
October 10, 2007
RT0754
Computer Science; Mathematics 10 pages

Research Report
A Formal Study of Algebraic Constraint

Issei Yoshida
IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It
has been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or
copies of the article legally obtained (for example, by payment of royalities).

A Formal Study of Algebraic Constraint

Issei Yoshida∗

Abstract

We present a model for computation of algebraic constraint.

An algebraic constraint is defined to be a boolean formula

of equations in which every equation is expressed by a poly-

nomial over a field, and hence such constraint may contain

negation of an equation, that is, a form f 6= 0 where f is

some polynomial. Algebraic constraint appears in many ap-

plication fields of data analysis such as study of geometries,

computer aided design, robotics and mechanics. It is well-

known that we can describe negations in a form of equations

by using slack variables, but traditional approaches assume

the same number of slack variables as that of negations.

This means the dimension of the ambient space, in which

the targeted manifold is embedded, depends on the number

of negations used in the constraint, hence the dimension is

not intrinsic in the constraint.

We construct an algebraic model that enables to de-

scribe an arbitrary boolean formula including multiple nega-

tions by using only one slack variable. Also the model pro-

vides boolean operations that commute with algebraic op-

erations of polynomials in a natural way, in which we in-

troduce a kind of semiring and its operations in order to

make do with one slack variable. To use one slack variable

means that we can always consider constraints on the am-

bient space of the same dimension (n + 1) where n is the

number of original variables. We present our approach to

construct this model and show some important properties of

it.

Keywords: Algebraic constraint, algebraic geome-
try, transformation of boolean formula, DNF

1 Introduction

In algebraic geometry, an algebraic set V in kn is defined
as a set of common zeroes of a (finite) set of polynomials
f1, ..., fm ∈ R = k[x1, · · · , xn], where k is a field and R
is a polynomial ring of dimension n over k. For example,
y − x2 ∈ R = R[x, y] corresponds to a parabola in the
real plane R2. Given a set of polynomials, it is in general
very difficult to compute the corresponding algebraic set
and calculate some properties of it. For the purpose of
this, various methods including Gröbner basis[2] and
their applications are actively studied.

Although the main target of algebraic geometry is

∗IBM Tokyo Research Laboratory, issei@jp.ibm.com

such ”closed” algebraic sets, sometimes open constraint,
that is, f 6= 0 for some f ∈ R, is also important in
application. Such application fields include study of
geometries[1][5], computer aided design, robotics and
mechanics[7][8]. Taking study of geometry for example,
on the real plane R2, the condition that two points
(x1, y1) and (x2, y2) are distinct can be described as
”x1 6= x2 or y1 6= y2 where negation naturally appears.

We cannot apply methods for computation of closed
sets to these open constraints directly. Instead, it
is well-known that we can use slack variable to con-
vert negation to equation as follows[3]: By using a
new variable z that is algebraically independent of
x1, · · · , xn, the condition on a point x = (x1, · · · , xn)
that f(x1, · · · , xn) 6= 0 is transformed into the con-
dition on a point x that there exists z such that
1− zf(x1, · · · , xn) = 0.

As far as we know, the previous works assume
that the given constraint is a boolean expression of
conjunction of multiple equations or negations, and they
use as many slack variables as equations appeared in
the given constraint. However, the number of slack
variables depends on the number of equations used in
the given constraint, and hence it is not intrinsic in
the boolean function defined by the constraint. For
example, consider two constraints (f = 0) ∧ (g 6= 0)
and ((f = 0) ∨ (g 6= 0)) ∧ (g 6= 0). These are
apparently equivalent as a boolean function but the
number of negations is different. The number of slack
variables may also cause a problem in applications
when we compute a constraint having many negations
because the number of variables affects heavily the
computational time in general.

In this paper we construct an algebraic model to
solve these problems. We start with a simple idea for
converting a constraint in DNF into a set of equations
by using only one slack variable, and then develop a
thoery to handle sufficiently general constraints.

In our theory, for every algebraic constraint with n
variables, we can express it as an intersection of closed
algebraic sets in kn+1. We call kn+1 the ambient space
of dimension (n + 1). The dimension of the ambient
space depends only on the number of variables and does
not depend on the expression of the given constraint.
Also, we give a coherent correspondence between a set

of constraints and a kind of semiring[4] where every
element of the semiring represents a set of equations.
For example, we can construct the expression of C1∧C2

in the ambient space from the expressions of C1 and C2

in the ambient space in a natural way.
This paper is organized as follows. In section 2 we

define algebraic constraint and basic terminologies that
are necessary for our discussion. Section 3 describes a
way to represent a constraint including negation as a
closed set in a certain geometric space, by using only
one slack variable, although at this stage we assume
that the given constraint is in DNF. Section 4 introduce
a constraint semiring in order to extend our technique
for constraints that are not necessarily in DNF, and we
conclude in section 5 and give some remarks for future
research.

2 Representation of Algebraic Constraints

Here we prepare some notations and give the formal
definition of algebraic constraint.

2.1 Notation and Preliminaries Let k be a field
and R = k[x1, · · · , xn] be a polynomial ring over k. k is
arbitrary such as the complex number field C, the real
number field R, and so on, but we do not assume any
further property on k in most of this paper.

We often write simply f(x) or f for a polynomial
f(x1, · · · , xn) ∈ R. For a polynomial f ∈ R, we define
V (f) def= {a = (a1, · · · , an) ∈ kn | f(a) = 0} and we call
V (f) an elementary closed set defined by f . We can
identify V (f) with a boolean-valued function on kn so
that V (f)(a) is true for a ∈ kn if and only if f(a) = 0,
that is, a ∈ V (f).

Similarly, for f ∈ R we define D(f) def= {a ∈
kn | f(a) 6= 0} = kn \ V (f) and we call D(f) an
elementary open set defined by f . We can identify D(f)
with a boolean-valued function on kn so that D(f)(a)
is true for a ∈ kn if and only if f(a) 6= 0. As a boolean-
valued function on kn, D(f) is equivalent to ¬V (f),
which is clear from the definition. We use the symbol ¬
for both negation as a boolean operation and operation
of taking complementary set of the given set, which will
be clear from the context.

