 9.20 respectively. In addition, there is no technical reason the

library would not work on other browsers such as Safari, however this has not been fully verified.
4
 The component provider can enforce its own access control and has to trust the event hub only to the

extent of access control explicitly delegated to the hub.

JSONP [4]. Thirdly, it provides a general security mechanism to guard against cross-site scripting

(XSS) attacks, as discussed next.

From the long lists of web-based threats, attacks and vulnerabilities that are being published

every day [5]-[7], XSS attacks [8] are getting significant attention. These affect a special case of a

mashup, where a website combines content generated by the website with content generated by

its users, which are different trust domains. XSS attacks leverage the fact that the browser views

all this content to be from the same origin, and allows user-generated malicious content to not just

read/write website-generated (trusted) content, but also gives it access to browser-cached

credentials (for example, cookies) for that origin. The common XSS mitigation approach is to

disallow users to generate content that contains JavaScript, using content filters, but this is both

(1) difficult to implement, resulting in many attacks against incomplete content filtering, and (2)

limiting for user creativity. Using our component abstraction, user-generated content can be

contained in a separate, less-trusted component.

To limit exposures due to attacks such as XSS, it is also crucial to follow the principle of least

privilege [9]. This requires that only limited authority is delegated to components and, hence, also

component-based identification and authorization protocols.

The paper is structured as follows. In Section 2 we present our secure component model,

followed by a discussion of security policies in Section 3. Then we describe the requirements and

design of our implementation of the secure component model, and how we address various attack

vectors, in Section 4. We discuss alternative techniques for implementing the security

requirements in current browsers, and motivate the choices we made, in Section 5. Section 6

discusses related work, and we conclude in Section 7.

2. Secure Component Model

In this section, we describe our secure component model for mashups. As discussed in the

introduction, the current browser security model either allows different content to arbitrarily

interact if they are from the same origin, or disallows all interaction if they are from different

origins. Thus, it is clear that the current browser security model is insufficient for mashup

applications. What is desirable is a new security model that allows content to be separated by

trust domain, with a carefully mediated interaction between such separated content. Furthermore,

to make this accessible from a programmer’s perspective, there must be a higher level

programming interface that allows creation of secure mashups, and makes it easy.

Both from a programmability and usable security perspective, a desirable feature in this

interface would be to hide interaction patterns of reading, writing and modifying across trust

domains, while providing mediated interaction at the service level. Clearly, for modularity, a

component from one trust domain should avoid having to know about the internals of a

component from another domain. Thus, our model is analogous to using a message-passing

interaction style instead of a shared-memory style. We can then define a centralized

communication mechanism which allows governed communication channels to which policies

can be attached.

Figure 1 graphically represents, in an abstract manner, our proposed model for secure mashups.

The model consists of components, with input/output ports, and an event hub, with governed

communication channels.

The mashup application, provided by the mashup provider, consists of an event hub and one or

more components, which can be provided by third-party component providers. Components could

be visible or invisible. Visible components share the browser window in a manner determined by

the mashup application. A component contains content (both data and code) from one trust

domain. The components, and therefore also the trust domains, are logically separated and can

only communicate with each other through the mediated interaction channels implemented by the

event hub. The components trust the mediator (the mashup application and the event hub, both of

which come from the mashup provider) and do not need to deal with authenticating the other

components sharing the channel. A component may specify input/output ports (respectively

depicted in the figure by white and gray ellipses) that define the types of input and output that the

component expects in order to function correctly. The event hub wires the ports of components to

the appropriate channels (depicted by the arrows in the figure).

The event hub is a publish/subscribe system with many-to-many channels on which messages

are published and distributed. In Figure 1, Component A can publish to Channel 1 and Channel 3

but is only subscribed to Channel 2 and Channel 3.

The mediated channels form the last part of the model. They allow the different trust domains

to interact with each other through the trusted event hub. The channels support asynchronous

pass-by-value communication. An asynchronous model, though typically considered harder to

program to, is a natural one for applications running in the browser, since they have significant

logic for asynchronous event handling related to user-interface (UI) events. In addition, an

asynchronous model allows more implementation choices, since application code running in a

browser is single-threaded.

3. Security Policy

The component model described in the previous section provides component isolation and

mediated inter-component communication. To describe which component interactions are

permitted and which are forbidden, we need to define the security policy that will be enforced by

the model.

Defining permitted interactions between components based on policy is particularly important

to enable the mashup provider to declaratively specify desired interaction patterns. Furthermore,

such declarative policy specification can be derived from many sources of high level policies.

This is especially true for enterprise-class mashups [10], where the security policy may be a

combination of enterprise-level policy, department policy, and end-user policy. Even component

providers may want to express how their components are supposed to be integrated into a mashup

application. For example, a component provider may constrain what a mashup provider may do

with the data exposed by the component. On the other hand, mashup providers may not trust

components equally, and may want to prevent certain components from communicating with each

other. In general, security policies for componentized mashups can have many facets, depending

on which entity specifies the policy.

