
August 10, 2007
RT0747
Engineering Technology; Network 10 pages

Research Report
Efficient Web Services Message Exchange by SOAP
Bundling Framework

Toshiro Takase, Keishi Tajima
IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It
has been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or
copies of the article legally obtained (for example, by payment of royalities).

Efficient Web Services Message Exchange by SOAP Bundling Framework

Toshiro Takase
1, 2

, Keishi Tajima
1

1
Department of Social Informatics, Kyoto University,

Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

2
IBM Research, Tokyo Research Laboratory,

1623-14, Shimotsuruma, Yamato, Kanagawa, 242-8502, Japan

e30809@jp.ibm.com, tajima@i.kyoto-u.ac.jp

Abstract

Web services use an interoperable and loosely

coupled data exchange architecture. Web services

processing can cause significant runtime overhead,

especially when the number of fine-grained transac-

tions becomes large. Although some best-practice

guidelines recommend coarse-grained messages to

improve the performance of Web services, coarse-

grained services may interfere with the componentiza-

tion of the services. Service granularity should be

designed for reusability and modularity. In this paper,

we propose a SOAP message bundling framework.

This framework enables bundling multiple messages

into one message. With this framework, application

developers do not have to consider the service

granularity. Instead, the framework bundles some fine-

grained messages into a single coarse-grained

message. To support this framework, we provide for

service providers (1) a WSDL conversion tool and (2)

a skeleton wrapper generator. These tools let service

providers receive bundled messages without modifying

existing service implementations. We also provide (3) a

stub wrapper generator that allows service requesters

to use bundled services easily. The existing message

exchanges are not influenced by this framework. We

evaluated the performance gain in experiments using

the Google SOAP API. The results showed that our

approach improves the performance of Web services.

1. Introduction

Currently, Web services are spreading widely

throughout the world. Web services are an enabling

technology for interoperability within distributed,

loosely coupled, and heterogeneous computing

environments. However, previous studies have shown

that the performances of Web services are relatively

poor because of the encoding processing [1, 4] and

network latency [2, 3, 5]. Therefore, technologies to

improve the performance of Web services are needed.

In this paper, we describe a message bundling

framework appropriate for Web services architectures.

The most important point of Web services is

interoperability. Web services are based on certain

specifications, such as XML [8] as a message format,

SOAP [9] as a message layer protocol, and WSDL [10]

as a description of the interfaces. Once a service

application is developed as a Web service, the interface

description can be published for external partner

companies and the service can easily be provided to

new partner companies.

A stock quote service is often used as an example

Web service. A typical stock quote service gets an

input ticker symbol, and then returns a stock price. In

practice, it is reported that exchanging many fine-

grained messages of this type often causes performance

problems [2, 3]. Listing 1 shows an example of request

and response message for a stock quote service. These

messages are selected from the examples in the SOAP

specification. The important data is only the ticker

symbol, “DIS”, for the request message, and the stock

price, “34.5”, for the response message. SOAP

messages have many redundant parts. Therefore some

best practice guidelines recommend using coarse-

grained services to avoid large numbers of transactions

[16, 17, 18]. However, some services may be hard to

build using coarse-grained services. The granularity of

the service interface should be designed based on the

granularity of the service componentization. Fine-

grained services are easy to understand and easy for

service requester to use. Such fine-grained services

have high reusability and modularity.

Listing 1. Examples of fine-grained messages
Request message:

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <m:GetLastTradePrice xmlns:m="Some-URI">
 <symbol>DIS</symbol>
 </m:GetLastTradePrice>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Response message:

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <m:GetLastTradePriceResponse xmlns:m="Some-URI">
 <Price>34.5</Price>
 </m:GetLastTradePriceResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

In this paper we propose a SOAP message bundling

framework. This framework enables bundling multiple

messages into one message. With this bundling

framework, application developers do not have to

consider the service granularity for performance

reasons. Instead, the bundling framework can be

applied to the developed services afterward, and then

the framework bundles some fine-grained messages

into a single coarse-grained message. That is to say, the

application developers can design their services with

fine-grained services at development time, though the

actual messages will be bundled by the framework at

run time. Using this bundling framework, the total

message size, runtime overhead such as parsing time,

and the number of message exchanges will be reduced.

Today, there are many existing Web services using

standardized specifications such as SOAP. One of the

advantages of Web services is loosely coupled bindings.

Some other research [19, 20] proposes performance

improvements for Web services by using tightly

coupled bindings. Such techniques go beyond the

SOAP specifications to some extent. In this paper,

however, we do not define any new specifications and

thus avoid breaking any existing services. Instead, we

only introduce new tools for a SOAP message bundling

framework. These tools can be applied to existing

services.

The rest of this paper is structured as follows: First,

we describe the design of our SOAP message bundling

framework in Section 2. Section 3 explains in detail our

prototype implementation using the Apache-Axis

SOAP engine [14] and examples for the Google SOAP

API [12]. Section 4 shows the results of experiments

measuring various kinds of overhead for various

numbers of requests per bundle. We discuss related

work in Section 5 and future work in Section 6. Finally,

in Section 7 we conclude the paper.

