
July 30, 2007
RT0745
Network; Security 8 pages

Research Report
Easy-To-Use Programming Model for Web Services Security

Yumi Yamaguchi, Hyen-Vui Chung, Masayoshi Teraguchi,
and Naohiko Uramoto
IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It
has been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or
copies of the article legally obtained (for example, by payment of royalities).

Easy-To-Use Programming Model for Web Services Security

Yumi Yamaguchi1, Hyen-Vui Chung2, Masayoshi Teraguchi1, and Naohiko Uramoto1
1Tokyo Research Laboratory, IBM Research

1623-14, Shimo-tsuruma, Yamato-shi, Kanagawa, 242-8502, Japan
2 IBM Software Group

11501 Burnet Road, Austin, TX 78758-3415, USA
{yyumi, teraguti, uramoto}@jp.ibm.com, hychung@us.ibm.com

Abstract

Even with a support tool, setting up a Web Services Secu-
rity (WS-Security) configuration can be difficult for peo-
ple who are not familiar with WS-Security. Some of the
reasons are that the WS-Security is a very rich specifica-
tion with many options and often the processing is com-
plicated. This paper introduces an application program-
ming model (WSSAPI) to simplify the programming ex-
perience for end users. It was designed by looking at WS-
Security processing from an abstract level. Also, it is de-
signed to consider correctness, efficiency, usability, flexi-
bility, portability, and extensibility. End users just follow
the six-step programming model provided in WSSAPI to
configure WS-Security. The comparison of WSSAPI to
others, like WSS4J, WSE, and JSR-105 shows that it is
much easier for end users to use WSSAPI. In this paper,
existing APIs for WS-Security are reviewed and compared
with WSSAPI to evaluate the ease of use and utility.

1. Introduction

The Service-Oriented Architecture (SOA) using Web Ser-
vices is emerging as a framework that enables the creation
of applications that loosely couple services from various
systems. When services are composed together, it is im-
portant to consider not only the functional requirements
but also the nonfunctional requirements, such as security,
reliability, and performance. Especially for security, the
security requirements for an application are commonly
described in a policy like WS-SecurityPolicy [1], distrib-
uted to other applications, and converted to an internal
security configuration model used by the WS-Security [2]
implementation of each application. But in general, differ-
ent WS-Security implementation requires different secu-
rity configuration models. In order to convert the require-
ments to the configuration model, it’s not enough to use
only the policy because it just includes abstract require-
ments, such as what part of the message is signed or en-
crypted and what token is used. To fill the gap between
the policy and the configuration model, more concrete
mappings from the policy to the model, such as what key
store is used, are required. However, it forces end users to

configure both the policy and the mappings based on their
WS-Security implementation even as they develop and
test their secure application, requiring much time and ef-
fort.

On the other hand, rapid prototyping and testing, as
typified by Ruby on Rails [3], has recently become a fo-
cus. For rapid prototyping, it is necessary to provide an
easy-to-use and understandable API and avoid unneces-
sary settings by using as many default values as possible.
If this approach can be adopted in the WS-Security con-
figuration, the utility will be drastically improved.

In this paper, we propose an API-based design ap-
proach that allows non-security experts to easily configure
and enable WS-Security. McManus showed considera-
tions for designing APIs that are completely correct for
their functions, easy to use, easy to learn, sufficiently fast,
and small [4]. In other words, it is important to design a
simple and easy-to-understand API. Our design approach
mainly focuses on abstraction of the WS-Security process-
ing. Other APIs for setting up WS-Security tend to be
complicated because their programming models do not
sufficiently consider efficiency and also because the WS-
Security processing is complicated. Abstraction of the
security processing leads us to a simple API. In addition,
we consider the efficiency and ease of use while designing
the API. WSSAPI, our new API provides a six-step pro-
gramming model to apply WS-Security. End users just
follow the programming model to configure and test WS-
Security easily.

The remainder of this paper is organized as follows:
Section 2 describes the features of existing APIs for WS-
Security. Section 3 introduces our design API, WSSAPI.
Section 4 shows an evaluation of our proposed API
against competing approaches. Section 5 concludes the
paper.

2. Related Work

The OASIS WS-Security specification [2] consists of
digital signatures based on W3C XML Digital Signature
[5], encryption based on W3C XML Encryption [6], and
methods for security token attachment. Figure 1 shows the
WS-Security processing. The processing needs a WS-
Security configuration as well as keys and certificates.