For an example of a set of policies that could be specified and enforced, consider a mashup

with three components: Component A providing banking services, Component B providing car

information, and Component C providing advertisement for insurance products. When the user

decides to buy a car, the car component B is allowed to supply detailed information for creating a

Figure 1. Secure component model for mashups

bank transfer to the banking component A, and very general information about the type of car to

the insurance advertisement component C. In no case should the insurance component be allowed

to interact directly with the banking component.

We have identified two different levels at which policies can be expressed: low level policies

that express basic access control, and high level policies which express interactions at a more

semantic level. We consider basic access control policies in the remainder of this section. We

envision that basic policy is derived by inputs from high level policies. The exploration of this

high level policy space, the policy languages, and the derivation of the basic access control policy

based on high level policies is outside the scope of this paper.

3.1 Basic Access Control Policies

Basic Access Control Policies specify who is allowed to (1) create and destroy named

components, (2) create and destroy named channels, and (3) which components can publish or

subscribe to events on a named channel. These policies are enforced by the event hub. The

subjects in these policies are named components or trust domains.

We consider a special case of such a policy, where component and channel creation (and

destruction) can only be done by the mashup application. This special case is in line with current

practice, and has the advantage that it makes policy specification very straightforward. The

mashup provider does not have to deal with explicit policy specification or policy languages. The

policy is implicitly specified by the mashup application code by creating channels, loading the

different components, and then wiring them together by specifying the channels that connect to

the input/output ports of each component. For example, the implicit wiring policy for the mashup

application in Figure 1 is described in the table below.

pub sub pub sub pub sub

Component A x x x x

Component B x

Component C x x

Channel 1 Channel 2 Channel 3
Component

Another alternative would be for the event hub to read security policies from a configuration

policy file. This policy file could possibly be provided outside of the mashup application,

potentially even by third parties. In this scenario, when input ports are being wired to channels

(i.e., components are being subscribed) or output ports are being wired to channels (i.e.,

components are given permission to publish) the event hub checks if this is an allowed interaction

according to its policy file. This decouples the policy definition from the actual coding process of

the mashup application and enables scenarios in which the mashup developer is not the one

defining the policy for the component interaction. A policy file for the example in figure 1 can be

expressed in the JSON format [11] as follows:

{ "EventHub" : {
 "Channels" : [
 { "name" : "Channel 1",
 "pub" : "Component A",
 "sub" : ""},
 { "name" : "Channel 2",
 "pub" : "Component C",
 "sub" : "Component A, Component C"},
 { "name" : "Channel3",
 "pub" : "Component A",
 "sub" : "Component A, Component B"}]}

}

3.2 Authentication and Limited Delegation

To be able to delegate authorization decisions to the mashup and the event hub, it is essential

that we have a mutual authentication between the mashup application and the components.

Furthermore, to follow the principle of least privilege [9], the authentication should be coupled

with limited delegation logic, e.g., as in [12], and has to be integrated into authentication

protocols as done by Yahoo’s BBAuth
5
 or Google’s AuthSub

6
. While the details of our current

solution are outside of the scope of this paper, we give in the following the gist of it: The

approach is based on two credentials, traditional user credentials and code credentials. We use

current user credentials to authenticate the secure channel to the user’s browser and to bootstrap

the secure loading of components, exploiting the traditional vulnerability of these methods to

cross-site request forgery (CSRF) as a feature. Each component will contain an additional code

credential, imprinted at creation time. To authorize a service, e.g., a component load, a requester

will have to send a (CSRF-resistant and fail-safe [9]) MAC based on both user and code

credential together with the service request. Based on the implied compound principal and

delegation information expressed in a corresponding policy language, the service provider can

then decide whether access is to be granted or not.

4. Implementing the Secure Component Model

In this section, we discuss our design and implementation of the secure component model. The

core ideas underlying our approach is to leverage the current browser security model to isolate

components belonging to different trust domains and then to allow interaction by publishing-

subscribe to named channels which are managed by the mashup application. Our approach does

not require any browser modifications, hence adoption can be immediate. Section 4.1 describes

security and usability requirements that constrain our design. We will revisit these requirements

in a later section, when comparing our security enforcement approach with other potential options.

Section 4.2 gives an overview of the solution components and underlying communication

primitive used in our prototype. Section 4.3 discusses the channel communication mechanisms

and the secure hub abstractions. In Section 4.4 we evaluate the security of our solution with a

discussion of a number of ways in which one could attempt to attack our model and

communication primitives.

4.1 Security and Usability Requirements for the Implementation

Prior to describing the details of the prototype for isolation and secure communication, we

would like to informally write down the requirements which the prototype aims to fulfill. The

motivation for this is (1) to guide our design and implementation, (2) to compare with other

design alternatives (discussed in later sections), and (3) to allow other developers to make an

informed choice in choosing a different implementation approach for the secure component

model, depending on their security needs and environment. The following are the requirements

we tried to cover in our prototype:

• The DOM (Document Object Model) [13] tree of each component is completely isolated from

components from other domains. This specifically means that no reading and writing of DOM

elements belonging to cross-domain components is possible.

