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Direct Density Ratio Estimation for

Large-scale Covariate Shift Adaptation

Yuta Tsuboi Hisashi Kashima Shohei Hido∗ Steffen Bickel† Masashi Sugiyama‡

Abstract

Covariate shift is a situation in supervised learning where

training and test inputs follow different distributions even

though the functional relation remains unchanged. A com-

mon approach to compensating for the bias caused by co-

variate shift is to reweight the training samples according to

importance, which is the ratio of test and training densities.

We propose a novel method that allows us to directly esti-

mate the importance from samples without going through

the hard task of density estimation. An advantage of the

proposed method is that the computation time is nearly in-

dependent of the number of test input samples, which is

highly beneficial in recent applications with large numbers

of unlabeled samples. We demonstrate through experiments

that the proposed method is computationally more efficient

than existing approaches with comparable accuracy.
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1 Introduction

An assumption that is commonly imposed—either ex-
plicitly or implicitly—in virtually all supervised learn-
ing methods is that the training and test samples follow
the same probability distribution. However, this funda-
mental assumption is often violated in practice, causing
standard machine learning methods not to work as ex-
pected. In this paper, we address supervised learning
problems in the absence of this fundamental assump-
tion.

If the training and test distributions share nothing
in common, we may not be able to learn anything about
the test distribution from the training samples. For a
meaningful discussion, the training and test distribu-
tions should be related to each other in some sense. A
situation where the input distribution p(x) is different
in the training and test phases but the conditional dis-
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tribution of output values, p(y|x), remains unchanged
is called covariate shift [19]. In many real-world ap-
plications such as robot control [25, 18], bioinformat-
ics [1, 5], spam filtering [4], natural language process-
ing [14], brain-computer interfacing [28, 22], or econo-
metrics [12], covariate shift is likely. Covariate shift
is also naturally induced in selective sampling or ac-
tive learning scenarios [8, 7, 27, 15, 21]. For this rea-
son, learning under covariate shift is receiving a lot of
attention these days in the machine learning commu-
nity (such as in the NIPS2006 workshop [6] and the
ECML2006 workshop [2]).

Under covariate shift, standard learning methods
such as maximum likelihood estimation are no longer
consistent, i.e., they do not produce the optimal solution
even when the number of training samples tends to be
infinity. Thus, there exists an estimation bias induced
by covariate shift. It has been shown that the bias
can be asymptotically canceled by weighting the log
likelihood terms according to the importance [9, 19, 29]:

w(x) =
pte(x)
ptr(x)

,

where pte(x) and ptr(x) are the test and training input
densities. Since the importance is usually unknown in
reality, the central issue of practical covariate shift adap-
tation is how to accurately estimate the importance1.

A naive approach to importance estimation is to
first estimate the training and test densities separately

1Covariate shift matters in parameter learning only when the
model used for function learning is misspecified (i.e., the model

is so simple that the true learning target function cannot be
expressed) [19]. When the model is correctly (or overly) specified,
the ordinary maximum likelihood estimation is still consistent.
On this basis, there is a criticism that importance weighting is

not needed, but just the use of a sufficiently complex model can
settle the problem. However, overly complex models result in
large estimation variances, and so in practice we need to choose
a complex enough but not overly complex model. To choose such

an appropriate model, we usually use a model selection technique
such as cross validation (CV). However, the ordinary CV score
is biased due to covariate shift and we still need to importance-

weight the CV score (or any other model selection criteria) for
unbiasedness [19, 29, 23, 22]. For this reason, estimating the
importance is indispensable when covariate shift occurs.



from the training and test input samples, and then es-
timate the importance by taking the ratio of the esti-
mated densities. However, density estimation is known
to be a hard problem particularly in high dimensional
cases [10]. Therefore, this naive approach is usually
ineffective—directly estimating the importance without
estimating the densities is more promising. Therefore,
several methods that allow us to directly obtain impor-
tance estimates without going through density estima-
tion have been proposed recently, such as kernel mean
matching (KMM) [13], the logistic regression based
method (LogReg) [3], and the Kullback-Leibler Impor-
tance Estimation Procedure (KLIEP) [24].

KMM is based on a special property of universal
reproducing kernel Hilbert spaces (Gaussian reproducing
kernel Hilbert spaces are typical examples) [20] and
KMM allows us to directly obtain the importance
estimates at the training input points. Since the
KMM optimization problem is formulated as a convex
quadratic programming problem, it leads to a unique
global solution. KMM has been shown to work well,
as long as the kernel parameters such as the Gaussian
width are chosen appropriately. However, to the best of
our knowledge, there is no reliable method to determine
the Gaussian width and the regularization parameter
in the KMM algorithm2. Therefore, the lack of model
selection procedures is a critical limitation of KMM in
practical applications.

LogReg builds a probabilistic classifier that sepa-
rates training input samples from test input samples,
and the importance can be directly estimated by Lo-
gReg. The maximum likelihood estimation of the Lo-
gReg can be formulated as a convex optimization prob-
lem, so the unique global optimal solution can be ob-
tained. In addition, since LogReg only solves a stan-
dard supervised classification problem, the tuning pa-
rameters such as the kernel width and the regulariza-
tion parameter can be optimized by the standard CV
procedure. This is a very useful property in practice.