Several APIs have been proposed to support setting up
a WS-Security configuration. WSS4J [7], the WS-Security
implementation, was published by the Apache Software
Foundation. Microsoft has released Web Services En-
hancements (WSE) [8], which is an add-on for Micro-
soft .NET, which supports not only WS-Security but also
WS-Security-related specifications. Each provides its own
API for setting up the WS-Security configuration. There
are two APIs for XML Security that has been proposed as
Java Specification Requests (JSR): the XML Digital Sig-
nature API (JSR-105) [9] and the XML Encryption API
(JSR-106) [10]. JSR-105 has already been released, but
JSR-106 is at the stage of public review. This section de-
scribes the features of these APIs and shows sample code
for a signature for each of them. One observation from the
design of these APIs is that most of them are centered on
the specifications. End users are required to have certain
amount of knowledge, such as knowledge of the W3C
XML Digital Signature specification [5], the W3C XML
Encryption Specification [6], the OASIS WS-Security
Specification [2], or other knowledge to make use of these
APIs.

WS-Security engineWS-Security engine

CanonicalizeCanonicalize

DigestDigest

SignSign

Construct
elements

Construct
elements

MessageMessage

SecuritySecurity

Generate
sharedKey

Generate
sharedKey

Encrypt
data

Encrypt
data

Encrypt
key

Encrypt
key

Construct
elements

Construct
elements

MessageMessage

SignatureEncryption

Attach the
Security

token

Attach the
Security

token

Construct
elements

Construct
elements

Security Token

WS-Security
configuration

WS-Security engineWS-Security engine

CanonicalizeCanonicalize

DigestDigest

SignSign

Construct
elements

Construct
elements

MessageMessage

SecuritySecurity

Generate
sharedKey

Generate
sharedKey

Encrypt
data

Encrypt
data

Encrypt
key

Encrypt
key

Construct
elements

Construct
elements

MessageMessage

SignatureEncryption

Attach the
Security

token

Attach the
Security

token

Construct
elements

Construct
elements

Security Token

WS-Security
configuration

Figure 1 Process flow of WS-Security

2.1. JSR-105, JSR-106

JSR-105 and JSR-106 define APIs for the W3C XML
Digital Signature and XML Encryption specifications [5,
6] respectively. These standards were basically designed
from the perspective of the structure of messages secured
with XML Digital Signature and XML Encryption speci-
fications. End users need to construct all parts of the XML
signature and XML encryption elements in the SOAP
header by calling various methods in ascending order
from the leaf element to the root element. Figure 2 shows
a message construction flow in JSR-105. This complexity
makes it difficult for people unfamiliar with the XML
Digital Signature, XML Encryption, and WS-Security
specifications to use them. Figure 3 shows sample code to
sign a message using JSR-105. First, it generates an
XMLSignContext to store the key. The XMLSignContext
corresponds to the security token. The sample code as-
sumes that the key for the signature is given in advance,
but the end user actually needs to retrieve it from a key
store file. Next the code constructs a template structure of

the DOM tree with all of the necessary properties such as
a signature method. Finally, the method XMLSigna-
ture.sign(XMLSignContext) calculates the digest and sig-
nature values, completes the DOM tree, and returns it.

