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Abstract

This paper describes a novel approach to reduce the
memory consumption of Java programs, by reducing
thestring memory wastein the runtime. In recent Java
applications, string data occupies a large amount of the
heap area. For example, more than 30% of the live heap
area is used for string data when WebSphere Applica-
tion Server with Trade6 is running. By investigating the
string data in real Java applications, we found two types
of memory waste in typical string implementations in
Java. First, there are manyString objects which have
the same values. Second, there are many unused areas
in thechar arrays used to hold the string values. This
string memory waste exists as or in live objects, so it
cannot not be eliminated by existing garbage collection
techniques, which only remove dead objects. Quanti-
tative analysis of Java heap revealed that such waste
occupied up to 17% of the live heap area even in real
Java applications.

To remove the string memory waste, we propose a
new “string garbage collection” (StringGC) technique
for Java. The StringGC works with a usual garbage
collector in a JVM, unifying same-valueString ob-
jects and removing the unused areas inchar arrays. In
an IBM production JVM, we implemented a StringGC
prototype named “UNITE”, where same-value strings
are unified when they are tenured by a generational GC.
This prototype was able to eliminate more than 90% of
the string memory waste, and the live heap size of real
Java applications was reduced by up to 15% without
noticeable performance degradation.

1. Introduction

Virtually all programming languages provide support
for strings together with a rich set of string operations.

In Java [8], the standard class library includes three
classes,String for immutable strings, andString-
Buffer andStringBuilder for mutable strings.

Although the developer of a virtual machine at-
tempts to implement these classes as efficiently as pos-
sible, there is little description in the literature on how
efficient or inefficient they actually are in terms of time
and space.

In this paper, we studyspace wastein a typical im-
plementation of Java strings. We performed a quantita-
tive analysis of the wasted space by running large en-
terprise applications in a production virtual machine.

The String class is typically implemented as in
Figure 1. As seen in the figure, a string is represented
with two objects, aString and achar array, which
we call theheadandbodyof the string, respectively.
Space waste from Java strings comes in two forms,du-
plicationandfragmentation. When there exist identical
string heads or bodies, we say that there is duplication.
When there are unused array elements in a body, we
say that there is fragmentation.

Our measurements show that space wasted by Java
strings is significant, sometimes as much as 17% of the
live heap area in an enterprise application. For instance,
we observed 1,067 instances of the string"name" and
773 instances of the string"descriptorType" in a
snapshot of the Java heap (immediately after collect-
ing the garbage) during the execution of the enterprise
application.

We propose a new optimization at garbage collection
time to eliminate space wasted by Java strings. The op-
timization, named “StringGC”, can be implemented in
a standard tracing collector, and eliminates duplication
and fragmentation. We also implemented the simplest
form of StringGC in an IBM production Java virtual
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1 public final class String ... { // only has private fields

2 private char[] value; // char array which holds the string value

3 private int offset; // start offset in the char array

4 private int count; // length of the string value

5 :

6 }

value
offset
count

(header) (header) s t r i n g

String object char[ ] object
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

<head> <body>

Figure 1. Structure ofString object in typical Java implementations.

machine (JVM). Experimental results showed that it is
able to eliminate more than 90% of the space wasted
by strings, and it reduces the size of the live heap area
by up to 15%.

In addition, we observed a surprising speedup in a
benchmark of SPECjvm98 [17] with StringGC. The
execution time of 209 db was reduced by more than
40%. We believe that eliminating duplicates allows the
equality of two strings to be checked without any struc-
tural comparison.

Our contributions in this paper are as follows:

• A quantitative analysis of space wasted by Java
strings. We measured the space waste by running
large-scale enterprise applications in a production
virtual machine. We observed that the space wasted
by Java strings is 10–17% of the live heap area.

• A proposal for garbage-collection-time optimization
to eliminate the wasted space.The optimization,
calledStringGC, can be integrated with a standard
tracing collector. The optimization allows for trade
offs between the computational complexity and the
elimination effectiveness.

• Empirical results of a prototype for GC-time elimi-
nation of the space waste.We implemented the sim-
plest form of StringGC in an IBM production Java
virtual machine, and examined large enterprise ap-
plications. Results show that it eliminated more than
90% of the wasted space, and reduced the size of the
live objects by up to 15%.