• The JavaScript namespace of each component is completely isolated from components of

other domains. This means that no or only governed reading and writing of JavaScript objects

across components is possible.

• The inter-component communication is secure. That is, a malicious component can not affect

the integrity and confidentiality of communication between two other components.

5
 http://developer.yahoo.com/auth/

6
 http://code.google.com/apis/accounts/AuthForWebApps.html

• A component cannot launch denial of service attacks against communication between two

other components.

• Component phishing can be detected by the mashup application.

• Initiation of component loading and channel access control is completely under the control of

the mashup application.

• The mashup application can dynamically create and delete components and create and delete

channels. In this context, dynamic means that these changes happen after the user has started

interacting with the application. In contrast, static would mean that component and channel

creation can only happen when the application first loads into the user’s browser, as part of the

initialization process.

• Components are loadable directly from the component provider. This means that no additional

web proxy is required and the component is protected (isolated) even from the mashup

application code.

• It is possible to implement the technology safely on all common browser platforms.

4.2 Solution components and underlying communication primitive

In this section, we will describe the components to be used in our solution for secure

interaction. Before we do this we need to review a few basic concepts from HTML documents

and their properties and understand the current “same-origin” security policy of current browsers.

An HTML document has a domain property that is the hostname of the server it was accessed

from, and a location property that represents the URL of the document. The hostname could be

a numeric IP address or DNS name. DNS names are hierarchical, and browsers allow a document

to relax its origin via the domain property. For instance, a document with domain foo.bar.baz.com

can change it to bar.baz.com or baz.com. It is possible to change the location the frame in

which a document is loaded. This will cause a new document to be loaded to replace the current

document. Frames can include sub-frames using HTML <frame> and <iframe> tags where each

frame has its own document with domain and location attributes. The “same-origin” policy says

that documents from different origins that are in the same frame hierarchy cannot examine or

alter each others internal state. Code running in a frame can read/write the internal state of all

documents from the same origin that are part of the same frame hierarchy. However, code can

write the location property of any frame in the same frame hierarchy, regardless of origin.

In our prototype, we load components which come from different trust domains into different

<iframe>s, i.e., they represent different sub-frames. Even in the case where a single host is

serving components from multiple trust domains, isolation can be obtained by having the host use

multiple DNS names, one for each trust domain. However, in light of the fact that components

can change their domain properties as described earlier, the DNS domains used should be such

that a component cannot relax its domain property to attack another component. For instance, a

server foo.bar.com that serves components from trust domain t1 and t2 can create two DNS

domains t1.foo.bar.com and t2.foo.bar.com. Unless both components relax to the same super-

domain no attacks are possible.

While isolation can be easily achieved by placing components in different <iframes>s, the

challenge is enabling cross-domain inter-component communication, since it is not explicitly

supported in browsers. Recently, an approach to communicate between <iframe>s using the

fragment identifier of the URL of the <iframe> has been discovered [14]. The communication is

based on the observation that even though the parent and child <iframe>s have different origins,

the parent can write to the child’s window.location property. Note that if we only modify the

fragment identifier of the location property the document will not be reloaded and hence the

application state can be preserved because the fragment identifier was designed to be used for

navigation inside a document. This technique has been used in the Dojo JavaScript toolkit [15] to

circumvent the same-origin policy for client-server communication, and more recently in [16].

Thus the fragment identifier communication method can be leveraged to create a

communication link between the mashup application and a component, which can then be used to

create end-to-end inter-component channels. However, we note that the fragment communication

as such does not inherently guarantee integrity of the communication links, and suffers from

component phishing vulnerabilities. A number of such issues and the technical challenges of

guaranteeing integrity will be discusses and addressed in Section 4.4.

In the prototype implementation we leverage the separation provided by <iframe>s to realize

isolation of the DOM tree and the JavaScript namespace of the components. One of the

challenges for an architecture based on <iframe>s is to organize the <iframe>s in such a way

that they provide isolation while still allowing fragment communication. The extent to which

current browsers can navigate the frame structure is browser dependant and tends to differ quite a

lot. For example, suppose the mashup application is in origin A and it has two child <iframe>s in

origin B and C. On Firefox the <iframe> in origin B would be able to navigate the frame

structure to get access to the window object of the <iframe> in origin C. On Opera however, this

would not be permitted since Opera only allows navigating to ancestors and descendants. A

complete discussion on the behavior of cross-domain frame access for the most common current

browsers is given in [17]. In this paper, we choose an <iframe> configuration which works all the

common browsers.