KLIEP tries to match an importance-based estima-
tion of the test input distribution to the true test in-
put distribution in terms of the Kullback-Leibler diver-

2Intuitively, it seems possible to optimize the kernel width and
the regularization parameter simply by using CV for the perfor-

mance of subsequent learning algorithms. However, this is highly
unreliable since the ordinary CV score is biased under covariate
shift. For unbiased estimation of the prediction performance of
subsequent learning algorithms, the CV procedure itself needs to

be importance-weighted [29, 22]. Since the importance weight has
to have been fixed when model selection is carried out using the
importance weighted CV, it cannot be used for model selection

of importance estimation algorithms. Note that once the impor-
tance weight has been fixed, the importance-weighted CV can be
used for model selection of subsequent learning algorithms.

gence. KLIEP solves this matching problem in a non-
parametric fashion. The training and test input distri-
butions are not parameterized, but only the importance
is parameterized. The KLIEP optimization problem is
convex and therefore a unique global optimal solution
can be obtained. Furthermore, the global solution tends
to be sparse, so it is computationally efficient in the test
phase. Since KLIEP is based on the minimization of
the Kullback-Leibler divergence, the model selection of
KLIEP, such as the choice of the kernel width and the
regularization parameter, can be carried out naturally
through the likelihood CV procedure [10], so no open
tuning parameter remains.

As reviewed above, LogReg and KLIEP seem to
have advantages over KMM, since they are equipped
with built-in model selection procedures. On the other
hand, from the viewpoint of scalability, all three of the
methods have limitations—in recent applications such
as spam filtering [4] and information retrieval [11], the
number of test (unlabeled) samples are enormous. The
purpose of this paper is to develop a computationally
efficient covariate shift adaptation method that can deal
with large sets of unlabeled data.

Our new method is primarily based on KLIEP. The
key difference is that the original KLIEP uses a linearly
parameterized function for modeling the importance,
while we adopt a log-linear model. By definition,
the log-linear model only takes non-negative values.
This allows us to reformulate the KLIEP optimization
problem as an unconstrained convex problem. Then
we develop a new scalable estimation procedure whose
computation time is nearly independent of the number
of test samples. More precisely, we need to scan a large
number of test samples only once to compute a summary
statistic in the beginning (this pre-computation can be
carried out in linear time and constant storage space).
The main optimization procedure does not use the
test samples themselves, but only uses the summary
statistic. Therefore, the computation time of the main
optimization procedure is independent of the number of
test samples.

The experiments show that the proposed method
is computationally much more efficient than the exist-
ing approaches. Therefore the range of application of
covariate shift adaptation can be greatly enlarged to-
wards large-scale problems. As regards estimation ac-
curacy, we experimentally show that the performance
of the proposed method is comparable to the best exist-
ing methods for small and middle sized problems (since
the existing methods cannot be applied to large-scale
problems due to the computational costs). Thus the
proposed method can be a useful alternative to the ex-
isting covariate shift adaptation methods.



2 Problem Formulation

In this section, we formulate the supervised learning
problem under covariate shift and briefly review existing
techniques for covariate shift adaptation.

2.1 Supervised learning under covariate shift.
Let x ∈ X ⊂ <d be an input variable and y ∈ Y be
an output variable. Y is a real space in regression cases
or a set of categories in classification cases. In standard
supervised learning frameworks, it is assumed that x is
independently drawn from an input distribution and y
is independently drawn from a conditional distribution
both in training and test phases. In contrast, here we
consider a situation called covariate shift [19], i.e., the
input distribution differs in the training and test phases,
but the conditional distribution remains unchanged.

Suppose we have independent and identically dis-
tributed (i.i.d.) training input samples Dtr = {xi}Ntr

i=1

from a distribution with strictly positive density ptr(x),
and test input samples Dte = {xi}Nte

i=1 from a distribu-
tion with density pte(x). In addition to the input sam-
ples, suppose we have training output samples {yi}Ntr

i=1

drawn from the conditional distribution with condi-
tional density p(y|x = xi), respectively. Typically, the
number Ntr of training samples is rather small due to
the high labeling cost, while the number Nte of test
input samples is very large since they are often easily
available. We denote training sample pairs of input and
output as Ztr = {zi | zi = (xi, yi)}Ntr

i=1.
We use the following linear model:

(2.1) fθ(x) = 〈θ,φ(x)〉 ,

where θ is the parameter vector, φ(x) : X → <t is a
basis function of x, and 〈u, v〉 denotes the Euclidean
inner product between vector u and v: 〈u, v〉 =∑d

l=1 ulvl. Note that this model can contain a bias
parameter by just including a constant basis function
in φ(x). Throughout the paper, we suppose that this
linear model is not generally specified correctly, i.e., the
true input-output function is not necessarily included
in the above linear model. Since we do not know the
true function class in practice, dealing with misspecified
models is quite realistic.

The goal of supervised learning is to learn the
parameter θ so that the output values for the test inputs
can be accurately predicted. Thus our error metric
(which is usually called the generalization error) is given
by

(2.2)
∫∫

Loss(x, y, fθ(x))pte(x)p(y|x)dxdy,

where Loss(x, y, fθ(x)) : X × Y × Y → < is a loss

function, such as the squared loss in a regression case
or the zero-one loss in a classification case.

In supervised learning under covariate shift, the
following quantity called the test domain importance
plays an important role:

(2.3) w(x) =
pte(x)
ptr(x)

.

The importance can be used for adjusting the difference
between the training and test input distributions: for
any function A(x),

(2.4)
∫

A(x)pte(x)dx =
∫

A(x)w(x)ptr(x)dx.

2.2 Parameter learning under covariate shift.
Here we review two typical parameter learning methods
under covariate shift: one is importance weighted least
squares (IWLS) for regression and the other is impor-
tance weighted logistic regression (IWLR) for classifica-
tion.