The rest of the paper is organized as follows. Sec-
tion 2 describes how strings are handled in Java, and

investigates wasted space due to Java strings in real
applications. Section 3 proposes a garbage-collection-
time elimination of the wasted space, called StringGC,
and discusses its implementation variations. Section 4
shows experimental results using the simplest form of
StringGC. Section 5 discusses related work, while Sec-
tion 6 offers conclusions.

2. String Memory Waste in Java

This section describes the specification and typical im-
plementation of strings in Java, and examines the space
waste from it.

2.1 String Handling in Java

In Java, string data is mainly handled throughString,
which is one of the system-provided core classes. One
important characteristic of aString object is that it is
immutable [8]. User programs cannot modify its value
by any method, except creating anotherString object.
To manipulate string data, Java provides another class,
StringBuffer. Objects of these string-related classes
may also be created and converted implicitly by Java
compilers such asjavac.

Although the Java Language Specification [8] does
not specify the details, theString class is typically im-
plemented as in Figure 1. Actually, this is a simplified
version of the implementation in the Apache Harmony
open source Java SE project [1], but we know that many
JVMs implement the class in a very similar way. As
seen in the figure, a string is represented with two ob-
jects, aString and achar array (char[]), which we
call theheadandbodyof the string, respectively. The
head points to the body through thevalue field. The
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1 class StringSample {

2 public static void main(String[] args) {

3 String sysjar = "system.jar", usrjar = "user.jar";

4 String tmpstr = sysjar + ":" + usrjar + ":" + ".";

5 int colon1 = tmpstr.indexOf(":"),

6 int colon2 = tmpstr.indexOf(":", colon1+1);

7 String jar2 = tmpstr.substring(colon1+1, colon2);

8 tmpstr = null;

9

10 System.out.println(jar2); // "user.jar" will be printed

11 }

12 }

value
offset
count

(header)

String jar2 (="user.jar")

(header)

char[ ] object (length=34)

s
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33]

y s t e m . j a r : u s e r . j a r : . \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0

unused area unused area

Figure 2. Sample program for string manipulation, and a resultingString structure.

actual value of the string is stored as a subarray of the
body, where theoffset field of the head gives the in-
dex of the first character, and thecount field the length
of the string. All of these fields are declared aspri-

vate, and cannot be directly accessed by a user pro-
gram. As an example, theString object1 in Figure 1
represents a string"string".

This structure is effective to reduce the copy of string
values because achar array can be shared by mul-
tiple Strings andStringBuffers2. The sharing oc-
curs, for example, when a newString object is cre-
ated byString.substring() or StringBuffer.-
toString(). However, it introduces memory waste
sinceunused areasmay remain in thechar array. The
program in Figure 2 is an example. Although it depends
on the JVM implementation, the stringjar2 will be
as shown in the lower part of the figure, where 26 of
the total 34 character slots of thechar array are not
used. This happens because aStringBuffer is inter-
nally created at line 4 and a generouschar array is al-

1 The “header” in each object in Figure 1 is an area used by JVM
to store object-management information such as class pointer and
lockword [14].

located for the string manipulation. This is an arbitrary
example for the explanation, but similar string manip-
ulations are performed frequently during Java program
execution.

Another kind of memory waste in Java strings is that
there are multipleString objects (andchar arrays)
that have the same string value. In the example in Fig-
ure 2, the stringsjar2 andusrjar have the same value
"user.jar". However, theString objects and the
char arrays for these two strings exist independently
in the heap. Such duplication occurs very frequently
while executing real Java applications. As explained at
the beginning of this section,String objects are im-
mutable in Java, so it is possible to unify these dupli-
cated strings without affecting program execution.