Key,
Certificate,…

Key,
Certificate,…

<KeyInfo>

<Reference>

<Signature>

<SignedInfo>

<Body><Header>

JSR-105JSR-105
<SignatureValue>

<Signature>

<SignedInfo>

<Body><Header>

<KeyInfo>

<Reference>

Key,
Certificate,…

Key,
Certificate,…

<KeyInfo>

<Reference>

<Signature>

<SignedInfo>

<Body><Header>

<KeyInfo>

<Reference>

<Signature>

<SignedInfo>

<Body><Header>

<Signature>

<SignedInfo>

<Body><Header>

JSR-105JSR-105
<SignatureValue>

<Signature>

<SignedInfo>

<Body><Header>

<KeyInfo>

<Reference><SignatureValue>

<Signature>

<SignedInfo>

<Body><Header>

<SignatureValue>

<Signature>

<SignedInfo>

<Body><Header>

<Signature>

<SignedInfo>

<Body><Header>

<KeyInfo>

<Reference>

Figure 2. Concept of JSR-105

1. // Retrieve the SOAP header
2. Element header = getSOAPHeader;
3.
4. // Prepare the security token (and key)
5. XMLSignContext sigContext =
6. new DOMSignContext(keypair.getPrivate(), header);
7. XMLSignatureFactory sigFactory =
8. XMLSignatureFactory.getInstance("DOM",
9. (Provider)Class.forName(providerName).
10. newInstance());
11.
12.// Generate <Reference> element
13.Reference ref = sigFactory.newReference("#Body",
14. sigFactory.newDigestMethod(DigestMethod.SHA1,
15. null));
16.
17.// Generate the <SignedInfo> element
18.SignedInfo signedInfo =sigFactory.newSignedInfo(
19. sigFactory.newCanonicalizationMethod(
20. CanonicalizationMethod.INCLUSIVE_WITH_COMMENTS,
21. (C14NMethodParameterSpec) null),
22. sigFactory.newSignatureMethod(
23. SignatureMethod.DSA_SHA1, null),
24. Collections.singletonList(ref));
25.
26.//Generate the <KeyInfo> element
27.KeyInfoFactory kif =
28. sigFactory.getKeyInfoFactory();
29.KeyValue kv =
30. kif.newKeyValue(keypair.getPublic());
31.KeyInfo keyInfo =
32.kif.newKeyInfo(Collections.singletonList(kv));
33.
34.// Generate <Signature> element
35.XMLSignature sig =
36. sigFactory.newXMLSignature(signedInfo,
37. keyInfo);
38.
39.// Process the digital signature
40.sig.sign(sigContext);

Figure 3. Sample program using JSR-105

2.2 WSS4J

WSS4J is the Apache Open Source of WS-Security im-
plementation. WSS4J provides an API for setting up a
WS-Security configuration. It also allows using the con-
figuration file called a property file to set up the WS-
Security configuration. It has three scenarios for setting up
the configuration: one is to use the property file only, an-
other is to use both the property file and the APIs, and the
third is to use only the APIs. In the second scenario, it

assumes that the property file specifies the keys and the
certificates and APIs provide the other properties. In most
cases, the first or second scenario is used. But this paper
describes the third scenario because this paper is focusing
on APIs.

The basic approach of WSS4J wraps the complicated
WS-Security procedures into the signature or encryption
classes with security tokens including the private keys or
the X.509 certificates. It has the advantage of simplifying
the programming model without regard to the message
structure, but WSS4J doesn’t sufficiently abstract the se-
curity token. It provides two different ways for signature
and encryption with security tokens. When the signature
requires a X.509 security token, the Crypto interface is
used. If the signature requires a username token, the
WSSecUsernameToken class is used. Figure 4 shows the
concept of the programming model in WSS4J. In addition,
WSS4J provides the Tokens interface which is for WS-
SecurityPolicy, not WS-Security implementation. The
existence of some interfaces and classes about the security
token would confuse end users.

Figure 5 shows a sample code to sign a message using
WSS4J. First, the application instantiates the Crypto class
which manages all private keys and X.509 certificates. A
Crypto object is a single object in the application’s code
although the other APIs have separate objects for storing
keys for each process, such as signature and encryption.
The application needs to load a key store file and pass the
key store to this Crypto object. Next, the application in-
stantiates the WSSSignature class and pass an alias and a
password used to retrieve the private key and the X.509
certificate for signature (line 21). This is a notable feature
of a program using WSS4J. If there is no code to specify
the alias and the password, the WS-Security engine cannot
be applied to the SOAP message because there is no way
to retrieve the key or the X.509 certificate. The runtime of
WSS4J has default values for some properties, such as
signature and canonicalization methods. Default values
helps to make the programming easier. The example of
Figure 5 uses the default values. If the default value is not
appropriate for the processing, the application can change
the property value by calling certain methods. Finally, the
method WSSecSignature.build(Document, Crypto,
WSSecHeader) signs the message and returns the Docu-
ment including the signature.

The merits of WSS4J are to wrap the complicated
processing into the signature and encryption classes and to
support default values. The drawback of WSS4J is the
inadequate and inconsistent abstraction of the security
tokens.