IWLS: A standard learning method in regression
scenarios would be ordinary least squares (LS):

θ̂LS ≡ argmin
θ

 ∑
(x,y)∈Ztr

(fθ(x) − y)2
 .

LS is known to be consistent under a usual setting.
However, it is no longer consistent for misspecified mod-
els under covariate shift. Instead, IWLS is consis-
tent [19]:
(2.5)

θ̂IWLS ≡ argmin
θ

 ∑
(x,y)∈Ztr

w(x) (fθ(x) − y)2 + λ‖θ‖2

 ,

where the importance w(x) is used as weights. Here
we also added a penalty term λ‖θ‖2 for regularization,
where λ is a regularization parameter.

For the linear model (2.1), the above optimization
problem is convex and the unique global solution θ̂IWLS

can be computed in a closed-form as

θ̂IWLS = (Φ>WΦ + λI)−1Φ>Wy,

where I is the identity matrix,

Φi,l = φl(xi), y = (y1, y2, . . . , yNtr)
>, and

W = diag(w1, w2, . . . , wNtr).

IWLR: For simplicity, we focus on the two-class
case, i.e. Y = {−1, 1}; we note that it is straightforward
to extend all of the discussions in this paper to multi-
class cases.



Let us model the posterior probability of class y
given x using a parametric model fθ(x) as

pθ(y|x) =
exp(yfθ(x))

1 + exp(yfθ(x))
.(2.6)

Then a test input sample x is classified by choosing the
most probable class:

(2.7) ŷ = argmax
y

pθ(y|x).

A standard learning method for the above proba-
bilistic classification scenarios would be ordinary logistic
regression (LR):

θ̂LR ≡ argmin
θ

 ∑
(x,y)∈Ztr

(log (1 + exp (yfθ(x)))−yfθ(x))

 .

Similar to the case of LS, LR is consistent under a usual
setting, but is no longer consistent for misspecified mod-
els under covariate shift. Instead, IWLR is consistent:

(2.8) θ̂IWLR ≡ argmin
θ ∑

(x,y)∈Ztr

w(x) (log (1+ exp (yfθ(x)))−yfθ(x))+λ‖θ‖2

 .

Here we also added a penalty term λ‖θ‖2 for regular-
ization, where λ is a regularization parameter.

This optimization problem is known to be convex
and a unique optimal solution can be computed using
standard non-linear optimization techniques such as a
gradient ascent method or some variants of the Newton
method. The gradient of the above objective function
is given by

(2.9)
∑

(x,y)∈Ztr

w(x) (ypθ(y|x)φ(x) − yφ(x)) + 2λθ.

2.3 Model selection under covariate shift. In
the above learning methods, the choice of model param-
eters such as the basis functions φ and the regularization
parameter λ heavily affects the prediction performance.
This problem is called model selection and is one of the
key concerns in machine learning.

A popular model selection method in the machine
learning community would be cross validation (CV).
The performance of CV is guaranteed in the sense
that it gives an unbiased estimate of the generalization
error. However, this useful theoretical property is no
longer true under covariate shift [29]. To cope with this
problem, a variant of CV called importance weighted CV

(IWCV) has been proposed for model selection under
covariate shift [22]. It has been proved that IWCV
gives an unbiased estimate of the generalization error
even under the covariate shift.

Here, let us briefly describe the IWCV procedure.
We first divide the training samples {zi}Ntr

i=1 into R
disjoint subsets {Zr}R

r=1. Then we learn a function
fr

θ(x) from {Zj}j 6=r by IWLS/IWLR and compute its
mean test error for the remaining samples Zr:

1
|Zr|

∑
(x,y)∈Zr

w(x) (fr
θ(x) − y)2 , (regression)

1
|Zr|

∑
(x,y)∈Zr

w(x)I(ŷ = y), (classification)

where I(·) denotes the indicator function. We repeat
this procedure for r = 1, 2, . . . , R and choose the model
such that the average of the above mean test error is
minimized.

3 Importance Estimation

As we have seen in the previous section, the importance
w(x) plays a central role in covariate shift adaptation.
However, the importance is unknown in practice so we
need to estimate it from samples.

Direct importance estimation methods that do not
involve density estimation steps have been developed
recently [13, 3, 24]. Here we review one of those
direct methods called the Kullback-Leibler Importance
Estimation Procedure (KLIEP) [24]. Other methods
will be reviewed in Section 6.

3.1 KLIEP. Let us model w(x) with the following
linear model:

(3.10) ŵ(x) = 〈α, ψ(x)〉 ,

where α ∈ <b is a model parameter vector. Since the
importance should be non-negative by definition, we
suppose that both α and ψ(x) are non-negative.

Using the importance estimation ŵ(x), we can
estimate the test input density pte(x) by

(3.11) p̂te(x) = ptr(x)ŵ(x).

Now we learn the parameter α so that the Kullback-
Leibler divergence from pte(x) to p̂te(x) is minimized:

KL[pte(x)||p̂te(x)] =
∫

D

pte(x) log
pte(x)

ptr(x)ŵ(x)
dx

=
∫

D

pte(x) log
pte(x)
ptr(x)

dx −
∫

D

pte(x) log ŵ(x)dx.