Figure 2 illustrates an example of the <iframe> configuration that we use for three different

trust domains. The first origin, www.mashup.com, is the origin of the mashup application which

we assume is a trusted application. To leverage the <iframe> isolation, the components are

loaded into two addition origins: component A is loaded into c1.component.com and component

B into c2.component.com. In each of the components, there is a tunnel <iframe> loaded from

www.mashup.com. This tunnel can access the JavaScript context of the mashup application since it

is in the same origin as the mashup application. The tunnel and the component <iframe>s

communicate cross-domain using fragment identifiers. Note that this also makes sure that the

messaging does not interfere with the mashup application.

For cross-domain communication, the components and the tunnel <iframe>s poll for

incoming messages which are communicated through the fragment part of their URL and write to

the fragment part of the URL of their communication partner. For example, if the component A

wants to send a message to the mashup application, the component modifies the URL of the

tunnel to www.mashup.com/tunnel.html#message. The tunnel <iframe> which is polling for

modifications in its fragment notices this and delivers the message to the mashup application,

which it can access through window.parent.parent since it is in the same origin as the tunnel.

The next section discusses how this can be extended to the event hub communication.

Figure 2. Fragment communication architecture

4.3 Higher level abstractions for communication

 In the previous section, we described how a component in an <iframe> could communicate

with its tunnel. However, this basic communication primitive is not sufficient for fully realizing

our secure component model. We would like to layer over this primitive a broader cross-domain

abstraction along with policies governing the inter-component communication and a cleaner

programming abstraction which hides the details of the underlying primitive. This is desirable not

only from a usability perspective but it can also be extended to work with future browser which

more readily support cross-domain communication. This higher layer is represented by the event

hub in our secure component model. Communication at this level is realized by multiplexing

different event hub communication channels over the single fragment communication channel. In

our prototype we opted for a layered approach for realizing this so that in the future on of the

layers could be replaced by a more secure version as new technology becomes available on the

browser platforms. Section 5 and Section 6 discuss a number of alternatives and proposals for

cross-domain communication technologies.

Figure 3 pictorially depicts the layers of the prototype: the event hub layer, the event

communication layer and the fragment communication layer. The upper layers in the stack

abstract away from the low level details of the core fragment identifier communication. As in

standard multi-layered protocols each layer provides additional functionality by wrapping

messages as payloads of the layers below it. Note that since the JavaScript namespaces of the

communication partners are distinct the three layers are present on both sides of the

communication.

The uppermost layer is the Event Hub layer which is part of the mashup application. On the

mashup side, in this layer, the mashup developer wires the ports of the components to the

different channels of the event hub so that a governed environment for cross-domain

communication is created. It is also in this layer that the policies are defined and enforced. At the

component side, the component developer defines the input and output ports of his component in

this layer. Listing to the input ports and publishing on the output ports is realized in this layer.

The middle layer is the Event Communication layer. This layer is responsible for composing

the messages which are used to multiplex the multi port components on the single channel

fragment identifier messaging.

The lowest level layer is the Fragment Communication layer. This layer hides all the

implementation details of the single channel communication mechanism from the event

communication layer. In this layer, the polling and fragment signaling is implemented. Note that

this is the only layer that needs to be replaced when the component model is implemented using a

different cross-domain communication technology.

To illustrate how the layered approach works in the prototype implementation, we consider an

example with 2 components A and B and follow the sequence when Component A publishes a

message on a port out1 which is then consumed by port in1 in both A and B. The following is

the 12 step sequence a message goes through. We assume that the ports out1 of Component A is

wired to channel1 on the event hub which is subscribed through port in1 by both components.

1. Component A sends data on port out1, provided by the event hub at the component side. In

the example, the event hub layer tells the event communication layer that it wants to publish

Hi 1 on out1.

2. The event communication layer wraps this data into a string and instructs the fragment

communication layer to deliver the message to the mashup application. The encoded message

looks like this: type%3Dpublish%26port%3Dout1%26payload%3DHi%201. This data can be

interpreted as the message is of the type publish and needs to be delivered to the port with

name out1 and with the payload Hi 1.

3. In the fragment communication layer this message is wrapped into another message which is

used for delivery over the point to point connection between the tunnel <iframe> and the

component <iframe>. The final message which will be written as a fragment identifier of the

tunnel <iframe> in Component A is: end:3:

type%3Dpublish%26port%3Dout1%26payload%3DHi%201. This message is of the type end

which indicates that the message is self contained
7
. It has the sequence number 3. Sequence

numbers are used for differentiating between messages. This allows the polling mechanism to

see two different messages even if they have the same payload. It has a payload equal to the

message passed to it by the event communication layer.

4. After the fragment communication layer at the mashup application side received the message

from the other fragment communication layer, it replies with an acknowledgement that it

received the data correctly. The message used for this is ok:3.

5. After sending the acknowledgement, the fragment communication layer decodes the incoming

message and delivers the message to the event communication layer.

6. The event communication layer decodes the next layer and detects that it is a publish message

on out1 and extracts the payload of the message. Afterwards it delivers the publish command

for out1 to the event hub layer.

