
February 15, 2008
RT0778
Security 8 pages

Research Report
Rule-based XML Mediation for Data Validation and Privacy
Anonymization

Masayoshi Teraguchi, Issei Yoshida, Naohiko Uramoto
IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It
has been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or
copies of the article legally obtained (for example, by payment of royalities).

Rule-based XML Mediation for Data Validation and Privacy Anonymization

Masayoshi Teraguchi, Issei Yoshida, and Naohiko Uramoto
Tokyo Research Laboratory, IBM Research

1623-14, Shimotsuruma, Yamato-shi, Kanagawa-ken, 242-8502, Japan
{teraguti, issei, uramoto}@jp.ibm.com

Abstract

 XML mediation for data validation and privacy
anonymization of the very large complecated XML
messages defined in some industry-specific specifications
such as HL7 is becoming increasingly important in SOA
because a lot of applications depend on various kinds of
hard-coded data validation and privacy anonymization
functions, which makes it difficult to keep consistency of
the functions among the applications in SOA even when
the schema of the XML messagses in the specifications is
changed. This paper proposes a uniform rule-based
approach to realize the functions as a XML mediation
separated from the applications, which makes it easy to
maintain consistency of the functions when they are
updated in accord with the changes to the specifications.
Therefore, application developers can readily utilize it
with many applications in SOA. Our approach allows the
developers to define a set of rules that consist of two
components: constraint conditions in a conceptual data
notation in the XML message and actions performed only
when the conditions are satisfied. In order to make the
rules independent from both the implementation-specific
data notation and the industry-specific knowledge, we
automatically transform the rules into the
implementation-specific data representation using two
more factors; one is the data mappings from the data
notation in the rules to the concrete data representation
in the implementation and the other is the implied data
relationships hidden in the rules. It is very important to
take into consideration a general way to import the
implied knowledge because it often depends on the
industry-specific data structure and it is usually given
outside of the mediation system.

1. Introduction

Service-Oriented Architecture (SOA) is now emerging
as the dominant integration framework in today's complex
and heterogeneous enterprise computing environment. It
promotes loose coupling of services so that Web services
are becoming the most prevalent technology to implement
SOA applications. Web services use a standard message
protocol (SOAP [1]) to ensure widespread interoperability
in the enterprise environment. The format of the

application-specific data embedded into the SOAP body is
typically simple and easy to understand. However there
are some industry-specific specifications, such as HL7 [2]
and XBRL [3], which define much more complicated data
formats to satisfy requirements in those industries and
which embed very large data objects directly into the
SOAP body. Unfortunately since there is no good library
currently available to check if the data in the SOAP body
correctly confirms to the complex specifications or to
check if the privacy-sensitive information in the data is
sufficiently protected, application developers need to
implement the functions of data validation and privacy
anonymization by themselves in their each application
deployed into SOA. But this would make it difficult to
keep functional consistency among the applications when
they need to update all functions separately implemented
in the applications in responding to the changes to the
specifications during the phase of application maintenance
or upgrade.

In order to shift the workload away from the
developers and to reduce the risk of the consistency
problems, they can separate the functions of data
validation and privacy anonymization from the
applications deployed into SOA and implement them as a
XML mediation by themselves. However, it is also
difficult even for the developers, who know the
technology generally used in the mediation such as XSLT
[13], to implement the functions correctly without using
any tool. Some technologies [4, 5, 6] have been proposed
to support development of the functions by defining a
conceptual data model and mapping the model to the
implementation-specific data representation. But [4, 5] do
not provide the general data model both for data
validation and privacy anonymization and [6] does not
provide the mappings between data model and real
environment.

In this paper, we propose a uniform rule-based
approach to realize the functions as a XML mediation
separated from the applications, which makes it easy to
maintain consistency of the functions when they are
updated in accord with the changes to the specifications.
Therefore, application developers can readily utilize it
with many applications in SOA without additional
modification to the applications. Our approach allows the
developers to define a set of rules that consist of two

components: constraint conditions in a conceptual data
notation in the XML message and actions performed only
when the conditions are satisfied. In order to make the
rules independent from both the implementation-specific
data notation and the industry-specific knowledge, we
automatically transform the rules into the implementation-
specific data representation, such as XACML [9],
Schematron [11], or XSLT, using two more factors; one is
the data mappings from the data notation in the rules to
the concrete data representation in the implementation and
the other is the implied data relationships hidden in the
rules. It is very important to take into consideration a
general way to import the implied knowledge because it
often depends on the industry-specific data structure and it
is usually given outside of the mediation system.