MessageMessage

SecuritySecurity

Keys,
certificates

Keys,
certificates

WSSecHeaderWSSecHeader

SignatureSignature EncryptionEncryption TimestampTimestamp

Username

Token

Username

Token

Figure 4. Concept of WSS4J

1. // Retrieve the SOAP message
2. SOAPEnvelope unsignedEnvelope = getSOAPEnvelope();
3.
4. // Generate crypto from the key store file
5. Crypto crypto =CryptoFactory.getInstance();
6. char[] secret = "secret".toCharArray();
7. KeyStore ks = KeyStore.getInstance("JKS");
8. ClassLoader loader =
9. Thread.currentThread().getContextClassLoader();
10.InputStream is =
11. loader.getResourceAsStream("keystore.jks");
12.if (is == null) {
13. throw new IOException(
14. "failed to load key store resource");
15.}
16.ks.load(is, secret);
17.is.close();
18.crypto.setKeyStore(ks);
19.
20.//Generate the signature class
21.WSSecSignature sig = new WSSecSignature();
22.
23.// Set the required information into the signature
24.sign.setUserInfo("keyAlias", "password");
25.Document doc = unsignedEnvelope.getAsDocument();
26.
27.//Insert the certificate to SOAP message
28.WSSecHeader secHeader = new WSSecHeader();
29.secHeader.insertSecurityHeader(doc);
30.
31.// Process the digital signature
32.Document signedDoc =sig.build(doc, crypto,
33. secHeader);

Figure 5. Sample program using WSS4J

2.3 WSE

Microsoft has released WSE, which is an software exten-
sion component for .NET to support Web Services and
related technologies, such as WS-Security and Web Ser-
vices Addressing [11]. This API design is based on the
structure of the message secured with WS-Security and
uses classes encapsulating the WS-security operations.
Figure 6 shows the concept of the programming model in
WSE. It is simpler than that of WSS4J. When it signs a
SOAP message, both the signature class and the security
token class are inserted into the header class. The Mes-
sageSignature class is inserted into security.elements and
all SecurityToken classes are inserted into security.tokens,
even if a SecurityToken has already been inserted into
MessageSignature as shown in Figure 6. An exception
will be thrown if the user forgets to insert the SecurityTo-
ken element into both the MessageSignature and secu-
rity.tokens sections.

WSE provides a SecurityToken interface and some se-
curity token classes that implement the interface, such as
the X509SecurityToken and the UsernameToken. These
objects are generated with detailed information, such as
the username and key store. For example, when an
X509SecurityToken object is generated, the end user
needs to retrieve the X.509 certificate from a key store file.
That requires work by end users. Some default values are
embedded in the runtime. When end users want to update
the default value of a certain property, they can change the
field value directly (since it is public). Figure 7 shows a
sample code using WSE. The merits of WSE are to make
the programming model simple and to support default
values. The drawback of WSE is that it is difficult to gen-
erate the security tokens.

MessageMessage

SecuritySecurity
Security

Token

Security
Token

SignatureSignature EncryptionEncryption TimestampTimestamp

Security

Token

Security
Token

Security

Token

Security
TokenTokensTokens

ElementsElements

Figure 6. Concept of WSE

1. //Retrieves the soap message
2. SoapEnvelope envelope = getSOAPEnvelope();
3.
4. // Retrieve the Security object
5. Security security = getSecurity();
6.
7. // Prepare the security token
8. X509SecurityToken signatureToken = null;
9. X509Store store = new

10. X509Store(StoreName.My,StoreLocation.CurrentUser);
11. store.Open(OpenFlags.ReadOnly);
12.
13. try{
14. X509Certificate2Collection certs =
15. store.Certificates.Find(
16. X509FindType.FindBySubjectDistinguishedName,
17. "CN=WSE2QuickStartClient", false);
18.
19. X509Certificate2 cert;
20. if (certs.Count == 1) {
21. cert = certs[0];
22. signatureToken = new X509SecurityToken(cert);
23. } else signatureToken = null;
24. } catch (Exception ex) {
25. Console.WriteLine(ex.ToString());
26. } finally {
27. if (store != null) store.Close();
28. }
29.
30. if (signatureToken == null) {
31. throw new SecurityFault(
32. "Message Requirements could not be satisfied.");
33. }
34.
35.// Insert the security token to SOAP message.
36. security.Tokens.Add(signatureToken);
37.
38.// Specify the security token to sign SOAP message with.
39. MessageSignature sig =
40. new MessageSignature(signatureToken);
41. security.Elements.Add(sig);
Figure 7 Sample program of WSE