7. The event hub layer knows that out1 is wired to channel1 in the event hub. In the event hub a

lookup for the subscribed components on channel1 is done, and a distribute message is

issued to the event communication layer which targets the in1 ports of Component A and B.

8-11. The delivery of the distribute message from the event communication layer at the

mashup application side to the component side is identical to the delivery of the publish

message as discussed in step 2 to step 5.

12. In the final step, the event hub layer delivers the message to the components. The components

can receive this message by registering a callback for processing incoming messages on in1 to

the event hub layer at the component side.

The example sequence described above illustrates quite well the core ideas of how the layers in

our prototype interact with each other to secure inter-component communication. We have

omitted a number of details in the description of the layers and we defer those details to a future

publication.

7
 Due to restrictions on the length of a URL in browsers this is not always the case.

Browser

Mashup Application

Component A

Event Hub

Event Comm

Frag Comm

Frag Comm

Event Comm

Component B

Event Hub

Event Comm

Frag Comm

Frag Comm

Event Comm

Channel 1 Event Hub

123 456 789 101112
789 101112

Figure 3. Layered component communication

4.4 Attacking Fragment Identifier Messaging on Permissive Browsers

In this section, we discuss the security issues we identified with the integrity of the cross-

domain communication links when implemented by fragment identifier messaging. As discussed

in Section 4.2, different browsers have different behavior when navigating through the frame

structure of a web application. Some of the browsers, called permissive browsers in [17], allow

full frame navigation even though the frames are actually coming from different origins. Well

known browsers that support this are Firefox, Safari and some configurations of Internet Explorer

6 and Internet Explorer 7. This can lead to several vulnerabilities and the loss of the integrity of

the fragment identifier communication. We discuss a few such issues in the remainder of this

section. The fundamental issue is that with permissive browsers it is possible to access the

window object of any frame inside the mashup application. For example in Figure 2, this means

that the Component B can get direct access to the window object of Component A even though

they both come from different origins. Note that even though one can get access to the window

object, it is not possible to read the window.location property of the <iframe> not in the same

origin. This definitely prevents a component from spying on the communication between a

components and the secure hub. However there are other exposures:

4.4.1 Forging Message Origin

A potential attack is to insert a spurious message, in effect forging a message, by writing to the

window.location of another component’s <iframe> or one of the tunnel <iframe>s. Since

browsers permit writing it is not possible to prevent cross-domain writing by malicious

components. For example, when a malicious Component B wants to send a message to the event

hub on behalf of Component A, it traverses the frame structure to the tunnel <iframe> associated

with Component A. Then it writes its message to the tunnel’s window.location. The tunnel

<iframe> will detect this incoming message but will not be aware of the fact that this is a forged

message which did not originate from Component A.

To counter this attack we extend the fragment communication protocol with an additional

security token, i.e., an unguessable random value, which is transferred through the different layers

of the communication protocol and used to verify the sender of the message. Upon creation of the

component, the mashup application generates a unique security token which is passed to the

component as part of the initialization parameters. When the component creates the tunnel

<iframe> it passes the token in the same way. After receiving the token, the tunnel <iframe>

provides the token to the mashup application which verifies it if the received token is the same as

the originally generated token.

When the token is the same, it can be used in all future communication between the tunnel and

the component to make sure that no malicious component is forging messages. Note that after

verification, it is sufficient to use the token at the fragment communication layer since this is the

only layer at which a malicious component can attack. If the token is not the same, a malicious

component has been interfering with the initialization process of the component and the attacked

component can be reinitialized until a verified shared token exists, hence until integrity can be

assured.

It is not possible for a malicious component to read the security token of other components

because it can not read the window.location property across origins. Nor does it have access to

the token in the JavaScript namespaces of the component, mashup application, or tunnel since

they are coming from different origins and protected by the same-origin policy. However, a

malicious component could inject its own security token into another component by overwriting

the target component’s initialization parameters before they were read by the target component.

This injection is not a problem since it will be detected by the mashup application when it

compares the generated token with the forged one. Upon detection of a forged token during the

initialization phase, the component can be reinitialized as described earlier. Once the verification

is successful, the origin of the sender of messages can be assured at all time.

4.4.2 Phishing a Component

Since it is possible for a malicious component to write to the window.location property of

another component’s <iframe>, it is possible for the malicious component to navigate a

component away from its location to a location with a phished component. Since the URLs

loaded by <iframe>s are not visible in the browser, such an attack can not be graphically

detected. Therefore the mashup application needs to prevent this kind of attack.

For this, the mashup application must be able to detect changes in the location of the

component. Since the mashup application can not read the window.location property of its

components it is not possible to simply poll for changes in this location. Nor is it possible for the

mashup application to attach event handlers for detecting changes of this property.