The rest of the paper is organized as follows. We first
explain our motivation behind our research in Section 2,
and then introduce some related work in Section 3. We
describe the definition of our rules in Section 4 and
present the framework of rule-based XML mediation in
Section 5. Finally, we conclude the paper in Section 6.

2. Motivation

In general, the industry-specific specifications are too
complicated for a developer to understand all of the data
constraints and security constraints in the specifications.
For example, let us assume healthcare industry. Even if
the developer can understand the constraints in the Health
Level 7 (HL7) [2] standard and develop some applications
including the logics to validate the constraints, it is
difficult to update the applications separately whenever
the schema of the XML messages is continually changed

HL7 version 2.x supports only hospital workflow.
Since early versions of HL7 2.x adopt a binary (non-
XML) format, legacy applications still depend on this
format. Also, the format is currently supported by most of
major medical information systems vendors in the US for
backword compatibility. However, when we want to
migrate the existing applications over to a system in SOA,
the application developers need to provide a mediation to
convert v2.x binary format to a XML format for (possibly
all of) the HL7-related applications and vice versa. The
HL7 version 3 standard defines the XML message format
but it does not specify all correspondence relationships
between the data in the binary format and the field in the
XML format completely although it supports any and all
healthcare workflows. It would cause the interoperability
problem.

To reduce the risk hidden in the data format conversion
and make it easy to update and maintain the logics in
accord with the changes to the schema of the XML
messages, it is a good approach to separate the logic for
data validation and for privacy anonymization from the

application logic. This is why we propose a simple and
uniform approach to realize XML mediation.

3. Related work

In the area of database applications, there is a large
amount of work in semantic data modeling based on
Entity-Relationship approach. For example, [4] defines a
conceptual data model that extends the notion of the
standard ER model to capture security constraints for the
database application. Each security constraint is expressed
in the security constraint language and graphically
mapped into an ER model. It also gives the taxonomy of
security semantics. Based on the taxonomy, it can detect
conflicting constraints and let the system designer know
what conflicts exist. [5] uses a conceptual data model as a
Platform Independent Model (PIM) and the concrete data
model as a Platform Specific Model (PSM). The PIM is
represented using an extended UML class diagram that
includes the security aspects. It proposes a method to map
from the PIM with secure data (security constraints on the
conceptual data model) to the PSM using secure data (a
secure data representation in the concrete implementation).
As with [4], the basic concept is the same, but there is a
difference in the descriptive power of the model. As
typified by [4, 5], the approaches for the database
applications are basically designed to describe only data
security constraints satisfied in the data model. For
example, the constraints include which data field is
confidential when an instance of the data satisfies a
condition. Because the model does not consider data
validation constraints such as data consistency, the
application developers are responsible for checking the
data validation by themselves.

In the area of natural language processing, there is a
technology that transforms the privacy rules written in a
natural language into a XACML policy as defined in the
SPARCLE system [6]. The approach in [6] is a similarity
to our approach in the generation of XACML policies, but
this work just uses the XAML policy to represent the
conceptual model that we mentioned earlier in the paper
and provide no concrete data mapping between the model
and real environments. The application developers need to
define the data mapping by themselves in their each
application and implement the mechanism to convert the
XACML policy to the application-specific representation
of the logics.

Model-based XML mediation itself is already proposed
in [7]. But the model in [7] is just used to fill the semantic
gap between the interfaces of two services and make it
possible to exchange XML message between the services.
Since the model is automatically converted into XSLT, it
can be used as the XML mediation. Although we have the

different purpose from [7], our approach uses the idea of
model-based XML mediation.

4. Definition of the rules

We propose a simple and uniform approach to realize
XML mediation, such as data validation or privacy
anonymization, based on a set of rules that consists of
constraint conditions in a conceptual data notation in the
XML message and actions performed only when the
conditions are satisfied. We define the details of the rules
in this section. There are some similar technologies [4, 5,
6] to define security and privacy constraints, but the
constraints handled in those technologies can be regarded
as one aspect of our definition.