In Java, objects that are not referred to from any-
where are removed by garbage collection (GC) [13] as
deadobjects. However, the two kinds ofstring mem-
ory wastediscussed here exist inlive char arrays or as

2 The value ofStringBuffer can be modified through its methods
such asinsert() and delete(). However, if the targetchar
array is shared withString objects, a copy of the array is created
before the modification.
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Trade6 Tuscany
Metrics count size count size

Total live objects 621,463 33,938 KB 281,973 15,332 KB
String objects 106,957 2,995 KB 57,922 1,622 KB
- duplicated 42,163 1,181 KB 33,939 950 KB
char[] objects 97,306 9,641 KB 49,150 4,470 KB
- used only forString 95,639 8,810 KB 48,118 3,628 KB
- duplicated 32,839 2,107 KB 25,578 1,596 KB
- unused in remaining 5,923 139 KB 2,019 46 KB

Total eliminable 75,002 3,427 KB 59,517 2,593 KB
- ratio to the heap 12.1% 10.1% 21.1% 16.9%

Table 1. String memory waste in real Java applications.

liveString objects. Therefore, existing GC techniques
cannot remove them. New mechanism to remove the
waste is required for more efficient memory manage-
ment in Java.

2.2 Investigation of the String Memory Waste

In recent Java applications, there are an increasing
needs to handle string data, such as for processing
XML and accessing databases, so the string memory
waste explained above may become significant. There-
fore, we did quantitative analysis of the waste in real
Java applications.

The investigation was done with IBM’s latest pro-
duction JVM, the J9 Java VM [5, 10] 1.5.0 for Linux.
For each investigation defined below, the Java heap area
was dumped after a system GC and exhaustively ana-
lyzed using off-line tool. The following large-scale en-
terprise Java applications were chosen for the analysis.

Trade6: Running the Trade6 benchmark application
[11] on IBM WebSphere Application Server (WAS)
[12] Version 6.1. This investigates the heap after
processing continuous requests from a test client for
three minutes.

Tuscany: Running the Tuscany [3] Incubating-M1,
open source middleware for the Service Component
Architecture (SCA) [16], and a BigBank sample
SCA application in the Apache Tomcat [2] servlet
container. This investigates the heap after continu-
ously sending a sequence of requests for three min-
utes.

The results are summarized in Table 1. In the table,
the “Total live objects” row shows the numbers and
sizes of the live objects at the time of the investigation.

The J9 Java VM used for the investigation uses [5]
type-accurate GC [13], so no dead objects are mixed
into the measurement results.

The “String objects” row shows the numbers and
sizes of liveString objects, without including the
char array objects used for the string bodies. The next
“duplicated” row shows theString objects that can
be removed because their value is the same as another
String object3. For example, in Trade6, 42,163 of
106,957 (39.4%)String objects could be removed, or
unified, because of the duplications.

Table 2 shows the top 15 duplicated strings for each
application4. For example, there were 1,067 indepen-
dent"name" strings in Tuscany.

The “char[] objects” row in Table 1 shows the
number and size of livechar array objects, and the
next “used only forString” row shows the number ex-
cluding those referred to byStringBuffer or places
other thanString objects. The result shows that most
(98%)char arrays are used just for holding the value
of strings. Among thesechar arrays used for string
bodies, the “duplicated” row shows thechar arrays
that can be removed when duplicated values are uni-
fied. The “unused in remaining” row shows the num-
bers of remainingchar arrays which have unused areas
as shown in Figure 2, and the total size of the unused
area.

These kinds of string memory waste are accumu-
lated in the “total eliminable” row, which indicates the
totals for objects and for heap size that could be elimi-

3 If there are 100String objects which have the same value,
“99” is shown in the table as the number of “duplicated” objects.
4 The"dolly" in Trade6 result is the name of the machine that was
running WAS.
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Trade6 Tuscany
1,055 "" 1,067 "name"

930 "java.lang.String" 891 "\n "

586 "TRADE61 " 773 "descriptorType"

586 "TRAD61DB" 620 "\n "

370 "Q1" 527 "displayName"

361 "1.0" 504 "attribute"

345 "server1" 368 "operation"

327 "name" 363 "java.lang.String"

279 "dollyNode04Cell" 342 "\n "

253 "dollyNode04" 304 "\n\t\t\t"

242 "true" 304 "\n "

216 "T1" 267 "none"

215 "en-US" 252 "role"

214 "type" 248 "displayname"

207 "void" 246 "false"

Table 2. Top 15 duplicated string values and their
counts in real Java applications.

nated5. The last row of the table shows the ratios of the
eliminable amount to the heap.

From these results, the following can be observed:

• In the investigated Java applications, 5–12MB are
used for holding string values, which occupies about
35% of the live heap area.