Due to the fact that the tunnel <iframe> is a direct child of the component <iframe> it will be

unloaded whenever the component is unloaded. Therefore, whenever the malicious component

modifies the window.location of another component to a phished location, the tunnel <iframe>

of the original component will be unloaded. The tunnel <iframe> and the mashup application are

loaded from the same origin so they communicate directly with each other. By registering an

event handler in a tunnel <iframe>, that listens for an unload event on the tunnel, and

providing feedback to the mashup application when this occurs, it is possible to detect phishing,

prevent the phished component from being loaded and potentially stop the application from

further execution. A final twist is the case when the component is replaced before the tunnel

<iframe> is loaded. This case is handled by the hub which (1) verifies that the secure token

handshake takes place within a reasonable amount of time, using a timeout, and (2) guards

against vulnerabilities during this timeout window by periodically overwriting the component’s

window.location with its initial value.

4.4.3 Denial of Service

Another way to attack the fragment identifier messaging system is by launching a Denial of

Service (DoS) attack against it. The simplest way to realize this would be for a malicious

component to make the target component navigate away from its location. This type of DoS

attack is detected and prevented in the same way as the phishing attack can be prevented. An

alternative attack would be for a malicious component to flood another component with messages.

This would prevent legitimate messages to reach their destination and therefore prevents the

mashup application from functioning correctly. Another strategy an attacker could follow would

be to create an endless loop in a component. Due to the single threaded nature of JavaScript in the

browser environment no other scripts would ever be executed. This list of potential DoS attacks is

most likely not complete but serves as an illustration that it is not possible to prevent DoS attacks

among components on the current browser platforms. If such prevention is necessary, browsers

will need to be modified.

5. Alternative Implementation Techniques for Unmodified Browsers

In this section, we discuss other alternatives for implementing the secure component model

without browser modifications, and motivate the choice we made. We consider three alternatives

(1) Subspace [17] (proxied <iframe>s with client-side communication), (2) proxied <iframe>s

with server-side communication, and (3) JavaScript rewriting [18]-[20].

5.1 Subspace (Proxied <iframe>s with client-side communication)

Subspace [17] is a technique for secure cross-domain communication. While the primary goal

of this work is secure cross-domain client-server communication, it can also be used for secure

cross-domain component communication within the browser. Subspace makes extensive use of

<iframe>s to realize a hierarchy of documents, and relaxing the domain attribute of these

documents to enable cross-domain exchange of JavaScript objects. It also relies on the fact that

JavaScript objects can be passed into other <iframe>ｓ when they are part of the same origin and

remain accessible if this is no longer the case.

Subspace allows cross-domain communication while still preserving the safety introduced by

loading different origins into different <iframe>s. Consider the scenario with a mashup

application in www.mashup.com and an untrusted service that is to be loaded through

service.mashup.com. First, the mashup application creates a mediator <iframe> in the domain

www.mashup.com. As the two <iframe>s are in the same origin, it is possible to share a

JavaScript object between them: the mashup application passes a callback object from its own

<iframe> (1) to the mediator <iframe> (2). Next, the mediator <iframe> relaxes its origin to

mashup.com and loads the untrusted <iframe> from service.mashup.com which also relaxes

its origin to mashup.com. The mediator <iframe> can now pass the callback object from its own

context (2) into the untrusted context (3). At this point a link between the mashup application and

the untrusted <iframe> is created. The untrusted <iframe> can now load potentially malicious

content from another origin, using a <script> tag, and safely communicate the result back to the

mashup application.

In order to support the secure component model, isolation of components using Subspace

would rely on the use of <iframe>s from different origins. Due to the design of Subspace, it is

not possible to directly load components from their origin, and therefore one needs to use a proxy.

Insofar, the component provider would also have to completely trust the mashup provider

whereas in our approach the component code and data can be protected even from the mashup

application with appropriately secured component loading. Another significant drawback of this

approach, in our context, is that the mashup application cannot dynamically create components.

This is because the origin relaxation technique, to pass the callback object, is secure only if all

callbacks (for all components) are setup before any potentially malicious component content is

loaded into the browser. The authors do describe a technique that could be used to dynamically

create components, but it (1) requires the mashup application page to be reloaded whenever a

component needs to be dynamically created/deleted, and (2) requires each reload of the same

page to come from a different DNS domain, which adds significant complexity.

5.2 Proxied <iframe> s with server-side communication

An alternative to the Subspace approach is to do server-side communication between client-

side components that are represented as <iframe> s. Each client-side component has a

corresponding server-side communication object. Communication between component A and B

would occur by component A sending a message to its server-side communication object which

would pass it to component B’s communication object, which would then pass it back to

component B. This circumvents cross-domain communication restrictions in the browser. A

server proxy has to serve components that are in different trust domains from different DNS

domains. The communication objects for all components would be located at the proxy. This

solution requires asynchronous server to client communication, which could be implemented

using emerging techniques like the Bayeux protocol [21] and Cometd [22]. We did not choose

this approach since it needs a proxy, and all component-component communication in the client

needs to go through the proxy server, which is not efficient.