(3.12)



Since the first term in Eq.(3.12) is independent of α, we
ignore it and focus on the second term, which we denote
by JKLIEP:
(3.13)

JKLIEP =
∫

D

pte(x) log ŵ(x)dx ≈ 1
Nte

∑
x∈Dte

log ŵ(x),

where an empirical approximation based on the test
input samples is used. This is the objective function
to be maximized. The value of ŵ(x) should be properly
normalized since it is a probability density function:

1 =
∫

D

p̂te(x)dx =
∫

D

ptr(x)ŵ(x)dx ≈ 1
Ntr

∑
x∈Dtr

ŵ(x),

(3.14)

where the empirical approximation based on the train-
ing samples is used.

Then the resulting optimization problem is ex-
pressed as

maximize
α

∑
x∈Dte

log 〈α, ψ(x)〉

subject to
∑

x∈Dtr

〈α, ψ(x)〉 = Ntr and α ≥ 0,

which is convex. Thus the global solution can be
obtained by iteratively performing gradient ascent and
feasibility satisfaction.

3.2 Model selection by likelihood CV. The per-
formance of KLIEP depends on the choice of the basis
functions ψ(x) (and possibly an additional regulariza-
tion parameter). Since KLIEP is based on the max-
imization of the score JKLIEP, it would be natural to
select the model such that JKLIEP is maximized. The
expectation over pte(x) involved in JKLIEP can be nu-
merically approximated by likelihood CV (LCV) [10] as
follows: First, divide the test samples Dte into R disjoint
subsets {Dr

te}R
r=1. Then, obtain an importance estimate

ŵr(x) from {Dt
te}R

t6=r and approximate the score JKLIEP

using Dr
te as

(3.15) Ĵr
KLIEP =

1
|Dr

te|
∑

x∈Dr
te

ŵr(x).

This procedure is repeated for r = 1, 2, . . . , R and
choose the model such that the average of Ĵr

KLIEP for
all r is maximized.

One of the potential general limitations of CV is
that it is not reliable in small sample cases, since data
splitting by CV further reduces the sample size. A
key advantage of the LCV procedure is that, not the

training samples, but the test input samples are cross-
validated. This contributes greatly to improving the
model selection accuracy, since the number of training
samples is typically limited while there are lots of test
input samples available.

As basis functions, it is suggested to use Gaussian
kernels centered at a subset of the test input points
Dte [24]:

(3.16) Ks(x, xl) = exp
{
−‖x − xl‖2

2s2

}
,

where xl ∈ Dte is a template test sample and s is
the kernel width. This is a heuristic to allocate many
kernels at high test input density regions since many
kernels may be needed in the region where the output
of the target function is large. In the original paper,
the number of Gaussian centers was fixed at Nte/10
for computational efficiency and the kernel width s was
chosen by LCV.

4 KLIEP for Log-linear Models

As shown above, KLIEP has its own model selection
procedure and has been shown to work well in impor-
tance estimation [24]. However, it has a weakness in
computation time. In each step of gradient ascent, the
summation over all test input samples needs to be com-
puted, which is prohibitively slow in large-scale prob-
lems. The main contribution of this paper is to extend
KLIEP so that it can deal with large sets of test input
data.

4.1 LL-KLIEP. In the original KLIEP, a linearly
parameterized model (3.10) is used for modeling the
importance function. Here, we propose using a (nor-
malized) log-linear model3 for modeling the importance
w(x) as

(4.17) ŵ(x) =
exp(〈α, ψ(x)〉)

1
Ntr

∑
x′∈Dtr

exp(〈α, ψ(x′)〉)
,

where the denominator guarantees the normalization
constraint (3.14). By definition, the log-linear model
takes only non-negative values. Therefore, we no longer

3The log-linear model can have numerical problems since it

contains an exponential function. To cope with this problem, we
do not directly compute the value of ŵ(x), but we compute it in
the exponential of the logarithmic domain, i.e.,

exp(log ŵ(x)) = exp(〈α, ψ(x)〉 − log
1

Ntr

X

x∈Dtr

exp(〈α, ψ(x)〉)).

To further stabilize the computation, we compute the logarithmic
sum of the exponential functions as

log(exp(a) + exp(b)) = log(1 + exp(b − a)),
where we pick the smaller exponent as b.



need the non-negative constraint for the parameter (and
the basis functions). Then the optimization problem
becomes unconstrained :

maximize
α

JLL−KLIEP(α),

where

JLL−KLIEP(α) =
1

Nte

∑
x∈Dte

log ŵ(x)

=
1

Nte

∑
x∈Dte

〈α,ψ(x)〉 − log
1

Ntr

∑
x∈Dtr

exp(〈α, ψ(x)〉).

(4.18)

Below, we refer to this method as LL-KLIEP (log-linear
KLIEP). In practice, we may add a penalty term for
regularization:

(4.19) (α) = JLL−KLIEP(α) − ||α||2

2σ2
,

where σ2 is a regularization parameter.
An advantage of LL-KLIEP over the original

KLIEP is its computational efficiency. The gradient of
(α) can be computed as

∂(α)
∂α

=
1

Nte

∑
x∈Dte

ψ(x)

−
∑

x∈Dtr

exp(〈α, ψ(x)〉)∑
x′∈Dte

exp(〈α, ψ(x′)〉)
ψ(x) − α

σ2

=F − 1
Ntr

∑
x∈Dtr

ŵ(x)ψ(x) − α

σ2
,(4.20)

where

F =
1

Nte

∑
x∈Dte

ψ(x).

This means that once we pre-compute the value of F , we
do not need to use the test samples when we compute
the gradient. This contributes greatly to reducing the
computation time when the number of test samples is
large. In addition, we do not need to store all of the test
samples in memory since we only need the value of F .
The required storage capacity is only Ω(cNtr), where c
is the average number of non-zero basis entries.

