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Analysis of page replacement policies in the fluid limit

Ryo Hirade∗ Takayuki Osogami

Abstract

The performance of storage systems and database systems depends significantly on the page replacement
policies. Although many page replacement policies have been discussed in the literature, their performances
are not fully understood except for simple page replacement policies such as Least Recently Used. We
introduce analytical techniques for evaluating the performances of page replacement policies including
Two Queue (2Q), which manages two buffers to capture both the recency and frequency of requests. We
derive an exact expression for the probability that a requested item is found (the hit probability) in a buffer
managed by 2Q in the fluid limit, where the number of items is scaled by n, the size of items is scaled by
1/n, and n approaches infinity. The hit probability in the fluid limit approximates the hit probability in
the original system, and we find that the relative error in the approximation is typically within 1%. Our
analysis also illuminates several fundamental properties of 2Q useful for system designers.

1 Introduction

Caching data is prevalent in today’s computer and communication systems. Operating systems and database
management systems cache data in faster main memory to avoid accessing slower disks [21, 22]. Webpages are
cached at intermediate servers to reduce network traffic, delays perceived by users, and loads at the original
Web servers [20]. The effectiveness of caching is determined by what is cached. In database management
systems, when a requested item is not found in main memory, the item must be copied from a disk to the
main memory, and some item may need to be evicted from the main memory to make room for the requested
item. A page replacement policy determines the item to be evicted, where the primary goal is to maximize the
probability that the items requested in the future will be cached and found in the main memory. Below, we
assume that items have a fixed size (i.e., items are pages of data), and we refer to a cache to store the items
as a buffer.

The most popular page replacement policy is Least Recently Used (LRU), which replaces the item that was
requested least recently with a new item [22]. LRU is efficient in that replacement can be performed in O(1)
time. A well known drawback of LRU is that an item that is requested only infrequently is kept in a buffer until
the item becomes least-recently requested and is evicted without ever being requested again [19]. Also well
known is Least Frequently Used (LFU), which replaces the item that has been requested least frequently with
a new item [22]. LFU only keeps items that are frequently requested in a buffer, but it requires O(log K) time
for replacement, where K is the size of the buffer. Also, LFU cannot quickly adapt to changes in the workload,
since it ignores the recency of requests.

The complementary properties of LRU and LFU motivated researchers to investigate page replacement poli-
cies that take into account both the recency and frequency of requests. O’Neil et al. propose LRU-k [19],
which replaces the item whose kth-to-last request is least recent with a new item. Although LRU-k requires
O(log K) time for replacement, it initiated a stream of research on efficient approximations of LRU-k. Johnson
and Shasha propose Two Queue (2Q) [13], which mimics LRU-2 by dividing a buffer into two parts, B0 and B1,
and performs replacement in O(1) time. Stored in B0 are the items that are requested only once since the last
time that the items are evicted from the buffer. Stored in B1 are the items that are requested at least twice
since the last eviction. When an item needs to be evicted from a part, the least recently requested item in
the part is evicted. An intuition is that B0 operates as a low pass filter that only allows frequently requested
items to be stored in B1. Adaptive Replacement Cache (ARC) is a variant of 2Q and dynamically changes the
sizes of B0 and B1 [17]. Versions of 2Q and ARC are used in recent versions of database management systems1

and file systems2. See [12, 24] for other page replacement policies that use multiple buffers to capture both
the recency and frequency of requests.

∗{rhirade,osogami}@jp.ibm.com
1www.postgresql.org/docs/8.0/static/release-8-0-2.html
2www.opensolaris.org/os/community/zfs/source/
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Although numerous page replacement policies have been discussed in the literature, their relative per-
formances are only partially understood. Page replacement policies are usually evaluated by measuring the
performances against benchmarks or by trace-driven or discrete-event simulations, which are limited and time
consuming. Our goal is to provide an analytical framework that not only allows us to quickly evaluate the per-
formances of page replacement policies but also provides intuitions on their fundamental properties. Toward
that end, this paper proposes analytical techniques for evaluating the performance of 2Q and studies its fun-
damental properties. The proposed analytical techniques may be useful for evaluating other page replacement
polices, particularly those dividing a buffer into multiple parts such as [17, 24, 12].

Our primary contribution is an exact analysis of the probability that a requested item is found in a buffer
managed by 2Q (the hit probability for 2Q) in the fluid limit, where the number of items is scaled by n, the
size of items is scaled by 1/n, and n approaches infinity. We assume that requests are issued according to
independent Poisson processes. An analysis in the fluid limit has been shown to be effective in understanding
systems with many interactive objects, including communication networks and human systems (e.g., see [1]).
In our case, the hit probability in the fluid limit can be used to approximate the hit probability in the original
system. In fact, the hit probability in a system with N items and the hit probability in the fluid limit of the
system with N items usually converge as N approaches infinity. Our numerical experiments suggest that the
relative error in the approximation is small even for a small N and within 1% for N > 1000. A key idea in
our analysis is that B0 and B1 are analyzed as coupled buffers where items receive requests and invalidations
that have particular correlation having partial insensitivity to the behavior of the buffers. Here, when an item
is invalidated, the item is simply removed from a buffer.

Our secondary contribution is a characterization of the fundamental properties of 2Q using the analytical
results in the fluid limit and simulations. In particular, we find that the hit probability for 2Q can in general
be made higher than that in LRU by choosing the size of B0 appropriately. We also find that the stationary
hit probability for 2Q is higher when the size of B0 is set smaller. However, simulations suggest that it takes
longer for the buffer to reach the steady state when B0 is smaller. As a result, 2Q may have poor transient hit
probability when B0 is set too small.

1.1 Prior work

Relatively little work has been done on stochastic analyses of the performances of page replacement policies.
As we will review below, exact expressions for the hit probability or its fluid limit have been derived only for
LRU and other simpler page replacement policies, although various approximations have been proposed.

The hit probability for LRU can be derived by studying a corresponding move-to-front (MTF) list, where
an item is moved to the head of the list when it is requested. The hit probability for LRU for a buffer of size K
coincides with the probability that the requested item is at the K-th position or closer to the head of the MTF
list. McCabe [16] derives the first two moments of the stationary position of a requested item in an MTF list
where requests are issued according to an “independent reference model,” which is essentially equivalent to
independent Poisson processes. The results of McCabe are extended to all moments by Gonnet et al. [7], to
the distribution by Hendrics [9], and to the generating function by Frajolet et al. [6] and Fill and Holst [5].

Unfortunately, the distribution and the generating function in [9, 6, 5] are computationally hard to evaluate
numerically and provide little intuition due to the complexity of their expressions. Fill [4] shows that the
generating function of the stationary position, CN , is simplified in the limit where the number, N , of items
approaches infinity. Using the results of Fill, Jelenković [11] studies the fluid limit of the stationary position,
limn→∞

1
nCnN , which can be translated into the hit probability for LRU in the fluid limit.

Che et al. [3], Laoutaris et al. [14], and Hama and Hirade [8] study an approximation for the hit probability
for LRU, which coincides with the hit probability in the fluid limit proved by Jelenković [11]. Further, Che et
al. [3] and Laoutaris et al. [14] extend the approximation to hierarchical buffers, each of which is managed
by LRU. Although these approximations are based on the idea of the fluid limit, it is unknown whether these
approximations coincide with the fluid limits. Also the hierarchical buffers managed by LRU are essentially
different from a buffer managed by 2Q, since an item may be stored at multiple positions in hierarchical
buffers. In [14], a version of hierarchical buffers that stores an item exclusively at one position is also studied
by simulation, not analytically. Our result is the first that derives and proves the fluid limit of the hit probability
for a page replacement policy that is more sophisticated than LRU.