2. Architecture of the bundling framework

In this section, we describe the design of our SOAP

message bundling framework. In our framework, we

assume that an existing service implementation already

exists. Our framework does not break any existing

services but just adds bundled service interfaces. Also,

our prototype implementation described in Section 3 is

based on the Java Apache-Axis platform, but this

framework is not limited to that target platform.

2.1. Design and usage scenario

Listing 2 shows an example of the original fine-

grained messages and an example of the bundled

messages. These messages are messages for the Google

SOAP API which is used in our performance

evaluation in Section 4. The bundled message includes

three fine-grained messages. The bundled message is

more efficient than three separate fine-grained

messages in terms of message size, parsing time, and

the number of message exchanges. Although these

messages do not have SOAP headers in this example, if

SOAP headers for routing or security are used, the

bundled message is much more efficient than the fine-

grained messages.

Listing 2. An example of bundled message
Original fine-grained message:

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <ns1:doGetCachedPage
 soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:ns1="urn:GoogleSearch">
 <key xsi:type="xsd:string">00000000000000000000000000000000</key>
 <url xsi:type="xsd:string">http://www.google.com/</url>
 </ns1:doGetCachedPage>
 </soapenv:Body>
</soapenv:Envelope>

Bundled message:

<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <soapenv:Body>
 <ns1:doBundledService
 soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:ns1="urn:GoogleSearch">
 <doGetCachedPages soapenc:arrayType="ns1:DoGetCachedPage[3]"
 xsi:type="soapenc:Array"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/">
 <item xsi:type="ns1:DoGetCachedPage">
 <key xsi:type="xsd:string">00000000000000000000000000000000</key>

 <url xsi:type="xsd:string">http://www.google.com/</url>
 </item>
 <item xsi:type="ns1:DoGetCachedPage">
 <key xsi:type="xsd:string">00000000000000000000000000000000</key>
 <url xsi:type="xsd:string">http://www.yahoo.com/</url>
 </item>
 <item xsi:type="ns1:DoGetCachedPage">
 <key xsi:type="xsd:string">00000000000000000000000000000000</key>
 <url xsi:type="xsd:string">http://www.ibm.com/</url>
 </item>
 </doGetCachedPages>
</ns1:doBundledService>

</soapenv:Body>
</soapenv:Envelope>

In this example, the bundled message has only one

array of doGetCachedPage operation. Our bundling

framework generates new operations for all

combinations of the original operations in the WSDL.

For example, the Google SOAP API has three

operations, so the framework generates 2
3
-1 operations.

If an original WSDL has N operations, 2
N
-1 operations

are generated. In this way, we can bundle any

combination of the operations. Although we describe

our prototype implementation in Section 3, we explain

the details of only an operation which includes all of

the operations in the original WSDL. The other

combinations of the operations are omitted because

they can be explained in a similar way.

We assume that some Web services transactions are

already running. Existing service providers can employ

this bundling framework by using our WSDL converter

and skeleton wrapper generator. They do not have to

re-implement their service application. New service

providers do not have to avoid fine-grained services for

performance reasons. They can design an application

interface based on the componentization of the service.

They can apply this bundling framework to the services

afterwards.

Existing service requesters have to change their

application a little to take advantage of the bundled

operations. By using our stub wrapper generator, the

changes are simplified. New requesters are free to

develop applications by using the bundled operations.

Scenarios with the highest potential for benefit

involve transactions between a portal site as the service

requester and a primitive service provider, such as a

weather forecast or a search service. Figure 1 shows

this scenario.

Portal Site
Primitive

Service

End User

Browser

End User

Browser

End User

Browser

(Service Requester) (Service Provider)

HTML/HTTP

XML/SOAP

Bundling

Figure 1. An example of a usage scenario

For example, a mash-up site might use a zip-code

search and a baggage tracking service. The site can

receive unpredictable numbers of requests at any time.

In this situation, many very small messages are

exchanged between the site and the primitive service

provider. If this bundling framework is applied, the

mash-up site as a service requester can bundle

messages from many different end users’ requests. Also,

the mush-up site could implement bundling the

messages received in each 0.1-second time interval.

Thus the user experience will be little affected but

more requests can be processed.

2.2. Service providers’ role

Originally, the role of a Web services provider is to

provide a service and to publish a service description

using WSDL. In our framework, we assume that an

original service implementation already exists. The

granularity of that service should be designed based on

the service componentization.

In this framework, we provide a WSDL converter

and a skeleton wrapper generator for service providers.