• 30–50% of the string memory is wasted by dupli-
cates or unused areas. If we can eliminate this string
memory waste, the heap area could be reduced by
10–17%.

This investigation discovered the importance of reduc-
ing the string memory waste for real Java applications.
In next section, we will discuss concrete methods for
doing this.

3. A Proposal for String Garbage Collection

The investigation in the previous section revealed that
the Java heap can be reduced by up to 17% by removing
the following two kinds of waste.

Waste-A: There are manyString objects that have
the same values.

Waste-B: There are many unused areas in thechar

arrays used for holding the string values.

In this section, we propose a “string garbage collec-
tion” (StringGC) technique to remove the string mem-
ory waste in Java.

5 Thechar[] objects which have unused areas are not counted in
the number of eliminable objects, but the unused areas are added to
the eliminable size.

3.1 Core Algorithm

The StringGC we propose can be implemented as
additional steps with the standard garbage collection
methods of Java. First, we show the core algorithm of
StringGC. A stop-the-world type of GC is assumed to
simplify the explanation, but we believe various con-
current and parallel GC techniques [13] could also be
used to improve the StringGC, some of which will be
discussed in Section 3.2.

Step 1: CreateString andchar array tables.

Scan the heap, and create two tables that contain all
live String objects and thechar arrays used for
string values. The tables should also containreferer
information to retrieve all of the places eachString
or char array object is referenced. If achar array is
referred to xfrom places other thanString objects,
remove it from thechar array table, since such
a char array cannot be restructured by StringGC.
This step can be done during the mark phase in
standard collectors.

Step 2: Unify duplicatedString objects.

Scan theString object table, and unify theString
objects that have the same string content. Retrieve
the referer information of each duplicatedString
object and update the references to point to the uni-
fied String object. This is a mechanism similar to
object relocation for heap compaction in standard
collectors. With this step, the waste-A type can be
eliminated. We will discuss some subtle issues on
this string-head unification in Section 3.3.

Step 3: Remove unused areas in thechar arrays.

For eachchar array in thechar array table, check
its refererString objects. If thechar array con-
tains character slots not used by anyString objects,
restructure thechar array by truncating the unused
slots. Update thevalue and offset fields in the
refererString objects to point to the appropriate
substring of the newchar array. With this step, the
waste-B type can be eliminated.

Step 4: Unify char arrays used forStrings.

Scan thechar array table, and unifychar arrays
which have the same substring. An example is that
if a char array’s value is part of anotherchar ar-
ray’s, the short array can be unified to use the long
one. Similar to the previous step, update the referer
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j a v a . l a n g . S t r i n g

j a v a

s y s t e m . j a r : u s e r . j a r : .

S t r i n g B u f f e r

String A

String B

String C

String D

String E

String F

(a) Before the StringGC.

j a v a . l a n g . S t r i n g

s y s t e m . j a r u s e r . j a r

B u f f e r

String A

String B, C

String D

String E

String F

(b) After the StringGC.

Figure 3. String memory waste, and its elimination by
StringGC.

String objects to point to the appropriate substring
of the newchar array. Actually, this step can be per-
formed at the same time as Step 3.

Figure 3 shows an image of how string memory
waste is removed by the StringGC. The upper fig-
ure (a) shows the heap before the StringGC, where
the gray portion indicates the unused areas inchar ar-
rays (waste-B). There also exists identical (or partially
identical) string values such as"java" and"String"
(waste-A). When all the steps of the StringGC are ap-
plied, the heap becomes like the lower figure (b). The
String objects B and C that have the same value
"java" are unified (in Step 2), and the gray unused
areas in thechar arrays are removed (in Step 3). The
String objects A and F, whose values are partially the
same now point to a unifiedchar array (in Step 4).
Note that the references to the modified objects are ap-
propriately updated in each step.

3.2 Variations

Several variations can be considered for each step of the
StringGC explained above, according to the required
space and time efficiency or combined GC algorithms.

First, the tables in Step 1 can be created indepen-
dently for eachString object orchar array. There-
fore, it is possible to parallelize this step for multiple
processors (threads). It is also possible to create tables
that contain only some of these objects if there is not
enough memory, although that reduces the chances of
unification.