The rest of the paper is organized as follows. In Section 2, we start with an analysis of the hit probability
for LRU in the fluid limit. We derive an expression that is essentially equivalent to Jelenković [11], but we find
that our derivation is simpler. In Section 3, we extend the analysis of LRU in the fluid limit to the case where
items are requested and invalidated, and the requests and the invalidations have a particular correlation. The
analysis in Section 3 is extended to an analysis of the hit probability for 2Q in the fluid limit in Section 4. In
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Figure 1: A φ(·) and qi,j when n = 3.

Section 5, we validate approximating the hit probability for 2Q by its fluid limit and study the fundamental
properties of 2Q.

2 Analysis of LRU

We start by studying a buffer managed by LRU (an LRU buffer). Let K be the size of the LRU buffer and N
be the number of items. The N items, ei for 1 ≤ i ≤ N , have size 1 and are requested independently of each
other. The inter-request times of ei are independent and have a distribution function, Fi(·), for 1 ≤ i ≤ N .
When a requested item, ei, is not in an LRU buffer, the least-recently requested item in the LRU buffer is
replaced with the ei if the LRU buffer is full or the ei is simply added to the LRU buffer otherwise. When
the ei is found in an LRU buffer, the ei becomes most-recently requested. Recall that the hit probability for
LRU is equivalent to the probability that the position of the requested item is at most K in a corresponding
MTF list. To analyze the hit probability for LRU, we consider a system where requests are issued for an LRU
buffer and for a corresponding MTF list at the same moments. In Section 2.1, we introduce the fluid limit of
the system. In Section 2.2, we analyze the hit probability for LRU in the fluid limit.

2.1 Fluid limit

We consider a sequence of systems, S(n) for n = 1, 2, ..., where each system is associated with an LRU buffer
of size K and with a corresponding MTF list. In S(n), requests are generated independently for n N items,
ei,j for 1 ≤ i ≤ N and 1 ≤ j ≤ n, of size 1/n. For each i, the inter-request times of ei,j are independent and
have the distribution function Fi(·) for 1 ≤ j ≤ n. Note that, when an ei,j is requested in the MTF list of
S(n), the items ahead of the ei,j are moved backward by 1/n and the ei,j is moved to the head of the list. In
particular, S(1) is associated with the original LRU buffer, and S(∞) ≡ limn→∞ S(n) is associated with the
fluid limit of the original LRU buffer.

The sequence of systems that we consider is similar to that in Jelenković [11]. Similarly to S(n), the n-th
system, S ′(n), considered in [11] has nN items, e′i,j for 1 ≤ i ≤ N and 1 ≤ j ≤ n, of size 1/n. Unlike
S(n), however, the distribution of the inter-request times of e′i,j may differ for each j. Jelenković [11] assumes
that an item is requested at each time step and that the probability of the requested item being e′i,j is
qi,j = φ(i − 1 + j

n ) − φ(i − 1 + j−1
n ) for 1 ≤ i ≤ N and 1 ≤ j ≤ n, where φ(·) is some non-decreasing function

such that φ(0) = 0 and φ(N) = 1 (see Figure 1). If φ(·) is linear on [i − 1, i] for 1 ≤ i ≤ N , then S ′(n) is
equivalent to S(n), since qi,j is independent of j in this case. Also, for large N and smooth φ(·), S ′(n) and
S(n) are approximately equivalent. It turns out that S(∞) and S ′(∞) are essentially equivalent, but we find
that our derivation is simpler. This simplicity allows us to extend the analysis to 2Q.

2.2 Analysis of hit probability

We first analyze the stationary distribution of the position of a requested item in the MTF list of S(∞),
which will be used to derive the hit probability for LRU in the fluid limit. For 1 ≤ i ≤ N , let fi(·) be the
density function of the inter-request times, Ri, of ei and Gi(·) be the distribution function of the equilibrium
distribution of Ri (i.e., fi(t) = d

dtFi(t) d
dtGi(t) = (1 − Fi(t))/E [Ri]). In particular, fi(t) = λi e−λi t and

Gi(t) = 1 − e−λi t if ei is requested according to a Poisson process with rate λi.
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Lemma 1 Let C
(n)
i,j be the stationary position of an ei,j in the MTF list of S(n) when the ei,j is requested. As

n → ∞, C
(n)
i,j converges in distribution to Ci whose Laplace transform is given by

E
[
e−s Ci

]
=

∫ ∞

0

e−s
∑N

k=1
Gk(t) fi(t) dt.

Proof: Let t = 0 be the stationary moment when an ei,j is requested in S(n). Let C
(n)
i,j (t) be the position of

the ei,j in the MTF list of S(n) at time t given that the ei,j has not been requested by t. Since the time to
the first request for the ei,j after time 0 has the density function fi(t), we have

E
[
e−s C

(n)
i,j

]
=

∫ ∞

0

E
[
e−s C

(n)
i,j

(t)
]

fi(t) dt.

Since 0 ≤ C
(n)
i,j (t) ≤ N , the dominated convergence theorem can be used to show that

lim
n→∞

E
[
e−s C

(n)
i,j

]
=

∫ ∞

0

lim
n→∞

E
[
e−s C

(n)
i,j

(t)
]

fi(t) dt. (1)

To derive E
[
e−s C

(n)
i,j

(t)
]
, observe that C

(n)
i,j (t) is incremented by 1/n when an ek,ℓ ̸= ei,j is requested for

the first time after time 0. Let Ik,ℓ(t) be the indicator function such that Ik,ℓ(t) = 1 iff ek,ℓ is requested at
least once by time t. Let Ui,j be the set of (k, ℓ) for 1 ≤ k ≤ N and 1 ≤ ℓ ≤ n, where (k, ℓ) ̸= (i, j). Then

C
(n)
i,j (t) =

∑
(k,ℓ)∈Ui,j

1
n

Ik,ℓ(t). (2)

Taking the Laplace transform of (2), we have

E
[
e−s C

(n)
i,j

(t)
]

=
∏

(k,ℓ)∈Ui,j

E
[
e−s Ik,ℓ(t)/n

]
. (3)

Since the items are requested independently and the system under consideration is regenerative and at the
steady state, the ASTA (Arrivals See Time Averages) principle [18] implies that the time to the first request
for ek,ℓ ̸= ei,j after time 0 has the distribution function Gk(·). Therefore,

E
[
e−s C

(n)
i,j

(t)
]

=
∏

(k,ℓ)∈Ui,j

E
[
e−s/n Gk(t) + (1 − Gk(t))

]

=
∏N

k=1

(
e−s/n Gk(t) + 1 − Gk(t)

)n

Gi(t) e−s/n + 1 − Gi(t)
. (4)

Finally, we study the limit of (4) as n → ∞. By Lemma 4 in Appendix A,

lim
n→∞

(
Gk(t) e−s/n + 1 − Gk(t)

)n

= e−s Gk(t) (5)

for 1 ≤ k ≤ N . Also, observe that

lim
n→∞

(
Gi(t) e−s/n + 1 − Gi(t)

)−1

= 1. (6)

Therefore, (4), (5), and (6) imply

lim
n→∞

E
[
e−s C

(n)
i,j

(t)
]

=
N∏

k=1

e−s Gk(t). (7)

Now, the lemma follows from (1) and (7).
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Figure 2: A discrete time Markov chain that determines the type (request (Req.) or invalidation (Inv.)) of an
event based on the preceding type.

Observe that (7) implies that

lim
n→∞

C
(n)
i,j (t) =

N∑
k=1

Gk(t) (8)

in probability for each t. Since the right hand side of (8) is a deterministic function of time, an item moves
in the MTF list of S(∞) according to a deterministic process until the item is requested at a random time.
Since an item moves toward the tail of the MTF list when other items are requested, the law of large numbers
suggests that the movement is close to deterministic when there are many items. Also note that the right hand
side of (8) does not depend on the particular item, so that every item moves at the same speed that depends
only on the position of the item. This is because the effect of a single item is negligible when there are many
items. These observations also suggest that S(∞) is a good approximation of S(1) when N is large.