Example. Let us consider a simple example. On R[x, y],
V (x2 − y2) = V ((x + y)(x − y)) is a union of two lines
on the plane R2. It works as a boolean-valued function
on R2 such that it returns true if and only if the given
point in R2 is on (at least) one of the two lines.

Note that as a function V (f) and D(f) depend on
the underlying field k. For example, V (x2 + y2 + 1)
always returns false as a boolean-valued function on R2,
while it may return true on C2 because (x, y) = (i, 0)

satisfies x2 + y2 + 1 = 0 where i is the unit imaginary
number in C. �

2.2 Algebraic Constraints Now we define alge-
braic constraint.

Definition 2.1. A literal over R is a symbol f or ¬f
for f ∈ R. ¬f is called a negative literal of f , or
negation of f simply. We define a set of algebraic
constraints AC(R) over R to be a Boolean Algebra
generated by literals over R.

For C ∈ AC(R), we define Vc(C) to be a subset of
kn obtained by replacing ∧, ∨, ¬ with ∩, ∪, complement
of the specified subset, and replacing fij, ¬hij with
V (fij), D(hij) respectively. We call Vc(C) the algebraic
constraint set corresponding to C, or simply an algebraic
constraint set when C is clear from the context.

It is well-known that any boolean formula can be
converted into DNF, so any algebraic constraint is
equivalent to a constraint C in the following form:

C =
r∨

i=1

((pi∧
j=1

fij

)∧(qi∧
j=1

¬hij

))
(2.1)

where fij and hij are elements of R, and either one of
pi and qi can be zero. When r = 0 we define C = 0, and
when r = 1 we call C a minimal algebraic constraint.

In this case, Vc(C) is given by

Vc(C) =

r[
i=1

„“ pi\
j=1

V (fij)
”\“ qi\

j=1

D(hij)
”«

(2.2)

Definition 2.2. We say that C ∈ AC(R) is true on
kn when Vc(C) is nonempty, and for a point a =
(a1, · · · , an) ∈ kn, we say that C is true at a when
a ∈ Vc(C).

Also, for constraints C and C ′, we say that C
is equivalent to C ′ when Vc(C) = Vc(C ′) and denote
C ∼ C ′. This means that C is equal to C ′ as a boolean
function.

We omit ”over R” or ”on kn” when it is clear from
the context.

We consider only DNF constraints for the time
being, and call C in (2.1) a DNF constraint. We shall
discuss on constraints in the form of arbitrary boolean
formulas later. When we consider DNF constraints, ¬
occurs only immediately above literals, that is, occurs
in the form of ¬h for some h ∈ R.

Before we state a relation between our definition
and algebraic geometry, we would give an example of
algebraic constraints.

Example. Let C = ((y−x2)∧¬(y−x)∧¬(y+x))∨((y−
1)∧¬(x−1)) be an algebraic constraint over R[x, y]. The

corresponding algebraic constraint set Vc(C) (⊂ R2) is

Vc(C) =
(
V (y − x2) ∩D(y − x) ∩D(y + x)

)
∪
(
V (y − 1) ∩D(x− 1)

)
= { (x, y) ∈ R2

∣∣
(y = x2 ∧ y 6= x ∧ y 6= −x)
∨ (y = 1 ∧ x 6= 1) }

This is union of a parabola and a line except two points
(0, 0) and (1, 1). �

In algebraic geometry, an algebraic set V in kn is
defined as a set of common zeroes of a (finite) set of
polynomials f1, ..., fm ∈ R, so

V =
⋂m

i=1 V (fi).

We can get this representation by letting r = 1 and
qi = 0 in (2.2), so our definition of algebraic constraint
set is a natural extension of algebraic set.

However, if we consider irreducible decomposition
of every fi, conjunctive normal form (CNF) also seems
natural. For example, if fi = gi1 × · · · × gipi

for some
gi1, · · · , gipi

∈ R \ k, we easily see that

V (fi) =
⋃pi

j=1 V (gij)

and hence V can be represented as

V =
⋂m

i=1

(⋃pi

j=1 V (gij)
)

Thus as far as we consider algebraic sets that do not
contain negation of an equation, CNF is also available.
However, irreducible decomposition of a polynomial
itself is non-trivial operation, although some numerical
approaches have been studied[9]. We shall see in the
following sections that DNF is more appropriate when
we consider a model including negation. The following
lemma is a key for this.

Lemma 2.1. Every algebraic constraint C is equivalent
to a constraint C ′ such that for every i, fij = 0 for
some j ∈ {1, · · · , pi} and qi = 1 in the right hand of the
equation (2.1).

Proof. For every i ∈ {1, · · · , r} we transform

(pi∧
j=1

fij

)∧(qi∧
j=1

¬hij

)
(2.3)

in the right hand of (2.1) in order to make C ′.
If pi = 0 or fij 6= 0 for all j, we add (0) to (2.3) to

get {
(0)
∧(pi∧

j=1

fij

)}∧(qi∧
j=1

¬hij

)
(2.4)

and this is equivalent to (2.3) because (0) is transformed
to V (0) = kn and it gives no constraint on the final
subset of kn.

Similarly, if qi = 0, we add (¬1) to (2.3) to get(pi∧
j=1

fij

)∧(
¬1
)

(2.5)

and this is equivalent to (2.3) because (¬1) is trans-
formed to D(1) = kn and it gives no constraint on the
final subset of kn.

If qi > 1, let h def=
∏qi

j=1 hij be a product of all of
hij for fixed i. For any point a = (a1, · · · , an) ∈ kn,

a ∈
qi⋂

j=1

D(hij)

⇔ hij(a) 6= 0, 1 ≤ ∀j ≤ qi
⇔ h 6= 0

Hence
⋂qi

j=1D(hij) = D(h) in the expression of
Vc(C), so we can replace

∧qi

j=1 ¬hij with (¬h) wherever
qi > 1. �

By Lemma 2.1, when we consider algebraic con-
straint sets, we assume that every DNF constraint C
is in the form of

C =
r∨

i=1

(
(0)
∧(pi∧

j=1

fij

)∧(
¬hi

))
(2.6)

where fij , hi ∈ R.