For some combined GCs, the tables in Step 1 need
not be explicitly created. If the collector maintains a
structure to retrieve an object’s referers, as might be
used for implementing heap compaction, it could be
utilized for the StringGC. The remaining steps could be
done by scanning all of the live objects and performing
the necessary steps if the object is aString or char
array.

Step 3 could be simplified not to check all of the
character slots one-by-one but to check only the start
and end indexes of the used slots. This makes it impos-
sible to remove the internal unused slots as in the third
char array in Figure 3(a), but we believe this is a very
rare case and negligible in real programs. Actually, fur-
ther simplification to check only the end index of the
used slot may be sufficient, since an unused area at the
start can be created only when a substring is extracted
with String.substring(), etc.

Many variations can be considered for thechar ar-
ray unification of Step 4. One simple implementation is
to sort thechar arrays in the table by their content and
find an array whose content is part of the next array.
The string data"java" in Figure 3 can be unified in
this way. A more advanced implementation would be
to find achar array whose first portion is the same as
a latter portion of anotherchar array and unify them,
like for the "String" in Figure 3. However, it may
need exhaustive search and increase the StringGC time.
In real implementation, it is better to combine Step 4
with Step 3, to reduce redundant data copies andchar

array restructuring.
What variation should be used depends on the re-

quired space and processing-time efficiency. From the
investigation of Table 1, simply unifying duplicated
string values can eliminate 30–50% of thechar arrays
used for string values. If the combined GC has sev-
eral processing levels, it is possible to apply aggressive
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1 class BadManner {

2 public static void main(String[] args) {

3 String s1 = new String("java");

4 String s2 = new String("java");

5 if (s1 == s2) // should use s1.equals(s2)

6 System.out.println("Same Strings");

7 else

8 System.out.println("Different Strings");

9 }

10 }

Figure 4. A bad-manner program incompatible with
the string-head unification.

StringGC methods only at the time of the full collec-
tion.

3.3 Discussion

Step 2 of StringGC explained in Section 3.1 unifies
String objects if they have the same value. For ex-
ample, in Figure 3,String objects B and C whose
values are"java" are unified. Through this unification
of string heads, Java programs that do someidentity-
basedoperations onString objects may behave differ-
ently. The identity-based operations include reference
comparisons with “==”, monitor entrances and exits,
and calls toSystem.identityHashCode(). Figure 4
shows an example that behaves differently after the
String unification. If theString objectss1 ands2
are unified by StringGC, the program will print"Same
Strings", while it originally printed "Different

Strings".
However, in Java programming, using “==” to com-

pare strings should be avoided andString.equals()

is recommended. We believe identity-based operations
should not be used forString objects in well-written
Java programs.

If the string-head unification is still considered to
be problematic, it is possible to unify only the bodies
(char arrays) of the same-content strings in Step 2.
Since the string body is not directly accessible by Java
programs, this version is compatible with the identity-
based operations. The heap area reduced by StringGC
is decreased by this modification. However, from the
investigation of Table 1, it can still remove 65% of the
total string memory waste.

At the same time, unifying theString objects has
a good side effect of speeding up the execution of
String.equals(), because typical implementations

of the method first check the two objects with “==”.
Slow character-by-character comparisons are unneces-
sary if the same-valueString objects are unified by
StringGC.

During the StringGC, the fields of aString object,
value andoffset, may be modified. Therefore, spe-
cial care must be taken not to run StringGC while a
Java program is accessing these fields. Fortunately, the
String class is a final class provided by Java runtime
and its fields are accessed only by the class or runtime.
One possible solution is to minimize the sections which
use theString fields and make GC-safe points out of
these sections to suppress StringGC. Another practical
solution is to unifyString or char array objects only
if the values of theoffset fields are the same.

3.4 A Practical Prototype

If the StringGC steps explained in Section 3.1 are
completely applied, all of the string memory waste
discussed in Section 2 can be removed. However, as
shown in Table 1, manyString objects exist in real
Java applications, and handling them in a table may
take long time. Therefore, we discuss a more practi-
cal subset of StringGC here which can remove most of
the string memory waste without degrading the perfor-
mance so greatly.