Next, we will use Lemma 1 to derive the hit probability for LRU in the fluid limit. In the fluid limit, an item
moves in the MTF list according to a deterministic process, so that there is a time T such that the position
of an item is at most K iff the time since the last request of the item is at most T . Hence, a requested item is
in an LRU buffer iff the time since the last request of the item is at most T . Formally,

Theorem 1 Let p
(n)
i,j be the stationary probability that an ei,j is in the LRU buffer of S(n) when the ei,j is

requested. Let T be the unique t such that
∑N

k=1 Gk(t) = K. Then p
(n)
i,j →

∫ T

0
fi(t) dt as n → ∞.

Proof: Recall that the hit probability of an ei,j in the LRU buffer of S(n) coincides with the probability
that, when the ei,j is requested, the position of the ei,j is at most K in the MTF list of S(n). Given that
the ei,j was not requested, the position of the ei,j increases and reaches K at time T by (8). Therefore,
Pr(C(n)

i,j ≤ K) →
∫ T

0
fi(t) dt as n → ∞, which proves the theorem.

3 Analysis of LRU with invalidations

In this section, we study a buffer that is managed by LRU and where items are requested and invalidated. We
refer to the buffer as the LRUI (LRU with Invalidations) buffer. When an item is requested, the LRUI buffer
is updated in the same way as an LRU buffer. When an item in the LRUI buffer is invalidated, the item
is removed from the LRUI buffer. When an item not in the LRUI buffer is invalidated, the LRUI buffer is
not updated. In Section 3.1, we introduce a particular arrival process that generates correlated requests and
invalidations. In Section 3.2, we analyze, in the fluid limit, the probability that a requested item is found in
an LRUI buffer (the hit probability in an LRUI buffer) for the arrival process introduced in Section 3.1.

3.1 Arrival process of events

The arrival process for an ei generates events for the ei, and an event for the ei is either a request or an
invalidation for the ei. We assume that the events for an ei are generated according to a Poisson process
with rate λi and that the probability that an event is a request or an invalidation depends on a past event.
Specifically, when the preceding event for an ei is a request, the succeeding event for the ei is an invalidation
with probability αi and a request otherwise. When the preceding event for an ei is an invalidation, the
succeeding event for the ei is a request with probability βi and an invalidation otherwise. Figure 2 shows a
Markov chain that determines the type of an event for an ei based on the preceding event for the ei. We
assume that at least one of αi and βi is nonzero.
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The stationary probabilities that the event for an ei is a request and an invalidation are respectively given
by

πR
i =

βi

αi + βi
and πI

i =
αi

αi + βi
. (9)

Therefore, for an ei, requests are generated with average rate πR
i λi, and invalidations are generated with

average rate πI
i λi. Note that the requests and the invalidations are correlated and do not follow Poisson

processes unless αi = 1 − βi. When αi = 1 − βi, the requests and the invalidations of an ei are respectively
generated according to independent Poisson processes with rate (1 − αi)λi and αi λi.

3.2 Analysis of hit probability

We consider a sequence of systems, Ŝ(n) for n = 1, 2, ..., where each system is associated with an LRUI buffer
of size K and a corresponding list, which we refer to as a move-to-front-or-remove (MFR) list. When an ei in
an MFR list is requested, the MFR list is updated in the same way as an MTF list. When an ei is invalidated
in an MFR list, the ei is removed from the list. When an ei not in an MFR list is requested, the ei is inserted
at the head of the MFR list. In Ŝ(n), events are generated independently for nN items, êi,j for 1 ≤ i ≤ N
and 1 ≤ j ≤ n, of size 1/n. The events for an êi,j are generated according to a Poisson process with rate λi,
and the type of an event is determined by the Markov chain in Figure 2. Note that, when an invalidation is
generated for an êi,j in the MFR list of Ŝ(n), the items behind the êi,j are moved forward by 1/n and the êi,j

is removed from the list. We will study the position of an item in an MFR list of Ŝ(∞), which will be used to
derive the hit probability in an LRUI buffer of Ŝ(∞).

Lemma 2 Let Ĉ
(n)
i,j be the stationary position of an êi,j in the MFR list of Ŝ(n) when the êi,j is requested

given that the preceding event for the êi,j is a request. As n → ∞, Ĉ
(n)
i,j converges in distribution to Ĉi whose

Laplace transform is

E
[
e−s Ĉi

]
=

∫ ∞

0

e−s
∑N

k=1
Ĥk(t) fi(t) dt, (10)

where fi(t) = λi e−λi t is the density function of the inter-event times of ei for 1 ≤ i ≤ N , and

Ĥi(t) =
βi

αi + βi

(
1 − e−λi t

)
. (11)

Proof: Let t = 0 be the stationary moment when a request for an êi,j is generated in Ŝ(n). Let Ĉ
(n)
i,j (t) be the

position of the êi,j in the MFR list of Ŝ(n) at time t given that an event for the êi,j has not been generated
by t. By the memoryless property of the exponential distribution, the time to the first event for the êi,j after
time 0 given that the first event is a request has the density function fi(·). Thus,

E
[
e−s Ĉ

(n)
i,j

]
=

∫ ∞

0

E
[
e−s Ĉ

(n)
i,j

(t)
]

fi(t) dt.

Since 0 ≤ Ĉ
(n)
i,j (t) ≤ N , the dominated convergence theorem can be used to show that

lim
n→∞

E
[
e−s Ĉ

(n)
i,j

]
=

∫ ∞

0

lim
n→∞

E
[
e−s Ĉ

(n)
i,j

(t)
]

fi(t) dt. (12)

Observe that Ĉ
(n)
i,j (t) is incremented by 1/n when an êk,ℓ ̸= êi,j is requested for the first time after time 0,

is decremented by 1/n if the êk,ℓ is invalidated after the first request, and is incremented again by 1/n if the
êk,ℓ is requested after the invalidation. Therefore, an êk,ℓ ̸= êi,j contributes to an increment of Ĉ

(n)
i,j (t) by 1/n

iff the êk,ℓ is requested at least once between time 0 and t and the last event for the êk,ℓ at time t is a request.
Thus, in the same way as (4) is proven, we can show that

E
[
e−s Ĉ

(n)
i,j

(t)
]

=

∏N
k=1

(
e−s/n Ĥk(t) + 1 − Ĥk(t)

)n

Ĥi(t) e−s/n + 1 − Ĥi(t)
, (13)
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Figure 3: Continuous time Markov chains used to derive Ĥk(t).

where Ĥk(t) is the probability that an êk,ℓ is requested at least once between time 0 and t and the last event
for the êk,ℓ at time t is a request. In the same way as (7) is proven, it can be shown that

lim
n→∞

E
[
e−s Ĉ

(n)
i,j

(t)
]

=
N∏

k=1

e−s Ĥk(t), (14)

which together with (12) implies (10).
What remains to be shown is that Ĥk(t) is given by (11). To derive Ĥk(t), we condition on the type of

the last event for an êk,ℓ before time 0. When the last event for the êk,ℓ before time 0 is a request, Ĥk(t) is
the probability that the Markov chain in Figure 3(a) is in State “Req.” at time t given that the Markov chain
is in the state denoted by a double circle at time 0. Similarly, when the last event is an invalidation, Ĥk(t)
is the probability that the Markov chain in Figure 3(b) is in State “Req.” at time t. By the ASTA principle
and the memoryless property of the exponential distribution, the last event for an êk,ℓ ̸= êi,j before time 0 is
a request with probability πR

k and an invalidation with probability πI
k, as shown in (9). Hence,

Ĥk(t) = πR
k vt

1 e−QR
k t v2 + πI

k vt
1 e−QI

k t v2, (15)

where vi is a unit column vector with three elements such that the i-th element is 1, vt
i is a corresponding

unit row vector, and QR
k and QI

k are, respectively, the generator matrices of the Markov chains in Figure 3(a)
and Figure 3(b):

QR
k =

 −λk (1 − αk)λk αk λk

0 −αi λk αk λk

0 βk λk −βk λk


QI

k =

 −λk βk λk (1 − βk) λk

0 −αk λk αk λk

0 βk λk −βk λk


Lemma 5 in Appendix A implies that (15) is equivalent to (11), which completes the proof of the lemma.