3. WSSAPI

The keys of API design are correctness, simplicity, and
efficiency [4]. We focused on abstracting the WS-Security
processing in the design of the API. As shown in Figure 1,
WS-Security defines complicated procedures for the sig-
nature and encryption processes. The common features of
both processes are the use of keys, certificates, and secu-
rity tokens. We designed to link the security tokens and
the keys and to link the security tokens and the certificates.
This means the security tokens wrap the keys and the cer-
tificates. We designed the security token in one consistent
programming construct. The classes which are responsible
for signature and encryption were designed to use the se-
curity tokens. This is a crucial feature of WSSAPI. In the
other APIs, the security token generation is difficult for
end users. To make it easy, WSSAPI exploits the Java
Authentication and Authorization Service (JAAS) [12]
mechanism. This design simplifies the code to generate
security tokens.

Another feature of WSSAPI is that all of the processes
such as signature and encryption are inserted into the
WSSGenerationContext. WSSAPI provides a single
method called WSSGenerationContext.process() to secure
a message with WS-Security. Once it is called, all of the
required operations are performed. This design contrib-
utes to the implementation’s performance because the
implementation can work on the signature and encryption
in parallel if there are no dependencies. Performance is
one of the significant issues in WS-Security implementa-
tions, as shown in several studies [13, 14, 15]. Figure 8
shows the concept of the programming model in WSSAPI.

MessageMessage

SecuritySecurity

Security
Token

Security
Token

SignatureSignature EncryptionEncryption TimestampTimestamp

Security
Token

Security
Token

Callback
Handler

Callback
Handler

Callback
Handler

Callback
Handler

SecurityTokenSecurityToken

GenerationContextGenerationContext
Figure 8 Concept of WSSAPI

The signature and encryption classes have all of the
necessary properties, such as signature methods or encryp-
tion methods. WSSAPI provides default values for some
properties, like convention (or typical usage) over con-
figuration [3]. One of the advantages of WSSAPI is to
declare the default values in an external file which can be
customized without changing the implementation, al-
though the other APIs embed such values in their imple-
mentations. When end users want to overwrite the default
value of a property, they merely call a method to change
the value. If they want to change the default value of a

property, they can directly customize the default value
declared in the file.

These concepts lead to a six-step consistent program-
ming model to apply the signature and encryption. Here
are the six-steps required in the programming model for a
signature:

1. Set the required information about a security token in

the callback handler.
 CallbackHandler new CallbackHandler(arguments)

2. Instantiate a security token using the callback handler
 SecurityToken
 WSSFactory.newSecurityToken(SecurityToken.class,
 CallbackHandler)

3. Instantiate a signature class using the security token.
 WSSSignature
 WSSFactory.newWSSSignature(SecurityToken)

4. Overwrite some properties, if their default values are

not appropriate, such as the parts to be signed, the sig-
nature method, canonicalization method, transform
method, and/or digest method.

 void WSSSignature.setSignatureMethod(String)

5. Register the signature into the WSSGenerationContext.
 void WSSGenerationContext.add(WSSSignature)

6. Perform the signature process and insert the signature

header into the message.
 void WSSGenerationContext.process(Object)

WSSAPI is also designed to consider some of the factors
defined in the Software Quality Metrics [16].
� Correctness:

� WSSAPI is designed to conform to the OASIS
WS-Security Specification 1.1. It also provides
the methods for signature confirmation, header
encryption, and so on.

� Efficiency:
� Efficiency here refers to the fewest possible

lines of code using WSSAPI. The bottleneck of
programming using the other APIs is in gener-
ating the security tokens. WSSAPI reduces the
amount of code by using the JAAS API inter-
nally to generate the security tokens.

� The default property values also reduce the
amount of code.

� Usability:
� High level constructs are easier for end users to

understand. WSSAPI provides a uniform way
to generate security token classes, the Signature
class, and the encryption class. All of the
classes are generated from the factory class.