Although the above optimization procedure may be
more efficient than original KLIEP, there still exists a
potential weakness: we still need to use all test samples
when computing the values of JLL−KLIEP(α) or (α).
The value of JLL−KLIEP(α) is needed we choose a model
by LCV, and the value of (α) is often utilized in line
search or in the stopping criterion.

4.2 LL-KLIEP(LS). Here, we introduce another
optimization technique for LL-KLIEP that enables us
to overcome the above weakness. Our basic idea is to
encourage the derivative of the convex objective func-
tion to be zero. We use a squared norm to measure the
‘magnitude’ of the derivative (4.20):

(4.21) LS(α) =
1
2

∥∥∥∥∂(α)
∂α

∥∥∥∥2

.

The partial derivative of Eq.(4.21) with respect to
α is expressed as

(4.22)
∂LS(α)

∂α
=

∂2(α)
∂2α

∂(α)
∂α

.

This means that the computational complexity of the
above derivative is O(b2Ntr), which is independent of
Nte. Also, the required storage space is independent of
Nte: Ω(b2 + cNtr). We refer to this approach as LL-
KLIEP(LS1) below.

The computation time and storage space of LL-
KLIEP(LS1) are quadratic functions of the number
of parameters b, which could be a bottleneck in high
dimensional problems. To cope with this problem, we
make use of the representer theorem [26]. Our idea is
to represent the parameter α as a linear combination of
the input samples:

α =
∑

x∈Dtr

ψ(x)βx,

where {βx}x∈Dtr is a data-wise parameter. Then
Eq.(4.21) can be rewritten as

LS({βx}x∈Dtr) =(4.23)

1
2

∥∥∥∥∥F −
∑

x∈Dtr

ψ(x)ω(x) −
∑

x∈Dtr

ψ(x)βx

σ2

∥∥∥∥∥
2

,

where

ω(x) =
exp(

∑
x′∈Dtr

K(x, x′)βx′)∑
x′′∈Dtr

exp(
∑

x′∈Dtr
K(x′′, x′)βx′)

,(4.24)

K(x, x′) = 〈ψ(x), ψ(x′)〉 .

The partial derivative of Eq.(4.23) with respect to βx

is:

(4.25)
∂LS({βx}x∈Dtr)

∂βx
=〈

F −
∑

x′∈Dtr

ψ(x′)
(

ω(x′) − βx′

σ2

)
,

∑
x′∈Dtr

ω(x′)ψ(x′) 〈ϕ(x′), ψ(x)〉 − ψ(x)
σ2

〉
,



Table 1: Computational complexity and space requirements.
Computational complexity Space requirement

Pre. Comp. (once) Objective Derivative Objective Derivative

KLIEP 0 O(bNtr + bNte) O(bNtr + bNte) Ω(cNtr + cNte) Ω(cNtr + cNte)
LL-KLIEP O(bNte) O(bNtr + bNte) O(bNtr) Ω(cNtr + cNte) Ω(cNtr)

LL-KLIEP(LS1) O(bNte) O(bNtr) O(b2Ntr) Ω(cNtr) Ω(b2 + cNtr)
LL-KLIEP(LS2) O(bNte) O(bN2

tr) O(bN2
tr) Ω(cNtr) Ω(N2

tr + cNtr)

where ϕ(x) =
∑

x′∈Dtr
ω(x′)ψ(x′)−ψ(x). We refer to

this approach as LL-KLIEP(LS2).
The computation of LL-KLIEP(LS2) requires

O(bN2
tr) time and Ω(N2

tr+cNtr) space. The computation
time is linear with respect to the number of parameters
b and the storage space is independent of b. This is a
significant improvement over the direct computation of
the partial derivative in Eq.(4.22).

For LL-KLIEP(LS), LCV can also be computed
very efficiently. In each validation set using Dr

te, we
can compute the validation error as

Ĵr
LL-KLIEP(LS) =

∥∥∥∥∥F r −
∑

x∈Dtr

ŵr(x)ψ(x)

∥∥∥∥∥
2

,

where
F r =

1
|Dr

te|
∑

x∈Dr
te

ψ(x).

Note that, once the mean basis vectors F r are calculated
for all R disjoint subsets of Dte, Ĵr

LL-KLIEP(LS) can be
evaluated independently of the size of the test data Dr

te.
The computational complexity and storage space of

each method are summarized in Table 1.

5 Illustrative Examples

In this section, we illustrate the behavior of the pro-
posed LL-KLIEP and show how it can be applied in
covariate shift adaptation.

5.1 Regression under covariate shift. Let us con-
sider an illustrative regression problem of learning

f(x) = sinc(x).

Let the training and test input densities be ptr(x) =
N (x; 1, 12) and pte(x) = N (x; 1, 0.52), where
N (x; µ, σ2) denotes the Gaussian density with mean µ
and variance σ2. We create the training output value
{yi}Ntr

i=1 as yi = f(xi) + εi, where the noise {εi}Ntr
i=1 has

density N (ε; 0, 0.252). Let the number of training sam-
ples be Ntr = 200 and the number of test samples be
Nte = 1000. These settings imply that we are consider-
ing an extrapolation problem (see Figure 1(a)).