Since the right hand side of (14) is a deterministic function of time, an item moves in the MFR list of S(∞)

according to a deterministic process until the item is requested or invalidated at a random time. Note that
this deterministic process is insensitive to the correlations in the arrival processes, since Ĥi(·) depends only
on the marginal probability, πR

i , that the event for an ei is a request and on the distribution function, Fi(·),
of the inter-event times of an ei.

In contrast to this insensitivity, the hit probability in an LRUI buffer in general depends on the correlations
of the arrival processes. For example, when αi = 1, a request for an ei and an invalidation for the ei alternate,
and the hit probability of the ei is 0. We will now use Lemma 2 to derive the hit probability in an LRUI buffer
in the fluid limit.

Corollary 1 Let p̂
(n)
i,j be the stationary probability that an êi,j is in the LRUI buffer of Ŝ(n) when the êi,j is

requested. Let T̂ be the unique t such that
∑N

k=1 Ĥk(t) = K. Then p̂
(n)
i,j → (1 − αi)

∫ T̂

0
fi(t) dt as n → ∞.

Proof: A requested êi,j is in an LRUI buffer of Ŝ(n) iff the preceding event for the êi,j is a request and the
position of the êi,j in the corresponding MFR list of Ŝ(n) is at most K. Observe that the event for the êi,j

7



1

K0

L1

L0

K

Figure 4: Rules of updating L0 and L1. When an ei is requested, the ei is moved to the head of L0 or L1

based on the position of the ei upon the request.

that precedes a request for the êi,j is a request with probability 1 − αi. Thus, p
(n)
i,j = (1 − αi) Pr(Ĉi,j ≤ K).

Now, Lemma 2 can be used to show the corollary in the same way as Theorem 1.

4 Analysis of 2Q

In this section, we analyze the hit probability for 2Q in the fluid limit. We study a simplest version of 2Q, but
our analysis may be extended to other versions such as those introduced in [13]. 2Q divides a buffer of size K
into a part, B0, of size K0 < K and a part, B1, of size K1 = K − K0 < K. If a requested item, ei, is neither
in B0 nor in B1, the ei is added to B0. If B0 is full and the ei cannot be added, the least-recently requested
item in B0 is replaced with the ei. If the ei is in B0, the ei is removed from B0 and added to B1. If B1 is
full and the ei cannot be added, the least-recently requested item in B1 is replaced with the ei. If the ei is
in B1, the ei becomes the most-recently requested in B1. Below, 2Q is referred to as 2Q(κ) when K0/K = κ,
and a buffer managed by 2Q(κ) is referred to as a 2Q(κ) buffer. In Section 4.1, we introduce the fluid limit
of a 2Q(κ) buffer. In Section 4.2, we derive an analytical expression for the hit probability for 2Q(κ) in the
fluid limit. In Section 4.3, we show how we evaluate the analytical expression numerically. We assume that
the requests for an ei are issued according to a Poisson process with rate λi for 1 ≤ i ≤ N , where N is the
number of items, each of which has size 1. Let fi(t) = λi e−λi t be the density function of the inter-request
times of ei for 1 ≤ i ≤ N .

4.1 Fluid limit

To analyze the hit probability for 2Q(κ), we consider a corresponding pair of MFR lists, L0 and L1, where each
ei is either in L0 or in L1. When a request of an ei is generated in a 2Q(κ) buffer, L0 and L1 are updated as
follows (see also Figure 4). If the ei is in L0 and its position is at most K0 = κK, the ei is removed from L0

and inserted at the head of L1. In other words, an invalidation of the ei is generated in L0, and a request of
the ei is generated in L1. If the ei is in L0 at a position greater than K0, a request of the ei is generated in
L0, and an invalidation of the ei is generated in L1. Note that L1 is not updated, since the invalidated ei is
not in L1. If the ei is in L1 at a position at most K1 = (1−κ)K, a request of the ei is generated in L1, and an
invalidation of the ei is generated in L0 (again, L0 is not updated). If the ei is in L1 at a position greater than
K1, a request of the ei is generated in L0, and an invalidation of the ei is generated in L1. Observe that a
requested ei is in a 2Q(κ) buffer iff, in the corresponding pair of L0 and L1, the ei is either in L0 at a position
at most K0 or in L1 at a position at most K1. In either case, an invalidation of the ei is generated in L0 and
a request of the ei is generated in L1 upon the request of the ei in the 2Q(κ) buffer.

We consider a sequence of systems, S̄(n) for n = 1, 2, ..., where each system is associated with a 2Q(κ)
buffer of size K and a corresponding pair of MFR lists, L

(n)
0 and L

(n)
1 . In a 2Q(κ) buffer of S̄(n), requests are

generated independently for nN items, ēi,j for 1 ≤ i ≤ N and 1 ≤ j ≤ n, and the items have size 1/n. The
requests for an ēi,j are generated according to a Poisson process with rate λi.

4.2 Analysis of hit probability

Now, we analyze the hit probability for 2Q(κ) in the fluid limit, S̄(∞). We will find that the position of an
ei in L

(∞)
0 increases according to a deterministic process, C̄(·), (and the position of an ei in L

(∞)
1 increases

according to a deterministic process, C̄ ′(·)) until the ei is requested or invalidated at a random time. The C̄(·)
and C̄ ′(·) depend on the probability, ai, that an ei is requested in the 2Q(κ) buffer before the position of the
ei reaches K0 in L

(∞)
0 and on the probability, bi, that an ei is not requested in the 2Q(κ) buffer before the

8



position of the ei reaches K1 in L
(∞)
1 . In turn, the ai and bi for 1 ≤ i ≤ N depend on C̄(·) and C̄ ′(·). Hence,

C̄(·), C̄ ′(·), ai for 1 ≤ i ≤ N , and bi for 1 ≤ i ≤ N will be derived by solving a system of equations.

Theorem 2 Let p̄
(n)
i,j be the stationary probability that an ēi,j is in a 2Q(κ) buffer of S̄(n) when the ēi,j is

requested. Let K0 = κK and K1 = (1 − κ)K. Then

lim
n→∞

p̄
(n)
i,j =

ai

ai + bi
, (16)

where ai and bi for 1 ≤ i ≤ N are the unique constants that satisfy the following system of equations:

C̄(t) =
N∑

k=1

bk

ak + bk

(
1 − e−λk t

)
(17)

C̄ ′(t) =
N∑

k=1

ak

ak + bk

(
1 − e−λk t

)
(18)

ai =
∫ ∞

t=0

Pr
(
C̄(t) ≤ K0

)
fi(t) dt for 1 ≤ i ≤ N (19)

bi =
∫ ∞

t=0

Pr
(
C̄ ′(t) > K1

)
fi(t) dt for 1 ≤ i ≤ N. (20)

Proof: We will analyze p̄
(n)
i,j by studying a corresponding pair of MFR lists, L

(n)
0 and L

(n)
1 . We start by studying

the arrival process of events (requests and invalidations) in L
(n)
0 . Since an event for an ēi,j is generated in L

(n)
0

when a request for the ēi,j is generated in the corresponding 2Q(κ) buffer, the events for an ēi,j are generated
in L

(n)
0 according to a Poisson process with rate λi. Given that the preceding event for an ēi,j is a request in

L
(n)
0 , the succeeding event for the ēi,j is an invalidation in L

(n)
0 iff the position of the ēi,j in L

(n)
0 is at most K0

when the succeeding event is generated. Similarly, given that the preceding event for an ēi,j is an invalidation
in L

(n)
0 , the succeeding event for the ēi,j is a request in L

(n)
0 iff the position of the ēi,j in L

(n)
1 is greater than

K1 when the succeeding event is generated.
By the memoryless property of the exponential distribution, the system regenerates respectively when a

request for an ēi,j is generated in L
(n)
0 and when an invalidation for an ēi,j is generated in L

(n)
0 . Let a

(n)
i,j be

the probability that the position of an ēi,j is at most K0 in L
(n)
0 when a request for the ēi,j is generated in

L
(n)
0 given that the preceding event for the ēi,j is a request in L

(n)
0 . Similarly, let b

(n)
i,j be the probability that

the position of an ēi,j is greater than K1 in L
(n)
1 when the ēi,j is requested in L

(n)
0 given that the preceding

event for the ēi,j is an invalidation in L
(n)
0 .