� Flexibility:
� Generating security tokens requires a JAAS

login module and a callback handler with some
properties, for example to retrieve a key or a
certificate from a key store file. This means that
all end users have to do is to set the properties
in the callback handler if they use the default
security token. This is an advantage of
WSSAPI for flexibility and usability. When us-
ing the other APIs, end users need to retrieve a
key or a certificate directly from a key store file
and generate a security token object using their
data. The way of generating a security token
object is different for the different kind of secu-
rity token. If a new security token must be sup-
ported, they will need to study how to generate
its objects for the other APIs.

� Another flexibility feature is to declare default
values of the properties in the external file, not
embedding them in the implementation. End
users can customize the file to match various
environments.

� Portability:
WSSAPI can be used on any other implementation
of Web Services engine, like DOM or JAX-WS pro-
gramming model, because it is designed to be inde-
pendent of any specific implementation. It means the
end users does not have to have understanding of the
underneath runtime implementation.

1. //Retrieve the soap message
2. Object msgContext = getMessageContext();
3.
4. WSSFactory factory = WSSFactory.newInstance();
5. WSSGenerationContext gencont =
6. factory.newWSSGenerationContext();
7.
8. // Prepare the security token
9. X509GenerateCallbackHandler xgCallbackHandler =
10. new X509GenerateCallbackHandler("",
11. "keystore.jks", "JKS", "keyAlias",
12. "password".toCharArray(), "", null);
13.SecurityToken st =
14. factory.newSecurityToken(X509Token.class,
15. xgCallbackHandler);
16.
17.// Generate the signature class
18.WSSSignature sig = factory.newWSSSignature(st);
19.
20.// Register the signature object
21.//into the WSSGenerationContext
22.gencont.add(sig);
23.
24.//Process the WS-Security including the signature
25.gencont.generate(messagecontext);
Figure 9 Sample program using WSSAPI

Figure 9 shows sample code using WSSAPI. End users
just prepare a callback handler to generate a security to-
ken. The required information about a key and a key store

is stored in the callback handler. The information needed
for the JAAS login module invocation can be omitted be-
cause the default value for the JAAS login module is de-
clared in the external file.

Figure 10 shows the class diagram of WSSAPI. This
API is available in the WebSphere Application Server 6.1
Web Services Feature Pack (WAS v6.1 WS FP) [17].

To conclude this section, Table 1 lists the features of
WSSAPI and the other APIs. WSS4J, WSE, and WSSAPI
are easier to use than JSR-105 and JSR-106 because they
use process-centric programming models that encapsulate
the signature and encryption processes and they support
default values. For security tokens, WSS4J is not well
designed for simplicity. Considering the features, WSE
and WSSAPI seem superior to JSR-105, JSR-106, and
WSS4J.

4. Evaluation

This section compares WSSAPI and the other APIs using
the following the evaluation metrics to assess their ease of
use:
1. Lines of code (LoC) using APIs
1-1, LoC of the sample code
1-2. LoC of the sample code excluding generation of the
security token
2. Number of classes (NoC)
3. Cyclomatic Complexity (CC) [18]

First, we evaluated the LoC of the sample programs (Fig-
ures 3, 5, 7, and 9). The program statements are counted
by the number of the semicolons in the sample programs.
The code sample of JSR-105 uses a given key although

the other code samples retrieve keys from key store files.
Retrieving a key would add more than 10 lines of code to
the JSR-105 example. The difference between items 1-1
and 1-2 shows the difficulties in storing the keys and cer-
tificates into the security token classes. In WSS4J and
WSE, two-thirds of the sample code is used to generate
the security tokens.

The number of classes measures the ease of learning to
use an API. The count for WSS4J includes all of the
classes in WSS4J. In WSE, we count the classes in the
MicroSoft.Web.Services3.Security.* package that con-
tains all of the classes that secure messages. In WSSAPI,
we count the classes in the three security-related packages,
com.ibm.websphere.wssecurity.wssapi.*,
com.ibm.websphere.callbackhandler.*, and
com.ibm.ws.wssecurity.wssapi.* packages. We can not
count the NoC of the JSR-105 implementation because it
is not available. Even if it were available, we could not
compare it directly to any of the others because JSR-105
supports only signature, not encryption. WSSAPI pro-
vides the fewest classes of all the APIs, which means
WSSAPI is the easiest programming model to use for
programmers unfamiliar with WS-Security. In addition,
WAS v6.1 WS FP makes the
com.ibm.ws.wssecurity.wssapi.* package invisible for
ease of use. Actually, the user can write code using only
42 classes.