Definition 2.3. We say a DNF constraint C is canon-
ical when C is in the form of (2.6). For an arbitrary
constraint C, the C ′ in Lemma 2.1 is called the canon-
icalization of C.

Example. Let C be the same constraint as in the
Example in section 2.2. The canonicalization of C is
((0)∧ (y− x2)∧¬(y2 − x2))∨ ((0)∧ (y− 1)∧¬(x− 1))
�

In the following sections we see how we can relate
boolean operations on algebraic constraints with alge-
braic operations over a (non-boolean) polynomial ring.

3 Representing Algebraic Constraints by
Equations

An algebraic constraint is a boolean-valued function and
it does not fit in so easily with algebraic operations over
R. For example, we cannot even ”multiply” two literals
f and ¬g because ¬g is not a polynomial any more.
First we consider an elementary open set D(f). This
represents a condition f 6= 0 and this is not an equation.
It is well-known that we can adopt a new variable (slack
variable) z to come down to:

f(x) 6= 0⇔ 1− zf(x) = 0 for some z ∈ k

As far as we know, the previous works use slack
variables only for the purpose of turning inequalities
into equations, and do not have unifying formulation
that takes into consideration both base variables (xi in
R = k[x1, · · · , xn]) and slack variables. Also, this simple
application of slack variables requires the same number
of slack variables as of the elementary open sets that
occur in the given constraint.

In the following discussion we show that only one
slack variable is sufficient to model general algebraic
constraint defined in Section 2. In this section we give
a formulation of our idea to do with only one slack
variable for DNF, and in the next section we construct
an algebraic model to expand our idea to arbitrary
constraints.

3.1 Ambient Space for Algebraic Constraints
In order to treat constraints including negations in
our algebraic model, we introduce a variable z that is
algebraically independent of x1, · · · , xn, and consider a
little larger space than the original space kn, that is,
kn+1.

Definition 3.1. Let π be a natural projection map
from kn+1 to kn as follows:

π : kn+1 −→ kn

(a1, · · · , an, c) 7−→ (a1, · · · , an)

when we consider AC(R), this kn+1 is called the ambi-
ent space of AC(R) or simply the ambient space.

We would like to give a subset W ⊂ kn+1 for every
C ∈ AC(R) such that π(W) = Vc(C). If such W is
found, then

C is true on kn ⇔ Vc(C) is nonempty
⇔ W is nonempty

C is true at a ∈ kn ⇔ a ∈ Vc(C)
⇔ (a, c) ∈W for some c

hold, and we can discuss on the ambient space to study
the original constraint.

It is very important that such W must be an
algebraic set, that is, a subset of kn+1 in the form
{f1(x) = 0}∧· · ·∧{fm(x) = 0}, in order to apply various
methods of algebraic geometry to W . Note that when
W is a union of more than one algebraic sets, we can
still say that W is an algebraic set because when W =⋃r

i=1Wi and Wi = {fi1 = 0} ∧ · · · ∧ {fipi
= 0}, then

W is expressed as an intersection of f1j1f2j2 · · · frjr
= 0

for all possible (j1, · · · , jr). Hence we call a union of
algebraic sets also as an algebraic set in the following

discussion. Refer to [2] or [3] for details in terms of
algebraic geometry.

The next example shows that canonicalization of a
DNF constraint is essential.

Example. For one elementary open set D(f), we can
easily find such W ⊂ kn+1, that is,

W = V (1− zf(x))
= {(a1, · · · , an, c) ∈ kn+1

∣∣ 1− cf(a) = 0}

However, for the intersection of two open sets D(f)
and D(g), the natural interpretation by the formula
(1 − z1f(x) = 0) ∩ (1 − z2g(x) = 0) requires two
slack variables z1 and z2 and we cannot use a common
z here because the value of z completely determines
the value of f and g. Instead, by using the fact that
D(f)∩D(g) = D(fg) ⊂ kn, we can find an appropriate
algebraic set W = V (1− zf(x)g(x)) ⊂ kn+1. �

The above example motivates us to define an alge-
braic set in the ambient space as follows.

3.2 Correspondence between Algebraic Con-
straint Sets and Algebraic Sets in Ambient Space

Definition 3.2. For a canonical DNF constraint C
defined by (2.6), we define an algebraic set Ṽc(C) on
the ambience space kn+1 as

Ṽc(C) def=
r⋃

i=1

((pi⋂
j=1

V (fij)
)⋂

V
(
1− zhi

))
(3.7)

When C = 0 we define Ṽc(C) = kn+1, the whole
ambient space.

Note that fij and hi can be seen as polynomials
of R[z] although they do not contain the variable z.
The following Proposition 3.1 is the first result of our
formulation.

Proposition 3.1. π(Ṽc(C)) = Vc(C)

Proof. Let a = (a1, · · · , an) ∈ Vc(C). By the definition
of Vc(C), there exists i0 ∈ {1, · · · , r} such that

a ∈
(pi0⋂
j=1

V (fi0j)
)⋂

D(hi0)(3.8)

So the following equations hold.

fi01(a) = 0, · · · , fi0pi0
(a) = 0, hi0(a) 6= 0,

Let c def= 1/hi0(a). c is well-defined because hi0(a)
is nonzero. Take ã def= (a1, · · · , an, c) ∈ kn+1. By the
construction of c,

1− c× hi0(a) = 1− 1 = 0

Hence we have

ã ∈
(pi0⋂
j=1

V (fi0j)
) ⋂

V
(
1− zhi0

)
(3.9)

(Note that fij(ã) = fij(a), hi(ã) = hi(a) because fij

and hi are polynomials independent of the variable z)
So ã ∈ Ṽc(C) and π(ã) = a. This means Vc(C) ⊂
π(Ṽc(C)).