The WSDL converter adds new bundled service

interfaces to an existing WSDL document. The added

bundled service interface bundles all of the existing

service interfaces in the WSDL document. Specifically,

a bundled operation is added. Here, “operation” is a

WSDL term, but generally this has the same meaning

as function or method. The input parameters for the

bundled operation include parameters for the arbitrary

number of operations which exist in the service. The

return value of the bundled operation can also hold

arbitrary numbers of return values for all existing

operations. For example, Google SOAP API has three

operations, doGoogleSearch, doSpellingSuggestion,

and doGetCachedPage. The new operation, doBundled-

Operation, created by this converter can bundle any

number of operations of these three types. For details,

we will describe this conversion in Section 3.1.

A skeleton wrapper generated by our skeleton

wrapper generator implements the added operation for

the WSDL converter. In the most naïve implementation,

the skeleton wrapper sequentially calls the existing

operations internally. If the platform this skeleton is

deployed on offers advantages for multi-thread

operations, as in a multi-core processor environment,

the implementation should exploit this. However, even

in the most naïve implementation, our bundling

approach improves the performance. Therefore, we

only discuss the naïve implementation here. The naïve

implementation is described in Section 3.2. In any case,

the skeleton wrapper provides an implementation for

the bundled operation by using the existing operations.

The service provider’s steps are: (1) Convert the

existing WSDL document using the WSDL converter

and re-publish the converted WSDL. (2) Generate the

skeleton wrapper with the skeleton wrapper generator

and deploy the generated skeleton wrapper into the

service platform. Figure 2 shows this architecture of the

SOAP message bundling.

Service Provider

Service Requester

Original

WSDL

Converted

WSDL

(3) Stub Wrapper

(2) Skeleton Wrapper

Bundled

SOAP Request

Bundled

SOAP Response

Fine-grained

SOAP Request

Fine-grained

SOAP Response

(1) WSDL converter
generate

generate

Original Skelton

Original Stub

generate

generate

Figure 2. Architecture of the bundling framework

2.3. Service requesters’ role

Once the WSDL modified by the service provider is

re-published, service requesters can use the added

bundled operation. All existing service requester

applications can also continue to use the original

services, because the re-published WSDL is just adding

new operations. If a service requester uses the bundled

operation, improved performance is expected. To use

the bundled service, a service requester has to modify

the application. The input parameter set for the added

bundled operation is not easy to use, so a stub wrapper

generator has been provided for the convenience of

service requesters.

The stub wrapper generator provides a stub wrapper

implementation with a “holder” to use the bundled

operation. The holder can hold arbitrary numbers of

input parameters for all of the original operations. The

service requester can sequentially add request

parameters into the stub holder, and after that, at the

proper time, the service requester can order the stub

wrapper to send a bundled request to the service

provider. This stub implementation is described in

Section 3.3. This stub is similar to a Stored Procedure

for a DB. We discuss the differences in their behaviors

in Section 5.

3. Implementation

In this section, we explain our implementation using

the Apache-Axis SOAP engine. The Google SOAP

API is used as a target service. The Google SOAP API

is an rpc/encoded style service, so this example shows

behavior for rpc/encoded style service. However, the

WS-I Basic Profile [11] currently recommends

document/literal style services for better

interoperability. Although this example is rpc/encoded

style, our implementation would be also applied to

document/literal style services in the same way.

The WSDL of the Google SOAP API is used as the

original WSDL document. This WSDL is available at

the Google website. Apache Axis has a WSDL2Java

tool. First, we generated the original skeleton and stub

from the Google WSDL document by using the

WSDL2Java tool. Here, we assume that the original

implementation already exists for both a service

provider and a service requester. Then we converted

the Google WSDL document with our WSDL

converter. The converted WSDL has an added bundled

operation. After that, we generated the skeleton

wrapper and stub wrapper to use the new bundled

operation. Our skeleton and stub wrapper generator is

implemented for a Java skeleton and stab based on

Apache Axis. Although currently our generators can be

applied only to an Apache-Axis-based service, it is

possible to implement these generators for other

platforms.

3.1. WSDL converter

Listing 3 shows the original WSDL of the Google

SOAP API. Some parts were omitted. Our WSDL

converter adds the bundled operations.

Listing 3. Original WSDL of Google SOAP API
<?xml version="1.0"?>
<definitions name="GoogleSearch"
 targetNamespace="urn:GoogleSearch"
 >
 <types>
 <xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:GoogleSearch">
 <xsd:complexType name="GoogleSearchResult">
 <xsd:all>
 <xsd:element name="searchQuery" type="xsd:string"/>

 </xsd:all>
 </xsd:complexType>

 </xsd:schema>
 </types>

 <message name="doGoogleSearch">
 <part name="key" type="xsd:string"/>
 <part name="q" type="xsd:string"/>
 <part name="start" type="xsd:int"/>

 </message>

 <message name="doGoogleSearchResponse">
 <part name="return" type="typens:GoogleSearchResult"/>
 </message>

 <portType name="GoogleSearchPort">
 <operation name="doGoogleSearch">
 <input message="typens:doGoogleSearch"/>
 <output message="typens:doGoogleSearchResponse"/>
 </operation>