Then the events for an ēi,j are generated in L
(n)
0 according to the arrival process introduced in Section 3.1,

where αi = a
(n)
i,j and βi = b

(n)
i,j . Recall that a requested ēi,j is in a 2Q(κ) buffer iff an invalidation is generated

for the ēi,j in L
(n)
0 upon the request of the ei,j in the 2Q(κ) buffer. Thus, p̄

(n)
i,j is equivalent to the marginal

probability that an event for an ēi,j in L
(n)
0 is an invalidation. Therefore, (9) implies that

p̄
(n)
i,j =

a
(n)
i,j

a
(n)
i,j + b

(n)
i,j

. (21)

By the memoryless property of the exponential distribution, the time to the first event for an ēi,j after a
request is generated for the ēi,j in L

(n)
0 , given that the first event for the ēi,j is a request in L

(n)
0 , has the

density function fi(·). Hence,

a
(n)
i,j =

∫ ∞

t=0

Pr
(
C̄

(n)
i,j (t) ≤ K0

)
fi(t) dt,

where C̄
(n)
i,j (t) is the position of the ēi,j in L

(n)
0 at time t given that a request for the ēi,j is generated in L

(n)
0

at time 0 and that no event is generated for the ēi,j between time 0 and t. Similarly,

b
(n)
i,j =

∫ ∞

t=0

Pr
(
C̄ ′(n)

i,j (t) > K1

)
fi(t) dt,

9



where C̄ ′(n)
i,j (t) is the position of the ēi,j in L

(n)
1 at time t given that a request for the ēi,j is generated in L1

at time 0 and that no event is generated for the ēi,j between time 0 and t.
Next, we study C̄

(n)
i,j (t) and C̄ ′(n)

i,j (t). In the same way as (13) is proven, it can be shown that

E
[
e−s C̄

(n)
i,j

(t)
]

=

∏N
k=1

(
e−s/n H̄

(n)
k (t) + 1 − H̄

(n)
k (t)

)n

H̄
(n)
i (t) e−s/n + 1 − H̄

(n)
i (t)

where H̄
(n)
i (t) is the probability that an ēi,j is requested in L

(n)
0 at least once between time 0 and t and the

last event for the ēi,j before time t is a request in L
(n)
0 . Thus, by (11),

H̄
(n)
i (t) =

b
(n)
i

a
(n)
i + b

(n)
i

(
1 − e−λi t

)
.

To derive a similar expression for C̄ ′(n)
i,j (t), we need to study the arrival process of the events in L

(n)
1 . Recall

that an event for an ēi,j is generated in L
(n)
1 at the same moment as an event for the ēi,j is generated in L

(n)
0 ,

and that the event for the ēi,j is a request in L
(n)
1 iff the event for the ēi,j is an invalidation in L

(n)
0 . Thus,

the events for an ēi,j in L
(n)
1 are also generated according to the arrival process introduced in Section 3.1, but

now αi = b
(n)
i,j and βi = a

(n)
i,j . Therefore, the Laplace transform of C̄ ′(n)

i,j (t) is given by

E
[
e−s C̄′(n)

i,j
(t)

]
=

∏N
k=1

(
e−s/n H̄ ′(n)

k (t) + 1 − H̄ ′(n)
k (t)

)n

H̄ ′(n)
i (t) e−s/n + 1 − H̄ ′(n)

i (t)
,

where

H̄ ′(n)
i (t) =

a
(n)
i

a
(n)
i + b

(n)
i

(
1 − e−λi t

)
.

Finally, we study C̄
(n)
i,j (t) and C̄ ′(n)

i,j (t) in the limit of n → ∞. In the same way as (14) is proven, it can

be shown that C̄
(n)
i,j (t) and C̄ ′(n)

i,j (t), respectively, converge to deterministic processes as n → ∞. Formally, for
any ϵ > 0, there exists M such that, for all n ≥ M ,∣∣∣∣E [

e−s C̄
(n)
i,j

(t)
]
− e−s

∑N

k=1
H̄

(n)
k

(t)

∣∣∣∣ < ϵ∣∣∣∣E [
e−s C̄′(n)

i,j
(t)

]
− e−s

∑N

k=1
H̄′(n)

k
(t)

∣∣∣∣ < ϵ

for any t. Note that if |ϕ(an) − ψ(bn)| → 0 as n → ∞ and there exists a unique pair (a, b) such that
ϕ(a) = ψ(b), then (an, bn) → (a, b) as n → ∞. As we will see in Lemma 3, there exist unique constants, ai and
bi for 1 ≤ i ≤ N , and unique deterministic processes, C̄i(·) and C̄ ′

i(·) for 1 ≤ i ≤ N , that satisfy (17)-(20).
Therefore, as n → ∞, a

(n)
i,j → ai, b

(n)
i,j → bi, C̄

(n)
i,j (t) → C̄(t), and C̄ ′(n)

i,j (t) → C̄ ′(t) for 1 ≤ j ≤ n and 1 ≤ i ≤ N ,

where ai, bi, E
[
e−s C̄(t)

]
, and E

[
e−s C̄′(t)

]
are defined by the unique solutions of (17)-(20). Now, the theorem

follows from (21).

Lemma 3 The system of equations (17)-(20) has a unique solution, (ai, bi) for 1 ≤ i ≤ N .

Proof: First, consider the case where K1 ≥ N . In this case, it is expected that p̄i ≡ limn→∞ p̄
(n)
i,j = 1 for

all i since all of the items are in K1, so that the unique solution is that ai = 1 and bi = 0 for all i. In fact,
(20) implies that bi = 0 for all i, which in turn implies C̄(t) ≡ 0 by (17). Then (19) implies ai = 1 for all i.
Therefore, the system of equations (17)-(20) have the unique solution.

Below, we assume that K1 < N . We will first show that C̄(·) and C̄ ′(·) must be increasing functions. By
(19) and (20), this will allow us to express the 2N variables, (ai, bi) for 1 ≤ i ≤ N , by two variables, (T0, T1),
such that ai = Fi(T0) and bi = 1 − Fi(T1), where Fi(t) = 1 − e−λit. Then our proof will be reduced to show

10



the existence of the unique pair (T0, T1) so that ai = Fi(T0) and bi = 1 − Fi(T1) for 1 ≤ i ≤ N satisfy the
system of equations.

Observe in (17) that C̄(·) is an increasing function unless bi = 0 for all i. Suppose that bi = 0 for all i.
Then we have seen above that ai = 1 for all i. Then (18) implies C̄ ′(t) =

∑N
k=1(1 − e−λk t), which converges

to N as t → ∞. Therefore, (20) implies bi > 0 for all i when K1 < N . This contradicts our assumption that
bi = 0 for all i. Therefore, bi > 0 for at least one i, and C̄(·) is an increasing function.

Observe in (18) that C̄ ′(·) is an increasing function unless ai = 0 for all i. Suppose that ai = 0 for all i.
Then (18) implies C̄ ′(t) ≡ 0, which in turn implies bi = 0 for all i by (20). However, we have seen above that
bi > 0 for at least one i. Therefore, it must be that ai > 0 for at least one i and that C̄ ′(·) is an increasing
function.