The investigation of Table 1 shows that more than
90% of the string memory waste comes from dupli-
cated string values. Therefore, for the practical StringGC
subset, we focused on unifying the same-valueString

objects.
One naive implementation for this is to unify each

String object at the time of its creation, by modifying
the String constructors to reuse an existingString
object that has the same value. However, searching for
a String object with the same value takes time, and
should not be done for temporary strings. To get bet-
ter results for StringGC without degrading the perfor-
mance, the search and unification should be applied
only to long-livingString objects.

Our solution for this problem is to combine StringGC
with a generational garbage collector [13], and perform
theString search and unification at the time of tenur-
ing aString object, rather than when creating the ob-
ject. We call this practical StringGC approach “UNITE
(UNIfication at TEnuring)”.

We have implemented the UNITE StringGC in
IBM’s latest production JVM, the J9 Java VM 1.5.0
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Figure 5. Behavior of the “UNITE” StringGC.

for Linux. The JVM can choose several GC policies
[5], and of course generational GC was chosen for the
prototype. In the prototype, allString objects in the
tenured space are registered in a “tenured-String ta-
ble”. When the generational GC decides to move a
String object from a nursery space to the tenured
space, the table is searched to check if there is a same-
valueString object. If found, the nurseryString ob-
ject is unified to the foundString object, which is
already tenured. If not found, the nurseryString ob-
ject is moved to the tenured space and registered in the
table. If aString object in the tenured-String table is
no longer referred to from anywhere, the registration is
removed when the tenured-space GC collects the dead
object.

Figure 5 shows the example behavior of this UNITE
StringGC, where the nursery space 1 became full and
GC was performed. A long-livingString object A1

1 class MicroBench {

2 static String[] doCreate(int dupRatio) {

3 String[] strs = new String[1000000];

4 int n = 0, dupCount = 1000000 * dupRatio/100;

5 for (int i = 0; i < dupCount; i++)

6 strs[i] = "STR_"+n; //"STR_0"

7 for (int i = dupCount; i < 1000000; i++)

8 strs[i] = "STR_"+(++n);//"STR_1","STR_2",...

9 return strs;

10 }

11 static int doCompare(String[] strs) {

12 String str0 = "STR_0";

13 int dupCount = 0;

14 for (int i = 0; i < 1000000; i++)

15 if (strs[i].equals(str0)) dupCount++;

16 return dupCount*100 / 1000000;//==dupRatio

17 }

18 :

19 }

Figure 6. Micro-benchmark to test the StringGC.

was tenured and unified to A0 which has the same
value. On the other hand, B1 was moved to the tenured
space and registered in the table, since there was no
String object that has the same value.String object
C1 was not old enough so just moved to the nursery
space 2, although there was a same-valueString ob-
ject in the tenured space. The references to the unified
or moved objects were appropriately updated.

4. Evaluation

Using the UNITE StringGC prototype, we measured
its effectiveness with various Java programs. All of the
measurements were done on a 3.06 GHz dual Xeon PC
with 4 GB of memory, running the Red Hat Enterprise
Linux 3 AS operating system.

4.1 Micro-Benchmarks

First, micro-benchmarks were performed to analyze the
basic characteristics of the StringGC, using the pro-
gram shown in Figure 6. ThedoCreate() method in
the program creates 1,000,000String objects through
StringBuffers. ThedupRatio percent of those cre-
atedString objects had the same value ("STR 0"). In
the measurements, this program was executed by spec-
ifying variousdupRatio values on the JVMs with and
without the StringGC. We confirmed that all of the
related methods were JIT-compiled similarly in both
JVMs.
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Figure 7. Heap analysis of the micro-benchmark.

The graphs in Figure 7 show the status of the Java
heap just after thedoCreate() method is executed.
The upper graph shows the numbers of live objects and
the lower graph shows their total size for eachdup-

Ratio value. Without the StringGC, the heaps were
almost same for all of thedupRatio values. There were
about 2 million live objects in the heap because one
string is represented by two objects in Java, aString

and achar array, as shown in Figure 1.
When the StringGC was enabled, both the number of

live objects and their total size decreased as thedupRa-

tio increased. The ratio of decrease matches thedup-

Ratio, which indicates thatString unification of the
StringGC worked effectively. One interesting observa-
tion is that the heap decrease stopped around the 70%
dupRatio. This is because the newestStrings were
not unified since they remained in the nursery space,
which was 32 MB in these measurements.