 </portType>

 <binding name="GoogleSearchBinding" type="typens:GoogleSearchPort">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="doGoogleSearch">
 <soap:operation soapAction="urn:GoogleSearchAction"/>
 <input>
 <soap:body use="encoded" namespace="urn:GoogleSearch"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body use="encoded" namespace="urn:GoogleSearch"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>

 </binding>

 <service name="GoogleSearchService">
 <port name="GoogleSearchPort" binding="typens:GoogleSearchBinding">
 <soap:address location="http://api.google.com/search/beta2"/>
 </port>
 </service>
</definitions>

Listing 4 and Listing 5 show the description of the

added operation, doBundledOperation, in <binding>

and <portType>. The added operation description in

<binding> is almost same as the other operation except

for its name. The added operation in <portType>

defines the new input and output messages,

doBundledOperation and doBundledOperation-

Response respectively. Message refers to the input

parameters and return values in WSDL terms.

Listing 4. Added bundled operation in <binding>
 <operation name="doBundledOperation">
 <soap:operation soapAction="urn:GoogleSearchAction"/>
 <input>
 <soap:body use="encoded" namespace="urn:GoogleSearch"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body use="encoded" namespace="urn:GoogleSearch"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>

Listing 5. Added bundled operation in <portType>
 <operation name="doBundledOperation">
 <input message="typens:doBundledOperation"/>
 <output message="typens:doBundledOperationResponse"/>
 </operation>

Listing 6 shows the description of the new added

input and output messages, doBundledOperation and

doBundledOperationResponse. The input message

includes three types of data, DoCachedPageArray,

DoSpellingSuggestionArray, and DoGoogleSearch-

Array. These arrays are sets of input parameters for the

three original operations, doGetCachedPage,

doSpellingSuggestion, and doGoogleSearch. The

output message also represents arrays of the return

values of the three original operations, but for output

messages, the data are put together into the

BundledResult type.

Listing 6. Added bundled input/output <message>
<message name="doBundledOperation">
 <part name="doGetCachedPages"
 type="typens:DoGetCachedPageArray"/>
 <part name="doSpellingSuggestions"
 type="typens:DoSpellingSuggestionArray"/>
 <part name="doGoogleSearchs"
 type="typens:DoGoogleSearchArray"/>
</message>

<message name="doBundledOperationResponse">
 <part name="return" type="typens:BundledResult"/>
</message>

Listing 7 shows some of the added type descriptions.

Some added types are omitted. One of the types in the

added input message is DoGoogleSearchArray, which

is an array of DoGoogleSearch type. The

DoGoogleSearch type is a set of input parameters for

the original doGoogleSearch operation. For the other

types in the input message, DoCachedPageArray, and

DoSpellingSuggestionArray, their definitions are

described in the same way.

BundledResult is the type of the added output

message. The BundledResult type includes three types

of data. These data represent an array of the set of

return values of the three original operations. The rest

of the data structure for return values is the same as for

the input parameters. In this way, any types defined in

WSDL can be wrapped and the bundled operation can

be defined.

Listing 7. Added complexType schemas in <types>
 <xsd:complexType name="DoGoogleSearchArray">
 <xsd:complexContent>
 <xsd:restriction base="soapenc:Array">
 <xsd:attribute ref="soapenc:arrayType"
 wsdl:arrayType="typens:DoGoogleSearch[]"/>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="DoGoogleSearch">
 <xsd:all>
 <xsd:element name="key" type="xsd:string"/>
 <xsd:element name="q" type="xsd:string"/>
 <xsd:element name="start" type="xsd:int"/>

 </xsd:all>
 </xsd:complexType>

 <xsd:complexType name="BundledResult">
 <xsd:all>
 <xsd:element name="doGetCachedPageResults"
 type="typens:XSD_base64Binary_Array"/>
 <xsd:element name="doSpellingSuggestionResults"
 type="typens:XSD_string_Array"/>
 <xsd:element name="doGoogleSearchResults"
 type="typens:GoogleSearchResultArray"/>
 </xsd:all>
 </xsd:complexType>

 <xsd:complexType name="GoogleSearchResultArray">
 <xsd:complexContent>
 <xsd:restriction base="soapenc:Array">
 <xsd:attribute ref="soapenc:arrayType"
 wsdl:arrayType="typens:GoogleSearchResult[]"/>
 </xsd:restriction>
 </xsd:complexContent>
 </xsd:complexType>

For the Google example, each return value is

wrapped as one data item. This is not a SOAP or

WSDL limitation. This is just because a normal Java

method has one return value. However, JAX-WS [13]

defines how to support multiple return values in Java

by using holder objects. Even if a return value has

multiple data values, we can define the bundled

operations in the same manner.

3.2. Skeleton wrapper generator

Listing 8 shows the Java interface generated from

the original WSDL of the Google SOAP API, using the

Apache-Axis WSDL2Java tool. The methods in the

interface are fine-grained. For componentization, this

interface is easy to reuse and modularize. However,

from the performance perspective, this interface is

inefficient. Listing 9 shows the new method

corresponding to the added bundled operation. The

method can handle multiple requests for arbitrary

original methods at the same time. This can improve

the performance.