Conversely, take a ∈ π(Ṽc(C)). We can take c ∈ k
such that ã = (a, c) ∈ kn+1 and ã ∈ Ṽc(C). Then
there exists i0 ∈ {1, · · · , r} such that (3.9) holds. In
particular, 1− c× hi0(a) = 0, which implies hi0(a) 6= 0.
Hence we have (3.8) and π(Ṽc(C)) ⊂ Vc(C) follows. �

By Proposition 3.1, we can calculate algebraic con-
straint sets completely by using algebraic equations on
the ambient space, that is, Ṽc(C) is a union of sets of
common zeros of polynomials, while Vc(C) is not.

The key point is that we use DNF to represent
constraints in order to choose one i0 ∈ {1, · · · , r} and
use only one hi0 in the proof of Proposition 3.1, which
enables us to handle general combination of multiple
negations with only one variable z as we have already
seen.

Example. Consider an algebraic constraint C = (¬x) ∧
((y) ∨ (¬(x3 − 1))) over k[x, y]. Let W = V (1 − zx) ∩
(V (y) ∪ V (1− z(x3 − 1))) be a corresponding algebraic
subset of k2. C is not a DNF constraint, and π(W) 6=
Vc(C) because (−1, 1) ∈ Vc(C) and (−1, 1) /∈ π(W). �

4 Constraint Semiring

In Section 3 we define an algebraic set Ṽc(C) in the
ambient space that is mapped to the target algebraic
constraint set Vc(C) by the projection π. Also, by
Proposition 3.1, we can get a set of equations on the
ambient space explicitly from a DNF constraint.

In order to obtain the algebraic set for the arbitrar-
ily given constraint C, it may be sufficient to transform
C into a DNF constraint C ′ and apply Proposition 3.1
to C ′, because C is equivalent to C ′ and they give the
same algebraic constraint set.

However, such C ′ cannot be uniquely determined
and hence it is nontrivial to choose a ”good” set of
equations on the ambient space, which is necessary for
applying tools of algebraic geometry or computational
methods such as Gröbner basis. For example, when
C1 ∧ C2 is a constraint and we know a set of algebraic
equations for every Ci on the ambient space, how can
we know a set of equations for C1 ∧ C2? Since we use
only one slack variable, things are not so simple.

Here we study a model that enables us to calculate
a set of equations for C1 ∧ C2 from equations for C1

and C2. We consider operations ∧,∨,¬ for sets of
equations on the ambient space, and we shall show
that these operations commute with ∧,∨,¬ for algebraic
constraints that are not necessarily DNF.

First we define the constrant semiring, a kind of
semiring[4] that enables us to compute an algebraic
constraint set for an arbitrary constraint that is not
necessarily in DNF. Then we give a relation among
algebraic constraint, constraint semiring and set of
equations on the ambient space.

4.1 Motivation and Definition It is known that a
set of all of ideals of R is a commutative semiring with
its natural operations of addition and multiplication of
ideals[4]. However, addition of ideals is not suitable for
our model because the slack variable z cannot be shared
with conjunction of constraints. For example, consider
an algebraic set W corresponding to an algebraic con-
straint (¬x)∧ (¬(x−1)). The corresponding ideal of W
should be I = (1 − zx, 1 − z(x − 1)) because (¬x) and
(¬(x−1)) correspond to ideals (1−zx) and (1−z(x−1))
respectively, but as an ideal I = (1) and V (I) ⊂ R2 is an
empty set, and hence π(V (I)) ⊂ R is also empty. This
is different from our expected result (x 6= 0 ∧ x 6= 1), a
whole line except two points in R.

We tackle this by defining addition and multiplica-
tion on a set of generators of an ideal that are different
from the normal operations of a set of all of ideals of R.

Definition 4.1. Let R[z] = k[x1, · · · , xn, z] be a poly-
nomial ring over k with (n + 1)-variables. We define
I(R[z]) a set of finite sets of elements of R[z] such that
every element I ∈ I(R[z]) contains 0 ∈ R[z]. We say
that I ∈ I(R[z]) is a minimal constraint generator, or
I ∈MCG(R), when I is in the form of

I = {0, f1(x), · · · , fr(x), 1− zh(x)}(4.10)

where fi, h ∈ R \ {0} and r ≥ 0.
In particular, {0, f, 1 − z} is denoted by L(f), and

{0, 1− zh} is denoted by ¬L(h).

We construct the target semiring by extending
MCG(R) with operations of addition and multiplica-
tion.

Definition 4.2. For I = {0, f1(x), · · · , fr(x), 1− zh1(x)}
and J = {0, g1(x), · · · , gs(x), 1 − zh2(x)} ∈ MCG(R), we
define multiplication I × J , or simply IJ , as

IJ
def= {0} ∪ {f1, · · · , fr}(4.11)

∪ {g1, · · · , gs} ∪ {1− zh1h2}

It is clear that IJ ∈MCG(R) by this construction,
and it is easy to see that MCG(R) is a commutative

monoid with the identity element 1 def= {0, 1 − z} with
respect to multiplication. Note that we define minimal
constraint generator so that it corresponds to minimal
algebraic constraint(See subsection 2.1).

Next we give a definition of the constraint semiring.

Definition 4.3. Let CS(R) be a free monoid over
MCG(R) with respect to addition. Every element of
CS(R) is expressed as a formal sum I1 + · · · + Im for
some Ii ∈MCG(R).

The zero element is intrinsically defined, and we
give a structure of set to the zero element of CS(R) as
0 def= L(1) = {0, 1, 1− z}. that is, we define I + 0 = I
for any I ∈ CS(R).

Proposition 4.1. For I = I1 + · · · + Ir, J = J1 +
· · · + Js ∈ CS(R), we define multiplication IJ to be∑

1≤i≤r,1≤j≤s(IiJj). Then CS(R) is a semiring with
respect to this multiplication and addition.

Proof. Since IiJj is again a minimal constraint genera-
tor, CS(R) is closed under multiplication defined here.
We can easily check that CS(R) satisfies the following
properties of semiring by straightforward calculation.