Since C̄(·) and C̄ ′(·) are increasing functions, (19) and (20) imply that ai and bi can be expressed as

ai = Fi(T0) and bi = 1 − Fi(T1), (22)

where Fi(t) = 1 − e−λi t and

T0 =
{

C̄−1(K0) if C̄(∞) > K0

∞ otherwise (23)

T1 =
{

C̄ ′−1(K1) if C̄ ′(∞) > K1

∞ otherwise,
(24)

where C̄−1(·) and C̄ ′−1(·) are inverse functions of C̄(·) and C̄ ′(·). Roughly speaking, T0 is the time it takes
for an item to reach K0 in L0 from the head of L0 given that no event is generated for the item. Similarly, T1

is the time to reach K1 in L1 from the head of L1 under the same conditions.
Observe that there exists a unique solution, (ai, bi) for 1 ≤ i ≤ N , that satisfies (17)-(20) iff there exists a

unique pair, (T0, T1), that satisfies (17)-(18) and (22)-(24). Therefore, it suffices to prove the existence of the
unique pair (T0, T1). It will turn out that T1 is always finite, so that we will prove the existence of the unique
pair for two cases, where T0 is finite and where T0 is infinite.

Notice that T1 < ∞ follows immediately from (20), since bi > 0 for at least one i, as we have seen above.
When T1 < ∞, we have by (18), (22), and (24) that

K1 =
N∑

k=1

Fk(T0)Fk(T1)
Fk(T0) + 1 − Fk(T1)

. (25)

We now discuss the existence of the unique pair (T0, T1) for the case where T0 < ∞. In this case, the
following relation must hold by (17), (22), and (23):

K0 =
N∑

k=1

(1 − Fk(T1)) Fk(T0)
Fk(T0) + 1 − Fk(T1)

. (26)

Let ξ0(T0, T1) be the right hand side of (26) and ξ1(T0, T1) be the right hand side of (25). Observe that
ξ0(T0, T1) is increasing in T0 and decreasing in T1, and that ξ1(T0, T1) is increasing in T0 and T1 (see Figure 5
for contour curves of a ξ0(T0, T1) and a ξ1(T0, T1)). Therefore, a unique pair, T0 < ∞ and T1 < ∞, that
satisfies (25) and (26) exists iff T

(0)
1 > T

(1)
1 , where T

(0)
1 and T

(1)
1 are, respectively, unique t

(0)
1 and t

(1)
1 such

that ξ0(∞, t
(0)
1 ) = K0 and ξ1(∞, t

(1)
1 ) = K1. In summary, if T

(0)
1 > T

(1)
1 , then there exists a unique pair,

T0 < ∞ and T1 < ∞, that satisfies the system of equations, (17)-(18) and (22)-(24).
Finally, we will prove that if T

(0)
1 ≤ T

(1)
1 , then there exists a unique pair, T0 = ∞ and T1 < ∞, that

satisfies the system of equations, (17)-(18) and (22)-(24). Note that if (26) is satisfied by a T0 and a T1, the
T0 must be finite, since

C̄(∞) =
N∑

k=1

1 − Fk(T1)
Fk(T0) + 1 − Fk(T1)

> K0

follows from (17), (22), and (26), and C̄(∞) > K0 iff T0 < ∞. By the contrapositive, C̄(∞) ≤ K0 iff
T

(0)
1 ≤ T

(1)
1 . When C̄(∞) ≤ K0, we have T0 = ∞, which implies that ai = 1 for all i by (19). Thus, (17)-(18)

and (22) imply

C̄(t) =
N∑

k=1

(1 − Fk(T1))Fk(t)
2 − Fk(T1)

and C̄ ′(t) =
N∑

k=1

Fk(t)
2 − Fk(T1)

,
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Figure 5: Contour curves of a ξ0(T0, T1) and a ξ1(T0, T1), where N = 1 and λ1 = 1. Note that the horizontal
and vertical axes are F1(T0) and F1(T1), which are increasing in T0 and T1, respectively.

where T1 is a unique solution of the following equation:

K1 =
N∑

k=1

Fk(T1)
2 − Fk(T1)

.

Therefore, T0 = ∞ and T1 = T
(1)
1 is the unique pair that satisfies (17)-(18) and (22)-(24).

4.3 Numerical evaluation of hit probability

The arguments in the proof of Lemma 3 lead to the following algorithm for calculating p̄i ≡ limn→∞ p̄
(n)
i,j . If

K1 ≥ N , then p̄i = 1 for 1 ≤ i ≤ N . If K1 < N , find a unique pair (T (0)
1 , T

(1)
1 ) that satisfy

ξ0(T
(0)
1 ) ≡

N∑
k=1

1 − Fk(T (0)
1 )

2 − Fk(T (0)
1 )

= K0 (27)

ξ1(T
(1)
1 ) ≡

N∑
k=1

Fk(T (1)
1 )

2 − Fk(T (1)
1 )

= K1. (28)

Since ξ0(T
(0)
1 ) is decreasing in T

(0)
1 and ξ1(T

(1)
1 ) is increasing in T

(1)
1 , the T

(0)
1 and the T

(1)
1 may be found by

binary search. If T
(0)
1 ≤ T

(1)
1 , then p̄i = (2 − Fi(T

(1)
1 ))−1 for 1 ≤ i ≤ N . If T

(0)
1 > T

(1)
1 , then

p̄i =
Fi(T0)

Fi(T0) + 1 − Fi(T1)
(29)

for 1 ≤ i ≤ N , where (T0, T1) is a unique pair that satisfies (25) and (26). The left hand side of (26) is
increasing in T0 and decreasing in T1, and the left hand side of (25) is increasing in T0 and T1, respectively.
Hence the (T0, T1) may be found for example by Newton’s method.

Finally, we remark that a conservation law holds for p̄i = limn→∞ p̄
(n)
i,j . Specifically,

∑N
i=1 p̄i = K for

any κ as long as the 2Q(κ) buffer is fully utilized in S̄(∞). The conservation law implies that a p̄i cannot
be increased without decreasing another p̄j . Note, however, that this does not mean that the overall hit
probability,

∑N
k=1 rk p̄k, is insensitive to κ, where rk = λk/

∑N
j=1 λj . The overall hit probability can be made

higher by increasing pi having a large λi and decreasing pi having a small λi. Notice that the 2Q(κ) buffer
is underutilized in S̄(∞) iff C̄(∞) ≤ K0, since C̄(∞) ≤ K0 suggests that no item reaches K0 in a finite time.
When the 2Q(κ) buffer is underutilized,

∑N
i=1 p̄i < K. Formally,

Corollary 2 (Conservation law for 2Q) If K < N and T
(0)
1 > T

(1)
1 , then

∑N
k=1 p̄k = K. If K < N and

T
(0)
1 ≤ T

(1)
1 , or if K ≥ N , then

∑N
k=1 p̄k ≤ K.
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Proof: Consider the case where K < N and T
(0)
1 > T

(1)
1 . Summing both sides of (26) and (25), we obtain

K =
∑N

k=1 p̄k by (29). When K < N and T
(0)
1 ≤ T

(1)
1 , we obtain K = ξ0(T

(0)
1 ) + ξ1(T

(1)
1 ) by summing both

sides of (27) and (28). Since ξ0(·) is a decreasing function and T
(0)
1 ≤ T

(1)
1 , K ≥ ξ0(T

(1)
1 ) + ξ1(T

(1)
1 ), which

implies K ≥
∑N

k=1 p̄k by p̄k = (2 − Fk(T (1)
1 ))−1. When K ≥ N ,

∑N
k=1 p̄k = N ≤ K follows immediately from

p̄k = 1.