Listing 8. Generated interface from original WSDL
public interface GoogleSearchPort {

 public byte[] doGetCachedPage(String key, String url);
 public String doSpellingSuggestion(String key, String phrase);
 public GoogleSearchResult doGoogleSearch(String key, String q,
 int start,);
}

Listing 9. Added method with converted WSDL
 public BundledResult doBundledOperation(
 DoGetCachedPage[] doGetCachedPages,
 DoSpellingSuggestion[] doSpellingSuggestions,
 DoGoogleSearch[] doGoogleSearchs);

The provider of an existing service can semi-

automatically generate an implementation of the

bundled operation by using our skeleton wrapper

generator. Listing 10 is a skeleton wrapper generated

this way. The wrapper implements the added method

shown in Listing 9, doBundledOperation. This

implementation uses a naïve approach. The

implementation just calls the original methods

sequentially. In other words, it retrieves each input

parameter from the bundled input parameters, calls

each original method sequentially, then puts the results

together into a BundledResult object, and finally,

returns the bundled result. Although Listing 10 does

not include the code for doGetCachedPage and

doSpellingSuggestion, the code is almost same as the

code for doGoogleSearch.

Listing 10. Generated skeleton wrapper code
public class GoogleSearchBindingSkeleton implements GoogleSearchPort{
 public BundledResult doBundledOperation(
 DoGetCachedPage[] doGetCachedPages,
 DoSpellingSuggestion[] doSpellingSuggestions,
 DoGoogleSearch[] doGoogleSearchs) {

 GoogleSearchResult[] doGoogleSearchResults =
 new GoogleSearchResult[doGoogleSearchs.length];
 for (int i=0; i<doGoogleSearchs.length; i++) {
 String key = doGoogleSearchs[i].getKey();
 String q = doGoogleSearchs[i].getQ();
 int start = doGoogleSearchs[i].getStart();

 doGoogleSearchResults[i] = doGoogleSearch(key, q, start, ...);
 }
 //..... call doGetCachedPage(s) and doSpellingSuggestion(s)

 BundledResult bundledResult = new BundledResult();
 bundledResult.setDoGoogleSearchResults(doGoogleSearchResults);
 //..... set doGetCachedPageResults and doSpellingSuggestionResults

 return bundledResult;
 }
 //..... the code for original methods
}

The code in Listing 10 is naïve, so the code does not

include error handling, etc. In particular, in a case

where only one method in a bundle failed or only one

method spent too much time, the naïve implementation

would perform poorly. There are various techniques to

address such problems. We discuss these problems as

future work in Section 6.

3.3. Stub wrapper generator

On the service-requester side, the Java interface

generated from the original WSDL is the same as the

provider’s, as shown in Listing 8. An existing service

requester already has an implementation based on this

original interface. The added bundled method in the

converted WSDL is also the same as on the service

provider’s side, as shown in Listing 9. Service

requesters can by themselves migrate to an

implementation using the added operation. However if

the requesters use our stub wrapper generator, the

migration is easier.

Listing 11 shows methods included in our stub

wrapper code. The first three methods, addXXX, add the

parameter of each original operation into the internal

holder in the stub wrapper. Each input parameter is

exactly the same as the original one. When the method

executeBundledOperation is called, the contained

operations are invoked by using the added bundled

method, doBundledOperation, in Listing 9. After the

invocation, the return values for each original operation

can be obtained using the last three methods,

getXXXResult, in Listing 11. The types of the return

values are the same as the original types.

Listing 11. Methods included in stub wrapper code
 public void addDoGetCachedPage(String key, String url);
 public void addDoSpellingSuggestion(String key, String phrase);
 public void addDoGoogleSearch(String key, String q, int start,);
 public void reset();

 public BundledResult executeBundledOperation();

 public byte[] getDoGetCachedPageResult(int index);
 public String getDoSpellingSuggestionResult(int index);
 public GoogleSearchResult getDoGoogleSearchResult(int index);

With this stub wrapper, existing service requesters

can replace the original methods with the addXXX

methods in this wrapper. At the proper time, a

requester can then call the execute method, and get the

results.

In some cases, the logic of the requester application

may make it hard to bundle certain requests into one

message. For example, if one request depends on the

results of a previous request, then the two requests

cannot be bundled, because the results needed by the

next request are not known until the first request is

finished. Still, our approach can be very useful for

many frequent scenarios, such as portal site scenarios,

as described in Section 2.1.

4. Performance evaluation

In this section, we evaluate the performance gain

from our SOAP message bundling framework. We

measured the results from three perspectives. First, in

Section 4.1, we measure the message sizes for each

bundled message. Second, Section 4.2 measures the

XML Parsing overhead as a rough metric of XML

performance. Finally, end-to-end response time for

each bundled message exchange is evaluated in an end-

to-end scenario in Section 4.3.