The definition of rules is a set of rules represented as
R+. Each element R in R+ consists of two parts: A
condition C and an action A. A is performed only when the
corresponding C is satisfied. C is a Boolean condition BC
or a Boolean expression of two Cs associated with a
logical operator like AND, OR, or NOT. A is a simple
operation, such as rejecting the XML message or
anonymizing a specific element in an XML message. BC
is one of three types of evaluation formulas, F1, F2, or F3.
F1 is a function that requires only one parameter O. F1
includes the ‘is null’ function that returns true when the
parameter is null. F2 is a function that requires two
parameters as a combination of O or MVF defined below.
Binary operators such as ‘=’ are examples of F2. F3 is a
function that requires two parameters, O and Oset. An
example of F3 is the membership function that checks O is
included in Oset. MVF is a multivariable function
represented as MVF(O1, O2, …, On), where Oi ∈ O
(1 ≤ i ≤ n), and it returns a value calculated from some Os
defined below. For example, MVF includes the function to
calculate a person’s age using his birthday. O is a
conceptual notation for three types of data: constants OC,
parts of the XML message OI, or data outside of the
message OO. We use symbols like OI(x) to identify the
same object in a rule. Our definition of the rules allows us
to flexibly add other definitions to F1, F2, F3, or A if
needed. For example, a user could add a function to sum
two Os for an F3 function. We can also represent C
graphically as a tree hierarchy. Our definition of the rules
is summarized as follows:.

Definition of rules: R+

R: C à A
C: BC | (C AND C) | (C OR C) | (NOT C)
BC: F1(O) | F2(O, O) | F2(MVF, O) | F2(O, MVF) |
F2(MVF, MVF) | F3(O, Oset)
F1: Boolean function composed of a term; is null | …
F2: Conditional operation composed of two terms; = | <
| > | ≤ | ≥ | ≠ | …

<s:Envelope>
<s:Body>

<message type=“response”>
<patient id=“001”>

<attendingDoctor id=“002” />
<status>not good</status>
<course>…</course>

</patient>
<persons>

<person id=“001”>
<name>Dice-K</name>
<address>Boston, MA</address>
<birthday>20000101</birthday>

<parent id=“003” />
</person>
<person id=“002”>

<name>Hideki</name>
<profession>Doctor</profession>

</person>
<person id=“003”>

<name>Ichiro</name>
</person>

</persons>
</message>

</s:Body>
</s:Envelope>

Figure 1. An example of the XML message

F3: Function that checks a data is included in a set of
another data
MVF: Multivariable function; MVF(O1, O2, …, On)
O: Conceptual notation of three types of single data;
OC | OI | OO
OC: Constants
OI: Conceptual notation of parts of the message
OO: Conceptual notation for data outside of the
message
Oset: Conceptual notation of a set of data
A: Simple operation; Reject a message Rm |
Anonymize a conceptual notation D(OI) | …

In this paper, we classify the definition of rules into two
categories: privacy constraint rules that use D(OI) as A
and data constraint rules that uses Rm as A. This
classification is used in Section 5, although we will see in
the following discussion that our approach is applicable to
other categories. In the next section, we show some
examples of rules written in a natural language and their
corresponding formal representations following the above
definition of rules. We are not focusing on the way to
transform a rule written in a natural language into a formal
one. We assume that the transformation is currently done
manually. Our future work will include ways to apply the
existing technologies [6, 8] in this area to the
transformations.

We use the XML message shown in Figure 1 to show a
concrete application of the rules. In Figure 1, the patient
element includes detailed information about a patient, like
status and course of treatment. The ‘persons’ element
includes a set of person elements. A person element has
detailed information about each person such as name and
address. There are some restrictions on external reference
in the example. For example, the identifier of a patient
may need to be registered in a database of a patient
information system. The same holds for the patient’s
parent and the patient’s attending doctor. These
restrictions are natural in real applications and should be
provided in advance based on the data model.

4.1. Simple constraint condition (SCC)

Here are some examples of the rules that depend on the
evaluation results of simple conditions.

(r1) Rule written in natural language: “The message
has to be rejected when the identifier of a patient is null.”
Data constraint rule: F1-a(Patient) à Rm where F1-a is
the ‘is null’ function and Patient is an O that identifies a
patient.
Concrete application: Patient is the attribute value
specified with the XPath expression ‘//patient/@id’ in
Figure 1. In this example, the message is not rejected
since the patient’s identifier is ‘001’ (not null).