5.3 JavaScript Rewriting

An alternative to browser isolation mechanisms is to use language analysis and rewriting. This

approach is challenging due to the self-modifying nature of JavaScript, which makes a pure static

analysis solution ineffective. A combination of static analysis and dynamic code rewriting could

be used, and there is some work on this in the literature [18]-[20]. These works does not

necessarily address component isolation, but could be extended or specialized for this purpose.

Some drawbacks of this approach are (1) the complexity of rewriting self-modifying JavaScript,

which can make it hard to verify that the isolation achieved is complete, (2) the need for a trusted

rewriting proxy, that rewrites all the component code, and (3) performance of rewritten

JavaScript (some microbenchmarks in [18] show a slowdown of over 300x compared to the

original JavaScript code).

6. Related Work

In this section, we discuss three proposals for browser modifications with goals similar to our

secure component model (1) the <module> tag proposal [23], (2) cross-document messaging in

the HTML 5 working document of the Web Hypertext Application Technology Working Group

(WHATWG) [24], (3) the FRIV element proposal [25], and (4) a proposal [26]. These proposals

all require HTML and-or browser modifications and hence there will be a considerable time lag

before they are adopted by a standards committee implemented in browsers, and be widely

adopted by users. Finally, we discuss an alternative finer-grained security model for mashups that

involves access control on shared state. The security abstractions described in these proposals can

be used to bootstrap our secure component model, by layering a JavaScript library over these

abstractions.

6.1 The <module> tag

The <module> tag [23] is a proposal for a new tag in HTML, which defines a module with

isolation similar to <iframes> but with communication support for parent child communication.

The communication interface between the <module> and its parent document is a very simple

messaging-based API, over which JSON [11] formatted messages are sent. At the parent’s side,

there is an object which allows sending and registering a callback for receiving; at the <module>

side there is a similar mechanism.

Modules are similar to components in our model. The key difference from a programming

model perspective is that the <module> tag implements one port for each module, which

multiplexes all communication, while we support multiple ports (and consequently multiple

channels per component). In addition, we support channels directly between components, and not

just between a component and the parent document/mashup application. This allows us to define

fine-grained access control policies on channels, which cannot be defined with the <module> tag.

On the other hand, different <module>s are isolated even when they are loaded from the same

origin. This simplifies administration of servers hosting multiple components as not each of them

has to be assigned a separate DNS sub-domain.

6.2 Cross-document Messaging in WHATWG Proposal

WHATWG (Web Hypertext Application Technology Working Group) has recently introduced

a new proposal for HTML 5 [24], which includes support for cross-document messaging, where

documents could be from different origins. Conceptually, the proposal is similar to the <module>

tag proposal. Instead of proposing a new isolation abstraction like the <module>, this proposal

leverages the current abstraction of a document, where documents can be arranged in a hierarchy.

The HTML 5 proposal allows a document to post a message to another document, regardless of

document origin. The receiving document has to decide whether it trusts messages from the

origin of the sender.

Unlike our secure component model, this proposal does not define fine-grained channels

between components, and requires each component to perform its own access control on received

messages. Furthermore, unlike the <module> tag, DOM and JavaScript resources are shared based

on the same origin policy. Hence, this proposal would still require a separate DNS domain per

component.

6.3 FRIV element

This is a proposal to add a new element to HTML, FRIV [25], which combines the isolation

properties of an <iframe> with explicit support for secure communication between the FRIV and

its parent. Like an <iframe>, FRIV elements can be nested. The FRIV element offers some

usability benefits over <iframe>, by allowing the FRIV to read the size of its display region. The

proposal seems to share a lot of similarity to HTML 5. However, due to the difference in level

and style of specification, it is hard to judge the exact differences of the two proposals.

6.4 DOM Level Access Control (DOMLAC)

Unlike the previous proposals, which support a message-passing interaction model, the

DOMLAC [26] proposal supports a shared-state model. It provides fine-grained access control on

read, write and traverse actions of the DOM tree of a web application. Policies can be associated

with parts of the DOM tree inside a web page, which could be used to safely isolate the DOM

sub-tree of each component. And therefore prevent potentially malicious parts of the DOM tree to

access other parts.

Secure communication links between a component and the event hub could be achieved by

creating communication zones in the DOM tree and associating policies with them such that only

the component and the event hub can access and modify that zone. DOMLAC is implemented as

a browser plugin.

DOMLAC does not consider separation of the execution context of JavaScript in the different

zones (zones are analogous to trust domains). This makes it possible to steal information stored in

variables in the component’s execution context. DOMLAC also does not support loading of

components directly from their original host (the same proxy must be used for all components

used in a mashup application).

7. Conclusion

In this paper, we considered the problem of mediated communication between components

which are co-resident on the end-users browser while coming from different trust domains. This

problem is increasingly becoming important due to the prevalence of mashup applications. The

current browser same-origin security policy is not directly amenable to supporting this scenario.