For these experiments, we set up a simulated service

provider and simulated service requester. The

simulated service provider was implemented from the

original WSDL of the Google SOAP API as a

simulated Google SOAP service. This service

implements the interface in Listing 8. However the

simulated service always returns the same results.

These results are the same as the example messages in

the developer’s kit provided by Google. Therefore, the

service application itself does almost nothing. Almost

all of the overhead on the service provider’s side is

platform overhead, such as overhead for processing

SOAP messages. Then we converted the WSDL and

used the generated skeleton wrapper. On the service-

requester side, we implemented a simple requester

based on the original WSDL. The requester application

generates the same parameter values as the example

message in the developer’s kit. Then our stub wrapper

was used.

4.1. Message size

We captured the exchanged SOAP request and

response messages for both the original and bundled

operations. The request and response message sizes are

shown in Figure 3 and Figure 4, respectively. In the

graphs, “fine-grained” means the original messages and

“bundled” means the bundled messages. Note that the

size in the graph is the value per request. For example,

the value for “bundled (3req/1bundle)” is the message

size of one bundled message which includes 3 requests,

divided by 3. Since “bundled (3req/1bundle)” has

almost same size as the original fine-grained message,

the actual message size of a bundled message including

3 requests is three times larger than the fine-grained

message.

Request message

0

200

400

600

800

1000

1200

1400

doGetCachedPage doSpellingSuggestion doGoogleSearch

M
e
ss

ag
e
 s

iz
e
 /

 1
 r

e
qu

e
st

 (
by

te
s)

fine-grained

bundled (1req/1bundle)

bundled (3req/1bundle)

bundled (10req/1bundle)

bundled (30req/1bundle)

bundled (100req/1bundle)

Figure 3. Message sizes of requests

Response message

0

1000

2000

3000

4000

5000

6000

7000

doGetCachedPage doSpellingSuggestion doGoogleSearch

M
e
ss

ag
e
 s

iz
e
 /

 1
 r

e
qu

e
st

 (
by

te
s)

fine-grained

bundled (1req/1bundle)

bundled (3req/1bundle)

bundled (10req/1bundle)

bundled (30req/1bundle)

bundled (100req/1bundle)

Figure 4. Message sizes of responses

In the graphs for request and response message sizes,

especially for the request messages, the size of the

“bundled (1req/1bundle)” message is larger than the

fine-grained message. This is because the bundled

message has some wrapper elements for the array of

the set of input parameters.

In contrast, bundled messages that include more

than three requests are effectively smaller than the fine-

grained messages. This is because the bundled requests

in one message share one SOAP envelope. In these

experiments, the messages did not have SOAP header

elements. If the bundled requests can also share the

SOAP header, this approach would work even more

effectively.

Response message sizes are not much different,

especially for doGetCachedPage and doGoogleSearch

operations. This is because the message sizes of these

two operations are quite large. The data for the

doSpellingSuggestion responses shows a similar

pattern to the request message data, because these

responses are also very small.

Overall, if the messages bundle more than three

requests, there is no disadvantage due to the message

size. If the message bundles only one request, the

messages are larger than the original messages.

However we can avoid this in our stub wrapper. The

stub wrapper can check the number of requests before

the bundling operation is invoked. If there is only one

request, then the stub can invoke the original fine-

grained operations.

4.2. Parsing overhead

We measured XML parsing overhead as an example

of primitive XML processing. In this experiment, the

Apache Xerces [15] XML parser was used as the SAX

parser. Xerces is one of the most popular open source

XML parsers in Java. The Apache-Axis SOAP engine

uses the SAX parser internally for XML processing.

Figure 5 and Figure 6 show the parsing times of

request and response messages, respectively. The

values in the graph are elapsed times for 10,000

requests. The taller bars are slower. Here, “request” is

the same as in Section 4.1. For example, the value of

“bundled (3req/1bundle)” means the parsing time for

the same 10,000 messages, which include 3 requests

each, divided by 3.

Request message

0

100

200

300

400

500

600

700

800

900

1000

doGetCachedPage doSpellingSuggestion doGoogleSearch

P
ar

si
n
g

ti
m

e
 /

 1
0
0
0
0
 r

e
qu

e
st

s
(m

s)

fine-grained

bundled (1req/1bundle)

bundled (3req/1bundle)

bundled (10req/1bundle)

bundled (30req/1bundle)

bundled (100req/1bundle)

Figure 5. Parsing times for request messages

Response message

0

500

1000

1500

2000

2500

doGetCachedPage doSpellingSuggestion doGoogleSearch

P
ar

si
n
g

ti
m

e
 /

 1
0
0
0
0
 r

e
qu

e
st

s
(m

s)

fine-grained

bundled (1req/1bundle)

bundled (3req/1bundle)

bundled (10req/1bundle)

bundled (30req/1bundle)

bundled (100req/1bundle)

Figure 6. Parsing times for response messages

The graphs show almost the same pattern as the

graphs for message size. This is because the parsing

time is almost proportional to the message size. When

“fine-grained” and “bundled (3req/1bundle)” are

compared, the bundled messages are faster, even

though the message sizes are almost the same. This

result seems to show that many iterations of small

XML parses are inefficient if the total size is the same.