I + J = J + I, I + (J +K) = (I + J) +K,

IJ = JI, I(JK) = (IJ)K,

I(J +K) = IJ + IK,

I + 0 = I, I × 1 = I

where I, J,K ∈ CS(R) are arbitrary elements and 0,1
are defined above. �

Definition 4.4. We call CS(R) the constraint semir-
ing over R. An element of CS(R) is called a constraint
generator over R.

We defined the constraint semiring so that addition
and multiplication of two generator I, J correspond to
taking ∨ and ∧ of the two constraints respectively. Note
that for 0 = {0, 1, 1 − z}, I × 0 = 0 does not hold
in general. However, in actual calculation of algebraic
constraint sets, we can replace I × 0 with 0 as we can
see below.

Definition 4.5. Let I = I1 + · · · + Ir be a constraint
generator where every Ii is minimal. We define S(I), a
subset of I(R[z]), to be

S(I) def= { f1 · · · fr | fi ∈ Ii, 1 ≤ i ≤ r }(4.12)

where f1 · · · fr is a normal product of fi in R[z].

Note that we identify S(mI) with S(

m︷ ︸︸ ︷
I + · · ·+ I)

for a constraint generator I and a positive integer
m. Also note that the definition of S(I) depends on
representation of I = I1 + · · · + Ir, but S(I) is a
free monoid generated by elements of MCG(R), so the
representation is unique and S(I) is well-defined.

Intuitively, for I = I1 + · · · + Ir, S(I) gives a
set of equations on the ambient space for a DNF that
corresponds to (2.1). In the following discussion we will
give the correspondence between an algebraic constraint
and a set of equations on the ambient space in a natural
way.

4.2 Algebraic Constraint Set for General Con-
straints We analyze arbitrary algebraic constraints
that are not necessarily in DNF by using the constraint
semiring. First we study constraints in negation normal
form(NNF), that is, a form where negation occurs only
immediately above literals.

Definition 4.6. Let C ∈ AC(R) be an algebraic con-
straint in NNF. We define I(C) ∈ CS(R) by converting
C as follows.

• Replace a literal f ∈ R with L(f) = {0, f, 1− z} ∈
CS(R) in C. Note that when f = 0 then L(f) = 1,

• Replace a non-zero negative literal ¬h (h ∈ R\{0})
with ¬L(h) = {0, 1 − zh} ∈ CS(R) in C ,and ¬0
with 0 = {0, 1, 1− z}, and

• Replace ∧, ∨ with ×, + respectively in C.

I(C) is an element of CS(R), which is clearly from its
construction, and S(I(C)) is a finite subset of R[z]. It
is easy to see that every element of S(I(C)) is expressed
as f = f1 × · · · × fr × (1 − zh1) × · · · × (1 − zhs) for
some fi, hj ∈ R that occur in C.

We define Ṽc(C) to be a subset of kn+1 as

Ṽc(C) def= V (S(I(C))) =
⋂

f∈S(I(C))

V (f)(4.13)

that is, Ṽc(C) is a set of common zeros of polynomials
in S(I(C)).

First we check that this definition is consistent with
the previous definition of Ṽc(C).

Lemma 4.1. For a canonical DNF constraint C ∈
AC(R), Ṽc(C) in Definition 4.6 is equal to the one (3.7)
in Definition 3.2.

Proof. Let C be a constraint in the form of (2.6). By
the definition of I(C), we get

I(C) =
r∑

i=1

(
1×

pi∏
j=1

{0, fij , 1− z} × {0, 1− zhi}
)

=
r∑

i=1

{0, fi1, · · · , fipi
, 1− zhi} · · · (∗)

By Definition 3.2, for (a, c) = (a1, · · · , an, c) ∈ kn+1,

(a, c) ∈ (3.7)
⇐⇒ ∃i0 ∈ {1, · · · , r}

s.t. (a, c) ∈
(pi0⋂
j=1

V (fi0j)
)⋂

V
(
1− zhi0

)
⇐⇒ ∃i0 ∈ {1, · · · , r}
s.t. fi0j(a) = 0 (1 ≤ j ≤ pi0), 1− chi0(a) = 0

This implies that for every element f ∈ S(I(C)),
f(a, c) = 0 because f = F1 · · ·Fr where Fi is either one
of fij or 1−zhi, and the product always contains one of
fi0j or 1− zhi0 . Hence (3.7) ⊂ (2.6) holds. Conversely,
if such i0 does not exist, for every i there exists some
F̃i ∈ {fi1, · · · , fipi , 1 − zhi} such that F̃i(a, c) 6= 0, so

f
def= F̃1 · · · F̃r also satisfies f(a, c) 6= 0, which implies

that (a, c) /∈ (2.6). �

What we want to do is to generalize Proposition 3.1.
The following Lemma 4.2 is proved by similar techniques
used in the proof of Lemma 4.1, but it is a little more
complicated.

Lemma 4.2. For any constraints C1, C2 ∈ AC(R), the
following holds.

π(Ṽc(C1 ∧ C2)) = π(Ṽc(C1)) ∩ π(Ṽc(C2))(4.14)

π(Ṽc(C1 ∨ C2)) = π(Ṽc(C1)) ∪ π(Ṽc(C2))(4.15)

Proof. We prove only (4.14) here. (4.15) can be proved
in a similar manner but it is easier. Let I(C1), I(C2) ∈
CS(R) and I(C1) = I1+· · ·+Ir and I(C2) = J1+· · ·+Js

where Ii, Jj are minimal constraint generators. It is
clear that I(C1∧C2) = I(C1)×I(C2) by Definition 4.6,
and we have

Ṽc(C1 ∧ C2) =
⋂

f∈S(I(C1∧C2))

V (f)

=
⋂

f∈S(I(C1)×I(C2))

V (f)

=
⋂

f∈S(
P

1≤i≤r,1≤j≤s(IiJj))

V (f)

Hence

a = (a1, · · · , an) ∈ π(Ṽc(C1 ∧ C2))
⇔ ∃c ∈ k s.t. (a, c) ∈ V (f)

for ∀f ∈ S(
∑

1≤i≤r,1≤j≤s

(IiJj))

Now take any a ∈ π(Ṽc(C1 ∧ C2)). By definition of
S(), f =

∏
1≤i≤r,1≤j≤s Fij for some Fij ∈ IiJj , so the

above condition says that

∃c ∈ k(4.16)

s.t.
∏

1≤i≤r,1≤j≤s

Fij(a, c) = 0, ∀Fij ∈ IiJj

If there exists Eij ∈ IiJj for every (i, j) such
that Eij(a, c) 6= 0, then (4.16) does not hold for∏

1≤i≤r,1≤j≤sEij , which is a contradiction. Hence there
exists (i0, j0) such that E(a, c) = 0 for any E ∈ Ii0Jj0 .