We used 100 Gaussian basis functions centered at
randomly chosen test input samples. Figure 1(b) shows

Table 2: Specifications of illustrative classification data.
Training ptr(x, y) Test pte(x, y)
y = 0 y = 1 y = 0 y = 1

Fig. 2(a)
µ (-1,-1) (3,-1) (0,3.5) (4,2.5)

Σ

„

0.25 0
0 4

« „

0.25 0
0 0.25

«

Fig. 2(b)
µ (-1,0) (4,2) (0,2) (3,1)

Σ

„

0.75 0
0 1.5

« „

0.75 0.5
0.01 0.1

«

the true importance w(x) and an estimated importance
ŵ(x) by using LL-KLIEP, where the hyper-parameters
such as the Gaussian width and the regularization
parameter are selected by LCV. We also tested LL-
KLIEP(LS1) and LL-KLIEP(LS2), but we omit their
graphs since their solutions are are almost identical to
the solution of LL-KLIEP.

Figure 1(c) depicts the values of the true JLL−KLIEP

(see Eq.(4.18)) and its estimate by 5-fold LCV. The
means, the 25 percentiles, and the 75 percentiles over
each validation are plotted as functions of the kernel
width s for σ = 1. We also plot the normalized mean
squared error of the estimated importance:
(5.26)

NMSE =
1

Ntr

∑
x∈Dtr

(
ŵ(x)∑

x′∈Dtr
ŵ(x′)

− w(x)∑
x′∈Dtr

w(x′)

)2

.

The graph shows that LCV gives a very good estimate
of JLL−KLIEP and also NMSE.

Figure 1(d) shows the true learning target function
and functions learned by ordinary LS and IWLS with
a linear basis function, such as φ(x) = (1, x)> (sec-
tion 2.2). The regularization parameter λ was selected
by CV for LS and IWCV for IWLS (section 2.3). The
results show that the learned function using IWLS goes
reasonably well through the test samples, while that of
ordinary LS overfits the training samples. Note that the
output of the test samples are not used to obtain the
learned functions.

5.2 Classification under covariate shift. Next,
let us consider two illustrative binary classification prob-
lems, where two-dimensional samples were generated
from Gaussian distributions (see Table 2 and Figure 2).
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Figure 1: Regression under covariate shift.
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Figure 2: Classification examples under covariate shift.

These data sets correspond to a ‘linear shift’ and a ‘non-
linear shift’ (rotation).

Let the number of the training samples be Ntr =
200 and that of the test samples be Nte = 1000 (only 500
test samples are plotted for clarity). We used LR/IWLR
for the training classifiers (see section 2.2), and em-
ployed CV/IWCV for the regularization parameter tun-
ing (see section 2.3). We used a linear basis function for
IWLR: φ(x) = (1,x>)>.

Figure 2 shows the decision boundaries obtained
by LR+CV and IWLR+IWCV. For references, we also
show ‘OPT’, which is the optimal decision boundary ob-
tained using the test input-output samples. For the data
set depicted in Figure 2(a), the correct classification
rate of LR+CV is 99.1% while that of IWLR+IWCV is
100%. For the data set depicted in Figure 2(b), the cor-
rect classification rate of LR+CV is 97.2% while that of
IWLR+IWCV is 99.1%. Thus, for both cases, the pre-
diction performance is improved by importance weight-
ing.

6 Discussion

In this section, we compare the proposed LL-KLIEP
with existing importance estimation approaches.

6.1 Kernel density estimator. The kernel density
estimator (KDE) is a non-parametric technique to es-
timate a density p(x) from samples {xl}N

l=1. For the

Gaussian kernel, KDE is expressed as

(6.27) p̂(x) =
1

(2πs2)d/2N

N∑
l=1

Ks(x, xl),

where Ks(x, x′) is the Gaussian kernel (3.16). The
performance of KDE depends on the choice of the kernel
width s, which can be optimized by LCV [10]. Note that
LCV corresponds to choosing s such that the Kullback-
Leibler divergence from p(x) to p̂(x) is minimized.

KDE can be used for importance estimation by first
obtaining p̂tr(x) and p̂te(x) separately from {xi}Ntr

i=1

and {xi}Nte
i=1 and then estimating the importance as

ŵ(x) = p̂te(x)/p̂tr(x). A potential limitation of this
approach is that KDE suffers from the curse of dimen-
sionality [10], since the number of samples needed to
maintain the same approximation quality grows expo-
nentially as the dimension of the input space increases.
This is particularly critical when estimating ptr(x) since
the number of training input samples is typically lim-
ited. In addition, model selection by LCV is unreliable
in such cases, since data splitting in the CV procedure
further reduces the sample size. Therefore, in high-
dimensional cases LL-KLIEP may be more reliable than
the KDE-based approach.

6.2 Kernel mean matching. The kernel mean
matching (KMM) method avoids density estimation and
directly gives an estimate of the importance at the train-



ing input points [13]. The basic idea of KMM is to find
w(x) such that the maximum difference of the means
of nonlinearly transformed samples drawn from pte(x)
and ŵ(x)ptr(x) is minimized in some feature space F :

min
w(x)

sup
f :f∈F,‖f‖F=1

‖Ete[f(x)] − Etr[w(x)f(x)]‖2
F

subject to Etr[w(x)] = 1 and w(x) ≥ 0.

It has been shown [13] that the solution of this problem
agrees with the true importance if F is a universal
reproducing kernel Hilbert space [20]. The Gaussian
kernel (3.16) is known to induce a universal reproducing
kernel Hilbert space and an empirical version of the
above problem is expressed by the following quadratic
program.

min
{w(x)}x∈Dtr

1
2

∑
x,x′∈Dtr

w(x)w(x′)Kσ(x, x′) −
∑

x∈Dtr

w(x)κ(x)


subject to

∣∣∣∣∣ ∑
x∈Dtr

w(x) − Ntr

∣∣∣∣∣ ≤ Ntrε, and

0 ≤ w(x) ≤ B for all x ∈ Dtr,

where
κ(x) =

Ntr

Nte

∑
x′∈Dte

Kσ(x, x′).