However, it is known that processing extremely large

XML objects is very slow. In particular, the parsing for

memory objects like DOMs is inefficient.

4.3. End-to-end response time

Finally, we evaluated the end-to-end response times.

For the SOAP engine, we used Apache Axis. The

service provider was the same simulated Google SOAP

service. The service was developed on Axis and

deployed with Tomcat on the service-provider machine.

The service requester was also developed using Axis.

The requester just repeats the same requests. The two

machines, the provider and the requester, were on the

same local network. The response times were measured

as intervals from the requester’s invocation to the time

when the requester received the return value.

HTTP 1.1 Keep-alive is a technique to hold an open

connection to a certain server. Multiple HTTP message

exchanges can be processed on the one connection.

HTTP Keep-alive looks similar to our technique, but

they are in different layers, the HTTP transport layer

versus the SOAP messaging layer. These techniques

can coexist together. The experimental results were

measured with HTTP Keep-Alive.

0

2000

4000

6000

8000

10000

12000

doGetCachedPage doSpellingSuggestion doGoogleSearch

R
e
sp

o
n
se

 t
im

e
 /

 1
0
0
0
 r

e
qu

e
st

s
(m

s)

fine-grained

bundled (1req/1bundle)

bundled (3req/1bundle)

bundled (10req/1bundle)

bundled (30req/1bundle)

bundled (100req/1bundle)

Figure 7. End-to-end response time

Figure 7 shows the total response times for 1,000

requests. The results show basically the same pattern as

the results for message size and parsing time. However,

this results show that bundled operations are much

faster than fine-grained operations, compared with the

results for message size and parsing time. This is

because this response time includes network latency,

which is incurred for each request-response message

exchange. Because the fine-grained operation has many

message exchanges, it is less efficient.

In these results, “bundled (3req/1bundle)” is much

faster than “fine-grained”. Actually, even the bundled

messages with 2 requests are faster than “fine-grained”.

Since the bundled messages with only one request can

be avoided as mentioned in Section 4.1, there are no

cases where this bundling framework has any

disadvantage.

5. Related work

Stored procedures for relational databases can

bundle multiple SQL statements into one procedure.

Although it seems similar to our approach, the point of

the stored procedure is to bundle a sequence of

statements. SQL statement can be regarded as data

processing logic. Although we discuss this as future

work in the next section, this paper does not focus on

bundles of multiple related functions. Currently, our

approach only aims to bundle some input parameters

and return values into single messages. The data is not

sequentially related and is without dependences.

Cook et al. [3] argue that a document-oriented style

of communication is handled well in Web services.

Overall, in document-oriented communications, larger

messages are exchanged than when using RPC

messages. Also, in the RPC style, the number of

messages exchanged tends to be larger. In our approach,

the number of exchanges is reduced even in the RPC

style.

Takase et al. [6] proposed client-side caching for

Web services. Caching is one of the effective

techniques for performance improvement. When our

bundling framework is used, the cache-hit ratio

becomes lower if the bundled XML messages are

themselves cached. However, they also proposed an

operation-level cache. In the operation-level cache, the

response for each operation is cached. In this case, the

cache-hit ratio is not reduced, because the operations

are cached before bundling.

6. Future work

In our approach, we cannot bundle messages that

depend on each other. BPEL (Business Process

Execution Language) may play a role to support such a

feature in the Web services world. BPEL is a language

to describe the workflow of Web services. By using

BPEL, we can combine Web services. If the combined

services can be processed on one physical machine at

the same time, then the process can be very efficient.

As we described in Section 3.2, in some bundled

operations, we would have to address the problems

when individual operations fail or take too much time.

According to the SOAP specification, a SOAP fault

message should be returned when an operation fails.

The SOAP fault message cannot include the normal

response message. In such a case, an asynchronous

SOAP message exchange could be considered as one of

the solutions. In an asynchronous exchange, when only

one operation has failed or timed out, the results of the

other operations will be returned without the result of

the failed operation. After that, a separate response for

the failed operation can be returned. To implement this

functionality, both the service provider and service

requester have to support the asynchronous message

exchange. Although asynchronous support is not yet

popular, the asynchronous exchanges would be very

efficient in these cases.

7. Concluding remarks

In this paper we introduced a SOAP message

bundling framework. This framework enables existing

service providers to add a bundled operation into their

existing service implementations without any

modifications. The bundled operation can receive

messages that bundle multiple operations. Therefore,

the service providers do not have to avoid designs with

fine-grained services for performance reasons. Also,

service requesters can easily use the bundled operation

by using our framework. We implemented three tools

for existing service providers and requesters, and

evaluated the implementation to demonstrate the

benefits of our framework. Finally, the results of our

experiments showed improvements in the performance

of SOAP message exchanges.