Since Ii0 and Jj0 are minimal, we assume
that Ii0 = {0, fi01, · · · , fi0pi0

, 1 − zhi0} and Jj0 =
{0, gj01, · · · , gj0qj0

, 1 − zvj0} where fi0l, gj0m, hi0 , vj0 ∈
R. Then Ii0Jj = {0, fi01, · · · , fi0pi0

, gj01, · · · , gj0qj0
, 1 −

zhi0vj0} (Even if fi0l = gj0m for some l and m, it does
not affect the following discussion). By combining this
with the above fact, we get

(∗)

 fi0l(a) = 0 (1 ≤ l ≤ pi0),
gj0l(a) = 0 (1 ≤ l ≤ qj0),

1− chi0(a)vj0(a) = 0

In particular, hi0(a) 6= 0 and vj0(a) 6= 0 hold by the
last equality.

Let c1
def= 1/(hi0(a)). Every element f in

S(I(C1)) = S(
∑r

i=1 Ii) is expressed as
∏

1≤i≤r Fi for
some Fi ∈ Ii. In particular, Fi0 is either one of fi0l

for some l or 1 − zhi0 , and in any way Fi0(a, c1) = 0
holds by the construction of a and c1. This means that
f(a, c1) = 0 for every f ∈ S(I(C1)), which implies that
(a, c1) ∈ Ṽc(C1), and hence a ∈ π(Ṽc(C1)). Also, we
obtain a ∈ π(Ṽc(C2)) by replacing I(C1) =

∑r
i=1 Ii

with I(C2) =
∑s

j=1 Jj in the above discussion, so
a ∈ π(Ṽc(C1)) ∩ π(Ṽc(C2)) follows.

In order to see the converse inclusion, take any
a ∈ π(Ṽc(C1)) ∩ π(Ṽc(C2)). a ∈ π(Ṽc(C1)) means that
there exists c1 ∈ k such that

∏
1≤i≤r Fi(a, c1) = 0 for

every choice of Fi ∈ Ii. This implies that there exists i0
such that Fi0(a, c1) = 0 for all Fi0 ∈ Ii0 , and hence

fi0l(a) = 0 (1 ≤ l ≤ pi0),
1− c1hi0(a) = 0

follows. Similarly, we can choose c2 ∈ k and j0 such
that

gj0m(a) = 0 (1 ≤ m ≤ qj0),

1− c2vj0(a) = 0

hold. Now let c def= c1c2. By the construction of c, (∗)
holds for (i0, j0) and this implies a ∈ π(Ṽc(C1 ∧ C2)). �

Note that Lemma 4.2 holds for any constraints that
are not in NNF. Now we state generalized version of
Proposition 3.1 for NNF.

Proposition 4.2. Let C ∈ AC(R) be an algebraic
constraint in NNF. Then

π(Ṽc(C)) = Vc(C)(4.17)

holds.

Proof. Lemma 4.2 shows that ∧ and ∨ commute with
operation π(Ṽc()). Since C is in NNF, the problem is
reduced to prove the case when I(C) ∈MCG(R), which
follows from Proposition 3.1 and Lemma 4.1. �

Example. Consider C = (¬x) ∧ (y ∨ (¬(x3 − 1))) ∈
AC(R). C is not in DNF but in NNF.

I(C) = (¬L(x))× (L(y) + ¬L(x3 − 1))

= ((¬L(x))× L(y)) + ((¬L(x))× (¬L(x3 − 1)))

= {0, y, 1− zx}+ {0, 1− zx(x3 − 1)}
= {0, y(1− zx(x3 − 1)), (1− zx)(1− zx(x3 − 1))}

the right hand of the equation gives a set of equations
for Ṽc(C), and Proposition 4.2 ensures that, by project-
ing Ṽc(C) on kn via π, we get the desired Vc(C) = {x 6=
0} ∩ ({y = 0} ∪ {x3 6= 1}).

Note that the order of operations is essential in com-
putation. For example, if we compute (L(y) +¬L(x3 −
1)) first, then the result is not a sum of minimal con-
straint generators and cannot perform multiplication
with ¬L(x) because it is not defined. This corresponds
to taking S(I) for a constraint generator I after calcu-
lating multiplication in CS(R). �

4.3 Negation and Main Result We define the
operation of general negation on CS(R), and extend
Proposition 4.2 to general constraints. We give our main
result in Proposition 4.3 and introduce a few properties
of the correspondence between constraints and algebraic
sets on the ambient space.

Definition 4.7. For a minimal constraint generator
I = {0, f1, · · · , fr, 1− zh},we define ¬I as

¬I def= {0, 1− zf1}+ · · ·+ {0, 1− zfr}+ {0, h, 1− z}
= (¬L(f1)) + · · ·+ (¬L(fr)) + L(h)

¬I is again a finite sum of minimal constraint
generators, so ¬I ∈ CS(R).

For a general constraint generator I = I1 + · · · +
Im ∈ CS(R), Ii ∈MCG(R), we define ¬I as

¬I def= (¬I1)× · · · × (¬Im)(4.18)

where every Ii is defined above. For an algebraic
constraint C, we define I(C) by converting C following
the rules in Definition 4.6 and calculateing negation by
the above rules. Note that I(C) is also an element of
CS(R) after resolving negation.

From the above definition, ¬(I1+I2) = (¬I1)×(¬I2)
always holds for I1, I2 ∈ CS(R). Although ¬(I1I2) =
(¬I1) + (¬I2) does not hold in general, the next lemma
claims that the above definition is natural.