Cyclomatic Complexity is one of the software metrics
that measures the number of linearly independent paths
through a program's source code [18]. We evaluated the
CC of the code samples using each API as the measure-
ment of the code complexity. This shows WSE is the
worst because there are three if statements in the sample
code. This implies that it is difficult to generate the secu-

1, Pro-
gramming
Model

2, Security Tokens 3, How to set the
property values

4, Default
values

JSR-105 Message-
centric

XMLCryptoContext
object with raw data

Constructor Not supported

WSS4J Process-
centric

Many interfaces and
classes for security
tokens are provided

Method Embedded in
runtime

WSE Process-
centric

SecurityToken ob-
jects with raw data

Change variable
directly

Embedded in
runtime

WSSAPI Process-
centric

SecurityToken with
information on secu-
rity tokens using call-
back handlers

Method Declared in ex-
ternal file

Table 1 Features of WSSAPI and the other APIs.

rity tokens.
These evaluations indicate that WSSAPI is the easiest

API to use.

5. Conclusion

WS-Security configuration using an API is convenient in
rapid prototyping. This paper surveys the WS-Security
APIs for users unfamiliar with that specification. We de-
signed WSSAPI by considering the WS-Security opera-
tions at a high level of abstraction. WSSAPI has been
released as a part of WAS v6.1 WS FP. It has some im-
portant features for correctness, efficiency, usability,
maintainability, flexibility, and portability. Considering
their features, WSE and WSSAPI are superior to JSR-105,
JSR-106, and WSS4J. In addition, the evaluation of the
ease of use shows that WSSAPI is the most usable. Based
on the evaluation and study, it is easier for end users to
use WSS API to enable WS-Security compared with the
other APIs. WSSAPI is superior to the other APIs in gen-

erating the security tokens and in supporting the default
values in the external file.

References

[1] WS-Security Policy, http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200512

Table 2 Complexity comparisons of the APIs

JSR-105

WSS4J

WSE

WSSAPI

1-1,
LoC

1-2,
 LoC

2,
NoC

10 10 N/A

16 7 159

16 5 214

8 5 120

0

1

3

0

3,
CC

Figure10 Class diagram of WSSAPI

[2] Web Services Security: SOAP Message Security 1.1,
http://www.oasis-
open.org/committees/download.php/16790/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf
[3] Ruby on Rails, http://www.rubyonrails.com/
[4] E. McManus, “Java API Design Guidelines,”
http://www.artima.com/weblogs/viewpost.jsp?thread=142428,
December, 2005.
[5] XML-Signature Syntax and Processing,
http://www.w3.org/TR/xmldsig-core/
[6] XML Encryption Syntax and Processing,
http://www.w3.org/TR/xmlenc-core/
[7] WSS4J, http://ws.apache.org/wss4j/
[8] WSE, http://msdn2.microsoft.com/en-
us/webservices/aa740663.aspx
[9] JSR-105, http://jcp.org/en/jsr/detail?id=105
[10] JSR-106, http://jcp.org/en/jsr/detail?id=106
[11] Web Services Addressing,
http://www.w3.org/Submission/ws-addressing/
[12] Java Authentication and Authorization Service,
http://java.sun.com/products/jaas/
[13] S. Makino, et. al., "Implementation and Performance of
WS-Security," International Journal of Web Services Research,
Vol. 1, pp. 58 - 72, 2004.
[14] M. Teraguchi, et. al., “Optimized Web Services Security
Performance with Differential Parsing,” International Confer-
ence on Service Oriented Computing, pp. 277 – 288, December,
2006.
[15] W. Zhang and R. V. Engelen, "A Table-Driven Streaming
XML Parsing Methodology for High-Performance Web Ser-
vices," IEEE International Conference on Web Services, pp.
197-204, 2006.
[16] J. A. McCall, “An Introduction to Software Quality Met-
rics,” In J. D. Cooper and M. J. Fisher (Eds.), Software Quality
Management, Petrocelli, 1979.
[17] WebSphere Application Server 6.1 Web Services Feature
Pack,
https://www14.software.ibm.com/iwm/web/cc/earlyprograms/we
bsphere/wsvwas61/
[18] T. McCabe, “A Complexity Measure,” IEEE Transactions
on Software Engineering, Vol. SE-7, No. 4, pp. 308 – 320, Sep-
tember 1976.