5 Results

In this section, we study the fundamental properties of 2Q(κ). In Section 5.1, we start by a validation of
approximating the hit probabilities for 2Q(κ) and LRU by those in the fluid limit. In Section 5.2, we will study
the hit probability for 2Q(κ), comparing it against that for LRU and against a theoretical upper bound, which
is calculated as the hit probability when the K items having the largest λi’s are always stored in the buffer
(optimal static arrangement). We refer to the upper bound as the hit probability for OPT. In particular, we
will find that
• the relative error in approximating the hit probabilities for 2Q(κ) and LRU by those in the fluid limit is within
1% for N > 1000;

• the (stationary) hit probability for 2Q(κ) can in general be made higher than that for LRU;
• the (stationary) hit probability for 2Q(κ) is in general maximized when K0 = κK = 1;
• when K0 = 1, the (stationary) hit probability for 2Q(κ) is close to that for OPT;
• when κ is smaller, however, a longer time is required to reach the stationary hit probability, so that a larger
κ may be preferred to a smaller κ.

5.1 Validation

We evaluate the accuracy of approximating the overall hit probability, H =
∑N

i=1 ri pi, for 2Q(κ) and for LRU by
those in the fluid limit, where pi is the hit probability of an ei and ri = λi/

∑N
j=1 λj is the stationary fraction

of the requests for the ei. Let Hflu be the overall hit probability in the fluid limit and Hsim be the overall
hit probability estimated by simulation. The relative error (%) in Hflu is defined by 100 |Hflu − Hsim| /Hsim.
Below, we omit the discussion on LRU, but the relative error in approximating the overall hit probability for
LRU is smaller than that for 2Q(κ) by a factor of 2 to 200 for all of the cases studied. Also, although we show
only a limited set of plots, our discussion is based on experiments with a wider range of parameter sets.

For each evaluation, simulation is run at least 20 times. In each run, 107 requests are generated after a
warm-up period of 105 requests. When the 20 runs do not suffice to provide the confidence that the estimated
value is within 0.0001 of the true value with probability at least 0.95, the simulation is repeated until this
accuracy is achieved (see [15]).

First, we study the case where the distribution of λi for 1 ≤ i ≤ n follows Zipf’s law (Breslau et al. find that
the distributions of the rates that webpages are requested follow Zipf’s law approximately [2]). Specifically,
we choose λi = 1/i for 1 ≤ i ≤ N . Figure 6(a) shows Hflu and Hsim against varying values of κ. The number
of items, N , is as labeled in each row. The solid lines represent Hflu when K = N/4, the dashed lines when
K = 3N/8, and the dotted lines when K = N/2. The ‘×+’ marks represent Hsim. The value of K for each
Hsim is understood by the value of K of the nearest line. Observe that every ‘×+’ is on or very close to the
corresponding line. Thus, Hflu closely agrees with Hsim for a wide range of conditions.

To take a closer look, Figure 6(b) shows the relative error in Hflu under the same conditions as Column
(a). We find that the relative error is in general smaller for a larger N and that the relative error becomes less
than 0.1% for N = 210. This makes intuitive sense, since the system approaches the fluid limit as N → ∞.
However, we find that the relative error is surprisingly small even for a small N , in particular within 2% for
N = 26.

The relative error in Hflu is also sensitive to κ. In general, we find that the relative error is an increasing
function of κ and that Hflu > Hsim for a large κ. This may be explained by examining the utilization of B0.
Recall that B0 may have less than K0 items, since a requested item in B0 moves to B1. However, under the
conditions of Figure 6, B0 in the fluid limit is fully utilized, which in turn makes Hflu higher than Hsim.

Next, we study the effect of the distribution of λi on the relative error in Hflu. Above, we have assumed that
the distribution of λi follows Zipf’s law. We now consider the case where λi is geometrically distributed and
where λi is linearly distributed. Specifically, for 1 ≤ i ≤ N , we choose λi = 1/N

i−1
N−1 when λi is geometrically
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Figure 6: Accuracy of approximating the hit probability for 2Q(κ) by Hflu when λi follows Zipf’s law. For each
row, N is varied as labeled. Column (a) shows Hflu by lines and Hsim by ‘×+’ marks, and Column (b) shows
the relative error (%) in Hflu, where K = N/4 for solid lines, K = 3N/8 for dashed lines, and K = N/2 for
dotted lines.

distributed, and λi = (N +1−i)/N when λi is linearly distributed, so that λ1 = 1 and λN = 1
N stay unchanged

for all distributions under consideration. Figure 7 shows the values of λi in log scale for the three distributions,
where N = 28. Observe that a very small number of items have high λi in Zipf’s law (solid line), many items
have high λi in the linear distribution (dotted line), and the geometric distribution (dashed line) falls between
the two distributions.

Figure 8 shows the relative error in Hflu when λi is geometrically distributed (Column (a)) and when λi is
linearly distributed (Column (b)). We show only the case where N = 28, but we find that the relative error
is smaller for a larger N as observed in Figure 6. We find that K and the distribution of λi have a rather
complex impact on the relative error in Hflu. When λi is geometrically distributed, the relative error is larger
for a smaller K. When λi is linearly distributed, the relative error is larger for a larger K. In Figure 6(b),
we have seen that the relative error is rather insensitive to K when λi follows Zipf’s law. Our interpretation
is that the relative error in Hflu is mainly due to the fact that the underutilization of B0 becomes negligible
in the fluid limit. When more items have high λi (e.g., when linearly distributed), more items move from B0

to B1, which in turn makes B0 more underutilized. However, Hflu overestimates the hit probability because
requests are generated for items that are in B0 but would not be in B0 if the underutilization of B0 was not
negligible. Therefore, the the magnitude of the overestimation depends on K and the distribution of λi in a
rather complex manner.
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Figure 7: The values of λi for Zipf’s law (solid line), a geometric distribution (dashed line), and a linear
distribution (dotted line), where N = 28.

2

1

0
3/41/21/4

κ
(a) Geometric

2

1

0
3/41/21/4

κ
(b) Linear

Figure 8: The relative error in Hflu when λi is (a) distributed geometrically and (b) linearly, where K = N/4
for solid lines, K = 3N/8 for dashed lines, and K = N/2 for dotted lines, where N = 28.

5.2 Hit probabilities for 2Q and LRU

We will now evaluate the hit probabilities for 2Q(κ), LRU, and OPT. In Section 5.2.1, we will study the stationary
hit probabilities in the fluid limit, using the analytical expressions derived in Sections 2 and 4. Above we have
seen that the stationary hit probabilities are very well approximated by those in the fluid limit when N > 1000.
In Section 5.2.2, we will study the transient hit probabilities via simulations.

5.2.1 Stationary hit probability

Figure 9 shows the stationary hit probabilities for 2Q(κ), LRU, and OPT. The stationary hit probabilities for
2Q(κ) are plotted by solid lines as functions of κ. The stationary probabilities of LRU and OPT are, respectively,
plotted by straight dashed lines and by straight dotted lines. Four graphs correspond to four cases with different
values of N and K as labeled. We assume that λi follows Zipf’s law, specifically λi = 1/i for 1 ≤ i ≤ N , but
similar observations hold for other distributions as well.

Observe that the stationary hit probability for 2Q(κ) can be made higher than that for LRU and very close
to that for OPT by choosing a sufficiently small κ for any N and K. Specifically, when K0 = κK = 1, the hit
probability for 2Q(κ) is 3-17% higher than that for LRU and within 1% of that for OPT for the four cases in
Figure 9. In fact, our analysis in Section 4 can be used to show that, in the fluid limit, the hit probability for
2Q(κ) can always be made equal to that for LRU by choosing a particular value of K0:

Corollary 3 Let κ⋆ ≡
∑N

i=1 Fi(T ) (1 − Fi(T ))/K, where T is a unique t such that
∑N

i=1 Fi(t) = K, where
Fi(t) = 1 − e−λit. Then, in the fluid limit, the hit probability for 2Q(κ⋆) is equal to that for LRU.