 (r2) Rule written in natural language: “The patient’s
treatment has to be anonymized when the client is not the
patient.”
Privacy constraint rule: F2-a(Client, Patient(x)) à
D(Patient(x).Treatment), where F2-a is the operator ‘ ≠ ’,
Client is an O that identifies a client, and
Patient(x).Treatment is an O that identifies a patient’s
treatment.
Concrete application: Client is the identifier extracted
from the result of client authentication done outside of the
message. Patient(x).Treatment consists of two texts
specified with XPath expressions, ‘//patient/status/text()’
and ‘//patient/course/text()’ in Figure 1. In this example, if
the client’s identifier is not ‘001’, the patient’s status and
course of treatment will be anonymized.

(r3) Rule in natural language: “The patient’s address
also has to be anonymized when the client is not the
patient.”
Privacy constraint rule: F2-a(Client, Patient(x)) à
D(Patient(x).Address), where Patient(x).Address is an OI
that identifies the patient’s address.
Concrete application: Patient(x).Address is the text
specified with the XPath expression
‘//person/address/text()’ in Figure 1. The (r3) is almost
same as (r2) at the level of the rule written in natural
language, but it requires an implicit relationship in order
to apply the rule to the concrete implementation. In this
example, we need to identify who the patient is by using
the patient’s identifier. To implement this, we need an
additional data relationship, F2-b(Patient(x), Person),
where F2-b is the operator ‘=’ and Person is the attribute
value specified with the XPath expression ‘//person/@id’
in Figure 1. If the client’s identifier is not ‘001’, the text
in the patient’s address will be anonymized.

(r4) Rule written in natural language: “The message
has to be rejected when the profession of the patient’s
attending doctor is not ‘Doctor’.”

F2-a

(r1)

F1-a

(r2)

Patient

(r3)

Implied Condition

Function

Object

(r4)
F2-a

Patient(x).Doctor.
Profession

Client

Patient(x)

F2-a

Client
Patient(x)

F2-b

Patient(x)
Person

‘Doctor’

F2-b

Patient(x)
Person

Figure 2. Graphical representation of SCCs

Data constraint rule: F2-a (Patient(x).Doctor.Profession,
‘Doctor’) à Rm, where Patient(x).Doctor.Profession is
an O that identifies the profession of the patient’s
attending doctor.
Concrete application: Patient(x).Doctor.Profession is
the text specified with the XPath expression
‘//person/profession’ in Figure 1. In this example, we
need an additional data relationship F2-b(Patient(x),
Person) as well as (r3). In this example, the message is not
rejected since the profession of the patient’s attending
doctor is ‘Doctor’.

Figure 2 shows a graphical representation of these
SCCs.

4.2. Complex constraint condition (CCC)

Here are some examples of rules that depend on
evaluation results of combinations of more than one
condition.

(r5) Rule written in natural language: “The message
has to be rejected if there is a person whose parent is not
in the set of persons.”
Data constraint rule: (NOT F3-a(Person.Parent,
PersonSet)) à Rm, where F3-a is a new function ‘exist in’
that returns true if the first parameter exist in the second
parameter, Person.Parent is an O that identifies a parent
of the person, and PersonSet is an Oset that identifies a set
of persons.
Concrete application: Person.Parent is the attribute
value specified with the XPath expression
‘//person/parent/@id’ and PersonSet is a set of attribute
values specified with the XPath expression ‘//person/@id’
in Figure 1. In this example, the identifier of each parent

F2-c

(r5) (r6)

’18’

Implied Condition

NOT

F3-a

F2-b

NOT

AND

Person(x).Parent

PersonSet

Patient(x).Birthday Client

Patient(x).Parent

F2-b

Patient(x)
Person

SFa

Figure 3. Graphical representation of CCCs

would be checked if it is included in a set of the identifiers
of persons because each person has his parent’s identifier.
Since the identifier ‘003’ of a person’s parent matches
with another person’s identifier, the message may not be
rejected.