Lemma 4.3. For an algebraic constraint C ∈ AC(R),

π(Ṽc(¬C)) = ¬π(Ṽc(C))(4.19)

holds.

Note that ¬π(Ṽc(C)) = kn \ π(Ṽc(C)). We prove
this lemma similarly to the proof of Lemma 4.2, but
S(I(¬C)) is more complicated than S(I(C)) so we have
to look at its construction carefully.

Proof. For the given C, let I(C) = I1 + · · · + Ir, Ii =
{0, fi1, · · · , fipi , 1 − zhi}, fij , hi ∈ R. First we an-
alyze Ṽc(C) and Ṽc(¬C). By definition, Ṽc(C) =⋃

f∈S(
P

i Ii)
V (f) where every f ∈ S(

∑
i Ii) is expressed

as f = F1j1F2j2 · · ·Frjr
for some Fiji

∈ Ii.
As for Ṽc(¬C),

I(¬C) = (¬I1)× · · · × (¬Ir)

=

rY
i=1

“
¬L(fi1) + · · ·+ ¬L(fipi

) + L(hi)
”

=
X
¬L(fi1ji1

) · · · ¬L(fimjim
)L(him+1) · · ·L(hir)(4.20)

=
X
{0, him+1 , · · · , hir , 1− z(fi1ji1

· · · fimjim
)}(4.21)

where the sum of (4.20) is taken over minimal con-
straint generators with indices {i1, · · · , ir, ji1 , · · · , jim

}
satisfying {i1, · · · , ir} = {1, · · · , r}, 0 ≤ m ≤ r, i1 <
· · · < im, im+1 < · · · < ir and 1 ≤ jik

≤ pik
for

k = 1, · · · , r. Note that if m = 0 then the corresponding
generator does not contain ¬L(fij), so the expression of
the generator in (4.21) is {0, hi1 , · · · , hir

, 1− z}.
And we have Ṽc(¬C) =

⋃
f∈S(I(¬C)) V (f) where

every f ∈ S(I(¬C)) is zero or a product of ele-
ments of {him+1 , · · · , hir

, 1 − z(fi1ji1
· · · fimjim

)} such
that one and only one element is chosen from one in-
dex {i1, · · · , ir, ji1 , · · · , jim}.

We shall prove the lemma by showing bidirectional
inclusions. Let a ∈ π(Ṽc(¬C)). There exists c ∈

k such that f(a, c) = 0 for every f ∈ S(I(¬C)).
Since f is expressed by a product of elements of R
as above, as in the discussion of Lemma 4.2, there
exists {i1, · · · , ir, ji1 , · · · , jim} such that for every f ∈
{0, him+1 , · · · , hir

, 1 − z(fi1ji1
· · · fimjim

)}, f(a, c) = 0
holds. We assume that i1 = 1, · · · , ir = r without loss
of generality, so we have

(∗)
{
hi(a) = 0 for m+ 1 ≤ i ≤ r, and

1− cf1j1(a) · · · fmjm
(a) = 0

In particular fiji
(a) 6= 0 for 1 ≤ i ≤ m. Let f̃ def=

f1j1 × · · · × fmjm
× (1− zhm+1)× · · · × (1− zhr). f̃ is

an element of S(I(C)) and, by (∗), f(a, c′) 6= 0 for any
choice of c′ ∈ k. This shows that (a, c′) /∈ Ṽc(C), and
a ∈ ¬π(Ṽc(C)) follows.

Conversely, let a /∈ π(Ṽc(¬C)), then for every
c ∈ k, there exists f ∈ S(I(¬C)) such that f(a, c) 6=
0. Assume that a /∈ ¬π(Ṽc(C)). Then for every i,
at least one of hi(a) = 0 or fij(a) 6= 0 (∃j) hold.
By renumbering indices if necessary, without loss of
generality we assume that

(∗∗)
{
fi1(a) 6= 0 for 1 ≤ i ≤ t, and
hi(a) = 0 for t+ 1 ≤ i ≤ r

hold for some 0 ≤ t ≤ r.
Now consider the minimal constraint generator

J
def= {0, ht+1, · · · , hr, 1 − z(f11 · · · ft1)} (if t = 0, then

use 1 − z instead of 1 − z(f11 · · · ft1)), which must ap-
pear in (4.21). Take c def= 1/(f11(a) · · · ft1(a)) if t ≥ 1 or
c = 1 if t = 0. By definition of J and (∗∗), it follows that
f(a, c) = 0 for every f ∈ J . That implies f(a, c) = 0 for
every f ∈ S(I(¬C)), which contradicts our hypothesis.
�

Now we are ready for our main result.

Proposition 4.3. Let C be an arbitrary algebraic con-
straint over R. Then

π(Ṽc(C)) = Vc(C)(4.22)

holds.

Proof. Since Lemma 4.2 holds for arbitrary constraints
including general negation, as in the proof of Proposi-
tion 4.2, it is sufficient to show that negation commutes
with π(Ṽc()), which we have just shown in Lemma 4.3.
�

By Proposition 4.3, we can construct a set of
equations on the ambient space from an arbitrarily given
constraint, that is, S(I(C)). Moreover, ∧,∨ and ¬
commute with operation of taking algebraic set on the
ambient space as we have already seen.