Next, the upper graph of Figure 8 shows the times
for executing thedoCreate() method, normalized to
the time with no duplications on the original JVM.
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Figure 8. Relative times fordoCreate() anddoCom-
pare() in the micro-benchmark.

Without the StringGC, the times were constant for all
dupRatio values. When the StringGC was enabled, the
method became slower especially for lowdupRatio
cases. The reason is evidently the cost for maintain-
ing the tenured-String table, where millions of strings
were eventually registered. The time became better as
the dupRatio increased, since the table size became
smaller. The performance overhead with the StringGC
peaked at the 3.2 times slowdown even for this artificial
string-intensive program where millions ofString ob-
jects exist in the tenured space. Performance with more
realistic programs will be measured in the next section.

As discussed in Section 3.3, unifying theString
objects has a side effect of speeding up some string
comparisons. We also measured this effect in the micro-
benchmark. ThedoCompare() method in Figure 6
was used for the measurements. This method compares
the 1,000,000String objects created bydoCreate()
with a string"STR 0" by usingString.equals().
Therefore,dupRatio percent of the comparisons will
succeed.
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Trade6 Tuscany
Metrics count size count size

Original JVM
Total live objects 621,463 33,938 KB 281,973 15,332 KB
- String objects 106,957 2,995 KB 57,922 1,622 KB
- char[] objects 97,306 9,641 KB 49,150 4,470 KB
With StringGC
Total live objects 547,999 30,824 KB 228,379 13,026 KB
- String objects 65,584 1,836 KB 27,306 765 KB
- char[] objects 66,149 7,662 KB 26,370 3,032 KB
Total eliminated 72,530 3,137 KB 53,396 2,295 KB
- ratio to the original heap 11.7% 9.2% 18.9% 15.0%
- ratio to the eliminable 89.6% 91.5% 86.8% 88.5%

Table 3. Heap memory reduction by the StringGC in real applications.

The lower graph of Figure 8 shows the normal-
ized time for executing thedoCompare() method for
various dupRatio values. In the original JVM, the
time became worse for higherdupRatios, because
comparisons of same-valueString objects eventually
needed to execute character-by-character comparison,
while hashcode comparison was sufficient for different
strings. However, when the StringGC was enabled, the
comparison became faster for higherdupRatios, be-
cause the same-valueString objects had been unified.
Consequently, for this micro-benchmark, comparing
same-valueStrings was 6.4 times faster than on the
original JVM.

4.2 Macro-Benchmarks

Next, we measured the performance impact of the
StringGC for real Java applications, by using the SPEC-
jvm98 [17] benchmark programs. In the evaluation,
each of the seven programs was run separately in
the application mode, specifying the problem size as
100%. For each configuration, we took the average of
the middle three scores of five independent runs.

Figure 9 shows the results, where the relative execu-
tion time on the StringGC JVM to the original JVM is
shown. Surprisingly, we observed about 30% time re-
duction in 209 db. The reason is not clear yet, but
we suspect that many string-compare operations in
this benchmark were accelerated by the unification of
String objects, as shown in the lower graph of Fig-
ure 8. For 227 mtrt, we also measured 3.6% perfor-
mance improvement with the StringGC. Other bench-
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Figure 9. Relative times of the StringGC JVM in the
SPECjvm98 benchmarks.

marks had almost the same scores for the two JVMs,
and no significant degradation was observed.

Finally, we measured the effects for heap reduction
with the StringGC in large-scale enterprise Java ap-
plications, which was the original concern of this re-
search. The same programs, Trade6 and Tuscany de-
scribed in Section 2.2 were used for the evaluation.

Table 3 shows the result of live heap analysis similar
to Table 1, with and without the StringGC. In Trade6,
38.7% of theString objects and 32.0% of thechar ar-
rays were removed by the StringGC. Due to this, 9.2%
of the heap area in the original JVM was eliminated.
The StringGC was more effective for Tuscany, where
15.0% of heap area was eliminated. Comparing the Ta-
ble tbl:realapp with Table 1, the StringGC prototype re-
moved about 90% of the string memory waste.
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5. Related Work

This section will introduce related work and compare
that work with our StringGC.