References

[1] C. Kohlhoff, and R. Steele. “Evaluating SOAP for High

Performance Business Applications: Real-Time Trading

Systems,” In Proc. of the 12th International World Wide Web

Conference, WWW2003, Budapest, Hungary, 20-24 May

2003. ACM, 2003.

[2] D. Davis and M. Parasha. “Latency performance of soap

implementations,” In Proc. CCGrid’02, Workshop on Global

and Peer-to-Peer on Large Scale Distributed Systems, Berlin,

Germany, May 22-24, 2002, pages 407–412. IEEE Computer,

2002.

[3] W. R. Cook, and J. Barfield. “Web Services versus

Distributed Objects: A Case Study of Performance and

Interface Design,” IEEE International Conference on Web

Services (ICWS 2006), pages 419-426, 18-22 September

2006, Chicago, Illinois, USA. IEEE Computer Society 2006

[4] K. Chiu, M. Govindaraju, and R. Bramley. "Investigating

the limits of SOAP performance for scientific computing,"

11th IEEE International Symposium on High Performance

Distributed Computing (HPDC-11 2002), 23-26 July 2002,

Edinburgh, Scotland, UK, pages 246–254, IEEE Computer,

2002.

[5] S. Shirasuna, H. Nakada, and S. Sekiguchi. “Evaluating

web services based implementations of GridRPC,” 11th IEEE

International Symposium on High Performance Distributed

Computing (HPDC-11 2002), 23-26 July 2002, Edinburgh,

Scotland, UK, pages 237-245, IEEE Computer, 2002.

[6] T. Takase, and M. Tatsubori. “Efficient Web Services

Response Caching by Selecting Optimal Data

Representation,” 24th International Conference on

Distributed Computing Systems (ICDCS 2004), 24-26 March

2004, Hachioji, Tokyo, Japan, pages 188-197, IEEE

Computer Society 2004.

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,

P. Leach, and T. Berners-Lee. “Hypertext transfer protocol –

HTTP/1.1,” IETF RFC2616, 1999.

 http://www.ietf.org/rfc/rfc2616.txt

[8] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler.

“Extensible Markup Language (XML) 1.0 (Second Edition),”

W3C Recommendation, October 2000,

 http://www.w3.org/TR/REC-xml

[9] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N.

Mendelsohn, H. F. Nielson, S. Thatte, and D. Winer. “Simple

Object Access Protocol (SOAP) 1.1,” W3C Note, May 2000,

 http://www.w3.org/TR/SOAP/

[10] E. Christensen, F. Curbera, G. Meredith, and S.

Weerawarana. “Web Services Description Language (WSDL)

1.1,” W3C Note, March 2001,

 http://www.w3.org/TR/wsdl

[11] K. Ballinger, D. Ehnebuske, M. Gudgin, M. Nottingham,

and P. Yendluri. WS-I, “Basic Profile Version 1.0,” Final

Material, April, 2004,

 http://www.ws-i.org/Profiles/BasicProfile-1.0.html

[12] Google SOAP Search API (Beta),

 http://code.google.com/apis/soapsearch/

[13] R. Chinnici, M. Hadley, R. Mordani. The Java API for

XML-Based Web Services (JAX-WS) 2.0, Final Release,

April 19, 2006,

http://jcp.org/en/jsr/detail?id=224

[14] The Apache Software Foundation, Apache <Web

Services/> project, Apache-Axis,

 http://ws.apache.org/axis/

[15] The Apache Software Foundation, Apache XML project,

Apache-Xerces,

 http://xerces.apache.org/

[16] H. Adams, “Web services performance considerations,

Part 1,” IBM developerWorks, Feb 2004.

 http://www.ibm.com/developerworks/library/ws-best9/

[17] O. Zimmermann, S. Milinski, M. Craes, and F.

Oellermann. “Second Generation Web Services-Oriented

Architecture in Production in the Finance Industry,”

Proceedings of the 19th Annual ACM SIGPLAN Conference

on Object-Oriented Programming, Systems, Languages, and

Applications, (OOPSLA 2004), pages 283-289, October 24–

28, 2004, Vancouver, British Columbia, Canada. ACM 2004.

[18] <soaprpc/>: Performance best practices for Web services,

May 2004.

 http://www.soaprpc.com/archives/000020.htm

[19] F. Lelli, G. Maron, and S. Orlando. “Improving the

performance of XML based technologies by caching and

reusing information,” IEEE International Conference on Web

Services (ICWS 2006), pages 689-700, 18-22 September

2006, Chicago, Illinois, USA. IEEE Computer Society 2006

[20] I. Matsumura, T. Ishida, Y. Murakami, and Y. Fujishiro.

“Situated Web Service: Context-Aware Approach to High-

Speed Web Service Communication,” IEEE International

Conference on Web Services (ICWS 2006), pages 673-680,

18-22 September 2006, Chicago, Illinois, USA. IEEE

Computer Society 2006