To address this issue, we described a secure component model which consisted of a central event

communication hub and governed communication channels which mediate the communication

between isolated components. We illustrated how such a model can be used to enforce basic

access control policies which define the allowed interactions of components.

We have described a prototype which implements this model on current browsers and hence

can be used right away in building secure mashup applications. While we think our approach is

the best generic solution working with unmodified browsers, it is worthwhile pointing out that

our programming model is intentionally general enough that other implementation techniques

mentioned in Section 5 and 6 could be used by servers on a mix and match basis to optimize

requirements for special cases. For example, a mashup application server could use code-

rewriting techniques for co-located components to save itself from having to manage a separate

DNS domain for each component or exploit browser extensions supported by a particular client

for increased performance.

We evaluated the security of the prototype by studying various attacks such as message forging,

component phishing and Denial of Service attacks. To the best of our knowledge, this is the first

work that achieves the goal of secure mashup components without any modifications to current

browsers.

Due to the increasing importance of this problem, there are a number of proposals for

extensions of the browser security model to support secure mediated communication. Our

solution can be used directly in today’s browsers or can be complemented with the potential

browser extensions to leverage the enhanced security they could provide.

8. References

[1] Brett McLaughlin, “Mastering Ajax,” http://www-

128.ibm.com/developerworks/views/web/libraryview.jsp?search_by=Mastering+Ajax

[2] Jesse Ruderman, “The Same Origin Policy,” http://www.mozilla.org/projects/security/components/same-

origin.html

[3] World Wide Web Consortium, “HTML 4.01 Specification - Inline frames: the IFRAME element,”

http://www.w3.org/TR/html401/present/frames.html#h-16.5

[4] Bob Ippolito, “Remote JSON – JSONP,” http://bob.pythonmac.org/archives/2005/12/05/remote-json-jsonp/

[5] Web Application Security Consortium, “Web Security Threat Classification,”

http://www.webappsec.org/projects/threat/

[6] Open Web Application Security Project, “Attacks,” http://www.owasp.org/index.php/Category:Attack

[7] SecurityFocus, “Bugtraq mailing list,” http://www.securityfocus.com/archive/1

[8] Kevin Spett, “Cross-Site Scripting - Are your web applications vulnerable?,”

http://www.spidynamics.com/whitepapers/SPIcross-sitescripting.pdf

[9] J. Saltzer and M. Schroeder. The Protection of Information in Computer Systems”, Proceedings of the IEEE,

63(9), pp. 1278-1308, September 1975.

[10] IBM, “QEDWiki,” http://services.alphaworks.ibm.com/qedwiki/

[11] D. Crockford, RFC 4627 The application/json Media Type for JavaScript Object Notation (JSON)

[12] M. Becker, C. Fournet and A. Gordon. “SecPAL: Design and Semantics of a Decentralized Authorization

Languag”e, Technical Report, MSR-TR-2006-120, Microsoft Research, September 2006.

[13] World Wide Web Consortium, “Document Object Model,” http://www.w3.org/DOM/

[14] James Burke , “Cross Domain Frame Communication with Fragment Identifiers,”

http://tagneto.blogspot.com/2006/06/cross-domain-frame-communication-with.html

[15] Dojo Foundation, “Dojo JavaScript toolkit,” http://www.dojotoolkit.org/

[16] Gideon Lee, openspot.com. Personal communication on XDDE.

[17] C. Jackson, H. J. Wang, “Subspace: Secure Cross-Domain Communication for Web Mashups,” WWW 2007, pp.

611-619, Canada, May 2007.

[18] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir “BrowserShield: Vulnerability-Driven Filtering of

Dynamic HTML” Usenix OSDI, Seattle, WA December 2006

[19] M. Steiner and K. Vikram, “Mashup Component Isolation via Server-Side Analysis and Instrumention,”

W2SP2007: Web 2.0 Security and Privacy 2007, May 2007.

[20] D. Yu, A. Chander, N. Islam, I. Serikov, “JavaScript Instrumentation for Browser Security,” Proceedings of the

2007 POPL Conference, pp. 237 – 249, January 2007.

[21] Dojo Foundation, “Bayeux Protocol,” http://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html

[22] Teknikill, Shadowcat Systems, and SitePen, Inc, “The Scalable Comet Framework,” http://www.cometd.com/

[23] D. Crockford, “The <module> tag,” http://www.json.org/module.html

[24] Web Hypertext Application Technology Working Group, “HTML 5 - Cross-document messaging,”

http://www.whatwg.org/specs/web-apps/current-work/#crossDocumentMessages

[25] J. Howell, C. Jackson, H. J. Wang, and X. Fan, “MashupOS: Operating System Abstractions for Client

Mashups,” 11th Workshop on Hot Topics in Operating Systems, May 2007.

[26] N. Uramoto, S. Yoshihama, F. De Keukelaere, “OpenAjax Security Work Session,”

http://www.openajax.org/member/wiki/images/0/0c/2007_March_Members_Meeting_Ajax_Security_Threats.pdf