In Java, a string can beinternedby theString.in-
tern() method, which returns aString object whose
value is the same as the targetString. A unique object
is returned for the same string value. Therefore, intern-
ing can be used to unify duplicatedString objects.
However, it must be done explicitly in each Java appli-
cation, and as far as we know, no application utilizes
interning to reduce the string memory overhead. Actu-
ally, it is usually used to makeString objects com-
parable by using “==”. The simple idea of interning
all Strings when they are created does not work well,
since many temporaryStrings will also be interned. In
fact, our UNITE StringGC in Section 3.4 is considered
to be a solution to this problem, by effectively interning
only the long-livingString objects.

It is common to eliminate duplicates ofstring liter-
als. The Java Language Specification [8] dictates that
all string literals and string-value constant expressions
be interned in Section 3.10.5. The Unix operating sys-
tem provides a tool named “xstr(1)” to extract strings
from C programs and unify them.

Dieckmann and Ḧolzle [6] studied the allocation
behavior of the SPECjvm98 benchmarks, and mea-
sured low-level data including age and size distribu-
tion, type distribution, and the overhead of object align-
ment. Their study did not include duplication or frag-
mentation due to unused areas, or specifically focus on
strings. They mentioned in the conclusions that they
are working on additional experiments for an extended
version of the paper, suggesting that they are gathering
new data which will illuminate the influence of strings
on the heap composition. However, to the best of our
knowledge, the new data remains unpublished.

Marinov and O’Callahan [15] presented Object Equal-
ity Profiling (OEP) for discovering opportunities for
replacing a set of equivalent object instances with a
single representative object. While we focus on dupli-
cation and fragmentation in strings, they studied dupli-
cation in general, ormergeabilityin their terminology,
for arbitrary Java objects. They precisely define the
mergeability problem, and describe how to efficiently
compute mergeability. They developed a tool, a combi-
nation of an online profiler and postmortem analyzer,
and revealed significant amount of object equivalence
in real Java programs.

Automatic optimizations exploiting object equiva-
lence is beyond the scope of their paper. However, they
performed a case study for two SPECjvm98 bench-
marks, 209 db and 227 mtrt, and manually opti-
mized them to reduce the space used by live objects.
Their tool showed that in209 db only two classes,
String andchar[], matter for mergeability, and that
the relevant allocation site for the mergeableString

was line 191 in the fileDatabase.java. They then
modified the line to callString.intern() immedi-
ately after the allocation. They observed a 47% reduc-
tion in the average space for live objects, and a slight
improvement in the execution from 19.1 sec to 18.8 sec.
This is an interesting contrast with the results from our
optimization.

Hash-consing[7, 9] in functional languages guaran-
tees that two identical objects share the same records in
the heap. Hash-consing eliminates duplicated records,
and allows the equality of two records to be deter-
mined without structural comparison. However, it must
maintain a hash table to check whether there is already
an identical record, and check the hash table at ev-
ery allocation. Appel and Goncalves [4] proposed to
integrate hash-consing with generational garbage col-
lection. They only hash-cons records that survive a
garbage collection, thereby avoiding the cost of a table
lookup for short-lived objects. They implemented the
scheme for Standard ML of the New Jersey compiler.
Unfortunately, the space savings in the programs they
measured were not impressive, less than 1% in most
cases. They argue that hash-consing would show real
promise when coupled with function memorization.

6. Conclusion

This paper described the proposal, implementation, and
evaluation of “string garbage collection” (StringGC) to
reduce thestring memory wastein the Java heap caused
by duplication and fragmentation of strings. The waste
exists as or in live objects, so it cannot be reduced by
existing GC techniques.

Recent Java applications handle more and more
string data, such as for processing XML and accessing
databases, and the string memory waste is becoming
problematic. Quantitative analysis of real Java appli-
cations revealed that 10–17% of the live heap area is
wasted.

In IBM’s production JVM, we implemented a StringGC
prototype named UNITE, where same-valueString
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objects are unified at the time of tenuring in the genera-
tional GC. Measurements using this prototype showed
that the live heap area of real Java applications could be
reduced by up to 15%, without noticeable performance
degradation. Actually, for some programs the perfor-
mance was even improved because of the reduced heap
size and accelerated string comparisons.

As future work, we are considering further reduc-
tion of the execution overhead, implementation of more
complete StringGC, and continuous measurements of
heap status while executing Java applications.
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