B (≥ 0) and ε (≥ 0) are tuning parameters. The
solution {w(x)}x∈Dtr is an estimate of the importance
at the training input points.

Since KMM does not require density estimates, it
is expected to work well even in high dimensional cases.
However, the performance is dependent on the tuning
parameters B, ε, and σ and they cannot be optimized
easily, e.g., by CV, since estimates of the importance
are available only at the training input points. Thus,
an out-of-sample extension is needed to apply KMM in
the CV framework, but this currently seems to be an
open research issue.

Here, we show that LL-KLIEP(LS2) (see Eq.(4.23))
has a tight connection to KMM. Up to irrelevant con-
stants, Eq.(4.23) without a regularizer can be expressed
as

1
2

∑
x,x′∈Dtr

w(x)w(x′)Kσ(x, x′) −
∑

x∈Dtr

w(x)κ(x),

which is exactly the same form as the objective function
of KMM. Thus, KMM and LL-KLIEP(LS2) share a
common objective function, although they are derived
from very different frameworks.

However, KMM and LL-KLIEP(LS2) still have a
significant difference—KMM directly optimizes the im-
portance values {w(x)}x∈Dtr , while LL-KLIEP(LS2)

optimizes the parameter {βx}x∈Dtr in the importance
model (4.24). Thus, LL-KLIEP(LS2) learns the entire
importance function and therefore it allows us to in-
terpolate the value of the importance function at any
input point. This interpolation property is a significant
advantage over KMM since it allows us to use LCV for
model selection. Therefore, LL-KLIEP(LS2) may be re-
garded as an extension of KMM.

6.3 Logistic regression discriminating training
and test input data. Another method to directly
estimate the importance weights is to use a probabilistic
classifier. Let us assign a selector variable δ = −1 to
the training input samples and δ = 1 to the test input
samples. This means that the training and test input
densities are written as

ptr(x) = p(x|δ = −1), pte(x) = p(x|δ = 1).

A simple calculation shows that the importance can be
expressed in terms of δ as [3]:

w(x) =
p(δ = −1)
p(δ = 1)

p(δ = 1|x)
p(δ = −1|x)

.(6.28)

The probability ratio p(δ = −1)/p(δ = 1) may be simply
estimated using the ratio of the numbers of training and
test input samples. The conditional probability p(δ|x)
may be learned by discriminating between the test input
samples and the training input samples using LR, where
δ plays the role of a class variable (cf. Eq.(2.6)). Let us
train the LR model by regularized maximum likelihood
estimation. The objective function to be maximized is
given by

(6.29) LR(α) =
∑

x∈Dte∪Dtr

δx〈α, ψ(x)〉

−
∑

x∈Dte∪Dtr

log(1 + exp(δx〈α, ψ(x)〉)) − ||α||2

2σ2
,

where the first term is the main likelihood term, the
second term is a normalizer, , and the third term is a
regularizer. Since this is a convex optimization problem,
the global solution can be obtained by standard non-
linear optimization methods. The gradient of the
objective function is given as

∂LR(α)
∂α

=
∑

x∈Dte∪Dtr

δxψ(x) −
∑

x∈Dte∪Dtr

δxpα(δx|x)ψ(x)−||α||2

2σ2
.

(6.30)

Then the importance estimate is given by

(6.31) ŵ(x) =
Ntr

Nte
exp(〈α, ψ(x)〉).



We refer to this approach as LogReg.
Eq.(6.31) shows that the function model of the

importance in LogReg is actually the same as that of
LL-KLIEP except for a scaling factor (cf. Eq.(4.17)).
However, the optimization criteria of LL-KLIEP and
LogReg are different—in LL-KLIEP, the summation is
taken only over the training or test input samples but
not both, while the summation in LogReg is over both
the training and test input samples. This difference is
significant since LogReg does not allow us to use the
computational trick we proposed in Section 4.2. Thus
LL-KLIEP has the advantage in computation time and
storage space consumption over LogReg.

7 Experiments

In this section, we experimentally compare the perfor-
mance of LL-KLIEP with existing methods.

7.1 Toy experiments. Let ptr(x) = N (0d, Id) and
pte(x) = N ((1, 0, . . . , 0)>, 0.752Id). The task is to
estimate the importance at the training input points:

w(x) = pte(x)/ptr(x) for x ∈ Dtr.

We compared LL-KLIEP, LL-KLIEP(LS1), LL-
KLIEP(LS2), KLIEP, KDE, KMM, and LogReg. For
LL-KLIEP, LL-KLIEP(LS1), and LL-KLIEP(LS2), we
used 5-fold LCV to choose the regularization parameter
σ and the kernel width s. For KLIEP, we use 5-fold
LCV to choose the kernel width s. For KDE, we used
5-fold LCV to choose the kernel widths for the training
and test densities. For KMM, we used B = 1000 and
ε = (

√
Ntr − 1)/

√
Ntr following the suggestion in the

original KMM paper [13]. We tested two different val-
ues of the kernel width (s = 0.1 and s = 1.0) for KMM
since there is no reliable method to determine the ker-
nel width. For LogReg, we used 5-fold CV to choose the
regularization parameter σ and the kernel width s.