Proof: If κ = κ⋆, then T0 = T1 = T satisfies (26) and (25). The arguments in the proof of Lemma 3 imply
that, when (26) and (25) have a solution, the solution must be unique, and the hit probability in the fluid limit
is given by (29). Hence, the hit probability of ei for 2Q(κ⋆) in the fluid limit is Fi(T )/(Fi(T ) + 1 − Fi(T )),
which is equal that for LRU by Theorem 1, since Fi(·) ≡ Gi(·) for a Poisson process.
In general, κ⋆K is fractional. We expect, however, that the hit probability for 2Q(κ) can be made close to

that for LRU by choosing κ ≈ κ⋆ such that κK is an integer.
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Figure 9: Stationary hit probabilities for 2Q(κ) (solid lines), LRU (dashed lines), and OPT (dotted lines) where
λi = 1/i for 1 ≤ i ≤ N .

Also, observe that, for fixed N and K, the stationary hit probability for 2Q(κ) is higher when κ is smaller
and maximized when K0 = κK = 1 (and K1 = K − 1). Although we have not been able to provide an
analytical proof, this is an observation that generally holds for all cases studied, including those not shown in
the paper, unless λi is a constant for all i. When λi is a constant for all i, Corollary 2 and Corollary 3 imply
that the hit probability for 2Q(κ) cannot be made higher than that for LRU in the fluid limit.

Overall, the above observations suggest that we should choose κ < κ⋆ for 2Q(κ) to achieve a hit probability
higher than LRU. In the next section, we will see that too small an κ is not necessarily a good choice. Although
a smaller κ implies a higher stationary hit probability, a smaller κ requires longer time to reach the stationary
state. In particular, if we start from an empty buffer, 2Q(κ) with a small κ would suffer from a long period of
low transient hit probabilities.

5.2.2 Transient hit probability

Figure 10 shows transient hit probabilities for 2Q(κ) and LRU. Specifically, starting with an empty buffer at
time 0, the buffer is simulated until 108 requests are generated. For each 104 requests, the fraction of the
requests that find the requested items in the buffer (fraction of hit) is recorded. The simulation with 108

requests are repeated for 20 times, and the average fraction of hit over the 20 runs for every interval of 104

requests is plotted for LRU and 2Q(κ) with varying values of κ (specifically, κ = 1/2, 1/24, 1/27). The four
graphs correspond to the four cases studied in Figure 9.

We find that the hit probability for LRU (solid lines) quickly reaches the stationary hit probability, while
the hit probability for 2Q(κ) may need longer time particularly when κ is small (dotted lines). When K = N/8
(top row), the stationary hit probability for 2Q(κ) is higher than that for LRU for all of the three values of κ.
However, when κ = 1/24 or κ = 1/27, the transient hit probability for 2Q(κ) is lower than that for LRU until
104 to 105 requests are generated. When κ = 1/2, the hit probability for 2Q(κ) quickly reaches the stationary
hit probability and is higher than that for LRU after 104 requests are generated. When K = N/2 (bottom
row), the hit probability for 2Q(κ) with κ = 1/2 also reaches the stationary hit probability quickly, but never
exceeds that for LRU, since the stationary hit probability for 2Q(κ) is lower than that for LRU in this setting.

Although the time for the hit probability for 2Q(κ) to reach the steady state is highly sensitive to κ, we
find that it is relatively insensitive to K (compare the top row and the bottom row of Figure 10). This may be
explained by examining the time needed to fill B1. When K1 is larger, more items in B0 need to be requested
before B1 is filled, so that a larger K0 is needed to fill B1 in a given time.
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Figure 10: Transient hit probabilities for 2Q(κ) and LRU against the number of requests generated, where
λi = 1/i for 1 ≤ i ≤ N .

6 Conclusion

This paper provides an exact analysis of the hit probability for 2Q(κ) in the fluid limit when items are
requested according to independent Poisson processes. The analysis of 2Q relies on an analysis of LRU when
events (requests and invalidations) for each item are generated according to a Poisson process and the type of
an event is determined by a particular Markov chain. We remark that the analysis of LRU under this model
of correlated arrivals is of interest in its own right. In a Web system for online shopping, for example, an
object (an item) is created and cached when a user logs in to identify the user and to record the status of her
shopping cart. The object is used (the item is requested) while the user is shopping. When the user logs out,
the object is removed from the cache (the item is invalidated). These correlated requests and invalidations
may be well represented by our model of correlated arrivals.

The hit probability for LRU has been found to be closely approximated by that in the fluid limit [11], but the
analysis in the fluid limit has not been applied to other page replacement policies. We find not only that the
hit probability for 2Q is also well approximated by that in the fluid limit but also that an analysis of 2Q in the
fluid limit illuminates several fundamental properties of 2Q. We expect that analytical techniques introduced
in this paper will be useful for an analysis of other page replacement policies in the fluid limit, particularly
those that divide a buffer into multiple parts [17, 24, 12].

Another future direction is an extension of the analysis of 2Q to the case of a non-Poisson arrival process.
The hit probability for LRU has been shown to be insensitive to some types of dependency in an arrival
process [10, 23]. It would be of interest to examine whether similar properties hold for 2Q and other page
replacement policies.
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A Technical lemmas

Lemma 4 Let c and s be nonnegative constants. Then
(
c e−s/n + 1 − c

)n → e−c s as n → ∞.

Proof: Observe that (
c e−s/n + 1 − c

)n

=

(
1 − c s

n
+ c

∞∑
ℓ=2

(
−s

n

)ℓ 1
ℓ!

)n

=
n∑

k=0

σk,

where

σk =
(

n

k

)(
1 − c s

n

)n−k
(

c
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ℓ=2

(
−s

n

)ℓ 1
ℓ!

)k

for 0 ≤ k ≤ n. Since σ0 → e−c s as n → ∞, it suffices to show that
∑n

k=1 σk → 0 as n → ∞. Since c, s ≥ 0
and 1/nℓ k ≤ 1/n2k for ℓ ≥ 2, we have∣∣∣∣∣

n∑
k=1

σk

∣∣∣∣∣ ≤
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(
n
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)(
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n2k
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(−s)ℓ
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Now, since
(
n
k

)
≤ nk/k!, we have∣∣∣∣∣

n∑
k=1

σk

∣∣∣∣∣ ≤
n∑

k=1

1
k! nk
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c s
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1
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Since the summands are nonnegative, we have∣∣∣∣∣
n∑

k=1

σk

∣∣∣∣∣ ≤
(
1 +

c s

n

)n ∞∑
k=1

1
k!

(
c |e−s − 1 + s|

n + c s

)k

=
(
1 +

c s

n

)n
(

e
c |e−s−1+s|

n+c s − 1
)

.

Since the right hand size approaches 0 as n → ∞, the left hand size also approaches 0 as n → ∞.

Lemma 5 Let P and Q be generator matrices of Markov chains such that

P =

 −λ (1 − α) λ α λ
0 −α λ α λ
0 β λ −β λ


Q =

 −λ β λ (1 − β)λ
0 −α λ α λ
0 β λ −β λ

 .

Let vi be a unit column vector with three elements such that the i-th element is 1 and vt
i be the corresponding

unit row vector. Then, for γ = β/(α + β),

vt
1

(
γ e−P t + (1 − γ) e−Q t

)
v2 = γ

(
1 − e−λ t

)
.
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Proof: Since vt
1 Av2 is the (1, 2) element of a matrix, A, of size 3 × 3, it suffices to obtain the (1, 2) element

of e−P t and e−Q t, respectively. Recall that eA ≡
∑∞

n=0 An/n!. Observe that, for n ≥ 1,

Pn

(−λ)n
=

 1 −1 0
0 0 0
0 0 0

 + (α + β)n−1

 0 α −α
0 α −α
0 −β β


Qn

(−λ)n
=

 1 0 −1
0 0 0
0 0 0

 + (α + β)n−1

 0 −β β
0 α −α
0 −β β

 ,

which can be verified by induction. Note that the above expressions are invalid for n = 0 and that P0 = Q0 = I,
where I is the identity matrix of size 3 × 3. Therefore,

vt
1 e−P t v2 = −e−λt +

α

α + β
e−(α+β)λt +

β

α + β

vt
1 e−Q t v2 = − β

α + β
e−(α+β)λt +

β

α + β
.

Now the lemma follows from the definition of γ.
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