Example. It follows from Proposition 4.3 that

π(Ṽc(¬(C1 ∧ C2)))
Prop. 4.3

= Vc(¬(C1 ∧ C2))
= ¬Vc(C1 ∧ C2))
= ¬(Vc(C1) ∩ Vc(C2))
= Vc(¬C1) ∪ Vc(¬C2)
= Vc((¬C1) ∨ (¬C2))

Prop. 4.3
= π(Ṽc((¬C1) ∨ (¬C2)))

This shows that we can use both I(¬(C1 ∧ C2)) and
I((¬C1) ∨ (¬C2)) in calculation of the algebraic set
Vc(¬(C1 ∧ C2)), although I(¬(C1 ∧C2)) is not equal to
I((¬C1) ∨ (¬C2)) in general. �

Example. Consider the relation between I×0 and 0. In
CS(R), I × 0 6= 0 in general. But I × 0 = (I1 + · · · +
Ir)× 0 =

∑r
i=1 Ii × 0, and for each i,

Ii × 0 = {0, f1, · · · , fr, 1− zh} × {0, 1, 1− z}
= {0, f1, · · · , fr, 1, 1− zh}

In particular, every Ii × 0 contains 1 ∈ R. Hence
S(I × 0) also contains 1 ∈ R, and

⋂
f∈S(I×0) V (f) = ∅

follows. This shows that we can replace I × 0 with 0 in
actual calculation, which corresponds to the fact that
I + (1) = (1) ⊂ R[z] for any ideal I ⊂ R[z]. �

The following proposition shows the relation be-
tween Vc(C) and Ṽc(C).

Proposition 4.4. Let C ∈ AC(R) be a constraint
such that Vc(C) is nonempty. Then projection π| eVc(C) :
Ṽc(C) → Vc(C) is a finite morphism, that is, for every
point x ∈ Vc(C) the fiber π−1(x) is a finite set. In
particular every fiber is a single point when C does not
contain negations.

Proof. Since S(I(C)) always contains an equation in the
form of (1−zh1(x))×· · ·×(1−zhr(x)), for any x ∈ Vc(C)
z is one of 1/hi(x) (1 ≤ i ≤ r) where hi(x) 6= 0, and
hence π−1(x) is a finite set. The second statement of
the proposition is clear from the fact that all of hi is 1
when C does not contain negations. �

This shows that when Vc(C) is an algebraic (closed)
set, Ṽc(C) is on the hyperplane z = 1 and there is one-
to-one correspondence between them.

Example. When C = ¬(x) ∨ ¬(x − 1) on R, I(C) =
{0, 1 − zx} + {0, 1 − z(x − 1)} and S(I(C)) = {0, (1 −
zx)(1− z(x− 1))} respectively. If x 6= 0 and x 6= 1, the
fiber π−1(x) consists of two points, that is, (x, 1

x) and
(x, 1

x−1). If x = 0 or 1, the fiber is a point. �

5 Conclusion

In this paper we studied algebraic constraint that cor-
responds to a subset of kn. We developed a theory to
represent a constraint in a set of equations by using only
one slack variable, and constructed a semiring that have
a natural correspondence to algebraic constraint. Since
arbitrary boolean formula can be transformed into an
algebraic set of kn+1, we can now use tools of algebraic
geometry in order to develop techniques to handle gen-
eral boolean formulas in a unified way. Here we mention
about related issues and the possible directions of future
research.

As we can easily see from the definition, we can
define the semiring CS(R) over an arbitrary ring R that
is not necessarily a polynomial ring over a field k, when
1 ∈ R (and hence 1− zf is defined for z, f ∈ R). In this
case we can regard an equation f = 0 as a condition
that a single boolean variable f is true, and all of the
propositions in this paper still hold. However, note that
here we give not only true/false but an algebraic set for
a given constraint. It is important that S(I(C)) gives
a set of equations for a constraint C and we can apply
methods of algebraic geometry to calculate manifolds
on the ambient space.

In actual calculation of a set of equations S(I) for a
constraint generator I, we can think of S(I) as an ideal
of R[z] and replace S(I) with the radical

√
S(I) so we

can use reduction techniques that have been analyzed
in [6]. (Although in [6] such techniques are shown as
heuristics, they are very natural from the viewpoint of
algebraic geometry, and in the actual calculation they
will be hidden in computation by Gröbner basis)

We are interested in deeper analysis of Proposition
4.3. Since we define {0, f, 1 − z} as a constraint
generator corresponding to the constraint C = (f),
Ṽc(C) = {(x, z) ∈ kn+1 | f(x) = 0 ∧ z = 1} and
we can easily see that the mapping Ṽc(C) 7−→ π(Ṽc(C))
gives an isomorphism between (closed) algebraic sets
of kn and (closed) algebraic sets of kn+1 that are on
the hyperplane z = 1. However, this does not holds
for general (non-closed) sets, and it is an interesting
problem how to measure ”discrepancy” between Vc(C)
and Ṽc(C). Toward application to engineering areas,
it is another interesting issue to extend these ideas to
inequalities such as f > 0, although this is more difficult
to do with one variable.

References

[1] S. C. Chou, Automated Reasoning in Geometries Us-
ing the Characteristic Set Method and Gröbner Basis
Method, Proceeding of ISSAC, 255-260, 1990.

[2] D. Cox, J. Little, and D. O’Shea, Ideals, Varieties
and Algorithms, Undergraduate Texts in Mathematics,
Springer, 1992.

[3] R. Hartshorne, Algebraic Geometry, Graduate Texts in
Mathematics, Springer, 1977.

[4] J. S. Golan, The theory of semirings with applica-
tions in mathematics and theoretical computer science,
Addison-Wesley Longman Ltd., 1992.

[5] D. Kapur, Automated Geometric Reasoning: Dixon
Resultants, Gröbner Bases, and Characteristic Sets,
Lecture Notes In Computer Science, Vol. 1360, Se-
lected Papers from the International Workshop on Au-
tomated Deduction in Geometry, 1-36, 1996.

[6] D. Kapur and H. K. Wan, Refutational Proofs of
Geometry Theorems vis Characteristic et Computation,
Proceeding of ISSAC, 277-284, 1990.

[7] O. E. Ruiz S. and P. M. Ferreira, Algebraic Geometry
and Group Theory in Geometric Constraint Satisfac-
tion, Proceedings of ISSAC, 224-233, 1994.

[8] H. Sawada and X. T. Yan, Applying a Generic Con-
straint Solving Technique to Engineering Design, ECAI
Workshop notes on Knowledge-Based Systems for
Model-Based Engineering, 52-58, 2000.

[9] A. J. Sommese, J. Verschelde and C. W. Wampler,
Numerical Irreducible Decomposition using PHCpack,
Algebra, Geometry, and Software Systems, Springer,
109-129, 2003.