We fixed the number of test and training input
samples at Nte = 1000 and Ntr = 100, and varied
the input dimension d = 2, 4, . . . , 20. We ran the
simulation 100 times for each d, and evaluated the
estimation accuracy of {w(x)}x∈Dtr by the mean NMSE
(see Eq.(5.26)).

The mean NMSE over 100 trials is plotted in
Figure 3. We omitted the graphs of LL-KLIEP(LS1)
and LL-KLIEP(LS2) since they are almost identical
to the solution of LL-KLIEP. Figure 3 shows that the
error of KDE sharply increases as the input dimension
grows, while LL-KLIEP, KLIEP, and LogReg tend to
give much smaller errors than KDE. This would be
the fruit of directly estimating the importance without
going through density estimation. The results of LL-
KLIEP and LogReg are slightly better than KLIEP,
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Figure 3: Mean NMSE over 100 trials. ‘KMM(s)’
denotes KMM with kernel width s.

perhaps because the original KLIEP does not contain a
regularizer; we believe that the performance of KLIEP
could be improved by adding a regularizer as used in
LL-KLIEP and LogReg. KMM also works reasonably
well, as long as that the kernel width s is chosen
appropriately. However, the performance of KMM is
highly dependent on s and determining its appropriate
value may be difficult. Overall, the accuracy of LL-
KLIEP is comparable to the best existing approaches.

Next, we compare the computational cost of LL-
KLIEP, LL-KLIEP(LS1), and LL-KLIEP(LS2). We
fixed the number of training input points at Ntr = 100
and changed the input dimension d = 10, 100, 1000 and
the number of test samples Nte = 102, 103, . . . , 106.
In this experiment, we used linear basis function so
that the number of bases is equivalent to the input
dimension. We repeated the experiments 100 times
for each Nte and d on the PC server with an Intel R©

Xeon R© 3.6GHz ×2. All of them are implemented on R
(http://www.r-project.org).

Figure 4 shows the average elapsed times for LL-
KLIEP, LL-KLIEP(LS1), and LL-KLIEP(LS2). Note
that these results include the pre-computation times
for the test samples. When d = 1000, the result
of Nte = 106 was excluded for LL-KLIEP and LL-
KLIEP(LS2) because of the large memory requirements.
The results show that the computational cost of LL-
KLIEP increases as the amount of test data Nte grows,
but the computational cost of LL-KLIEP(LS) is nearly
independent of the number of test data Nte. This
is in good agreement with our theoretical analysis in
Section 4.2. As we expected, LL-KLIEP is faster than
LL-KLIEP(LS) when the number of test samples is
small, LL-KLIEP(LS1) is faster than LL-KLIEP(LS2)
for lower dimensional data, and LL-KLIEP(LS2) is
advantageous for high dimensional problem.
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Figure 4: Average computation time over 100 trials. The x (horizontal) axis represents the number of test samples
(Nte), and the y (vertical) axis represents the elapsed time (millisecond), respectively.

7.2 Covariate shift adaptation with regression
and classification benchmark data sets. Finally,
we tested the importance estimation methods for co-
variate shift adaptation in regression and classification
benchmark problems (see Table 7.2).

Each data set consists of input/output samples
{(xi, yi)}N

i=1. We normalized all of the input samples
{xi}N

i=1 into [0, 1]d and chose the test samples Zte =
{(xj , yj)}Nte

j=1 from the pool {xi}N
i=1 with probability

min(1, 4(x(c)
i )2), where x

(c)
i was the c-th element of

xi and i was randomly determined and fixed in each
trial. We chose the training samples Ztr = {(xj , yj)}Ntr

j=1

uniformly from the rest. In this experiment, the test
input density tends to be lower than the training input
density when x

(c)
i is small. We set the number of

samples at Ntr = 100 and Nte = 500 for all of the data
sets.

We used IWLS for regression problems and IWRL
for classification problems. Their basis functions are
linear: φ(x) = (1, x>)>.

We ran the experiments 100 times for each data set
and evaluated the mean test error :∑

(x,y)∈Zte

(fθ(x) − y)2, (regression)(7.32)

∑
(x,y)∈Zte

I(sign(fθ(x)) = y), (classification)(7.33)

where fθ(x) is defined in Eq.(2.1). We compared the
importance estimation methods used in Section 7.1.

The results are summarized in Table 7.2, where
“Uniform” denotes uniform weights, i.e., no importance
weight is used. The table shows that LL-KLIEP
compares favorably with Uniform, implying that the
importance weighted methods are useful for improving
the prediction performance under covariate shift. KDE
tends to be worse than Uniform, which may be due
to the high dimensionality. The direct importance

estimation methods LL-KLIEP, KLIEP, and LogReg
tend to outperform Uniform. KMM also works well
given that the kernel width is chosen appropriately—
but choosing the appropriate kernel width is difficult in
practice without prior knowledge.

Over all, we found that LL-KLIEP is highly scalable
to large sets of test data while the accuracy is compa-
rable to the best existing methods.

8 Conclusions

In this paper, we addressed the problem of estimating
the importance for covariate shift adaptation. We pro-
posed a scalable direct importance estimation method
called LL-KLIEP. The computation time of LL-KLIEP
is nearly independent of the amount of test data, which
is a significant advantage over existing approahes when
we deal with large numbers of test samples. Our experi-
ments highlighted this advantage and we experimentally
confirmed that the accuracy of the proposed method is
comparable to the best existing methods. Therefore the
proposed method is a promising method for large-scale
covariate shift adaptation.
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