(r6) Rule written in natural language: “The patient’s
treatment has to be anonymized when the client is the
patient’s parent but the patient is over 18.”
Privacy constraint rule: (NOT (F2-

c(SFa(Patient(x).Birthday), 18) AND F2-b(Client,
Patient(x).Parent))) à D(Patient(x).Treatment), where F2-

c is ‘<’ function, SFa is a new function that calculates the
age of a patient, Patient(x).Birthday is an O that identifies
the patient’s birthday, and Patient(x).Parent is an O that
identifies the patient’s parent.
Concrete application: Patient(x).Birthday is the text
specified with the XPath expression
‘//person/birthday/text()’ and Patient(x).Parent is the
attribute value specified with the XPath expression
‘//person/parent/@id’ in Figure 1. In this example, we
need the data relationship F2-b(Patient(x), Person) as well
as (r3). If the client’s identifier is ‘003’, he can see the
patient’s address since it equals the identifier of the
patient’s parent and the patient is under 18.

Figure 3 shows a graphical representation of these
complex constraint conditions.

5. Framework of rule-based XML mediation

In this section, we define more implementation-specific
data mappings to realize XML mediation based on the
rules defined in the previous section.

5.1. Implementation-specific data mapping

We define data mappings from the conceptual data
notation to an implementation-specific data representation
as a set of pairs of key and value. The key is the
conceptual data notation of the rules defined in the
previous section, such as Client, Patient, or Person. The
value is an implementation-specific data representation
using XPath expression such as ‘//patient/@id’ or some

Table 1. An example of implementation specific data
mapping

Key (data notation) Value (semantics)
Patient XPath: //patient/@id

PatientTreatment XPath: //patient/status/text() and
XPath: //patient/course/text()

PatientAddress XPath: //person/address/text()
PatientBirthday XPath: //person/birthday/text()
PatientParent XPath: //person/parent/@id
PatientAttendingDo
ctorProfession XPath: //person/profession/text()

Client

Function: Extraction of the client
identifier from the result of client
authentication outside the
message

Person / PersonSet XPath: //person/@id

Table 2. An example of an implied data relationship
Key (data notation) Value (semantics)

F2-b(Patient, Person)
Returns true if the patient’s
identifier is equal to the person’s
identifier

function that outputs a value such as an extraction of the
client identifier from the result of client authentication
done outside of the message. Table 1 shows the pairs of
key and value used for the examples in Section 4. When
we transform the conceptual data notation into an
implementation-specific data representation, we will also
require additional data relationships that are hidden in the
rules. The (r3) used in Subsection 4.1 is a good example.
The XML message used in Section 4 includes more than
one person element. If a different person has a different
address, then the relationship between the Patient
(//patient/@id) and the PatientAddress
(//person/address/text()) are underspecified. Therefore, we
need to define such implied data relationships to make
them uniquely-determined. We assume that these implicit
data relationships should be given in advance based on the
data model but we need to consider how to derive the
relationships from the data model in the future. Table 2
shows the implied data relationships used in the examples
in Section 4.

There are various technologies to implement XML
mediation. We can currently transform our rules to the
descriptions that are processable by the following
technologies:

l For privacy-constraint rules in isolation, we can use

the existing XACML implementation [10] to process
the policy in the XML mediation after we transform
the rules to a policy defined in the XACML.

l For data-constraint rules in isolation, we can use the
existing Schematron implementation [12] to convert

the Schematron rules to XSLT for the XML mediation
after we transform the rules to Schematron rules.

l Both for privacy-constraint rules and for data-
constraint rules, we can use the existing XSLT
processor [14, 15] directly in the XML mediation after
we transform the rules to XSLT processing rules.

5.2. Rule transformation to XACML

When we transform the privacy-constraint rules
defined in Section 4 to XACML policies, we do not
necessarily need the data mappings and implied data
relationships defined in Subsection 5.1 because we can
describe the XACML policies in a way that is independent
of any XML data representation. However, in this
subsection we show how to transform the rules to the
XACML policies using data mappings and implied data
relationships.

The condition related to the client is mapped into the
Subject. Action D(OI) is mapped into the Rule’s effect
and the Action of XACML. The object D(OI) is mapped
into the Resource. The rest of the conditions are mapped
into the Condition. When the Condition is constructed, the
data mappings and implied data relationships are also
used. Figure 4 shows a snippet of the XACML policy
transformed from (r6) as described in Subsection 4.2,
showing only the key points. In Figure 4, the XPath
expression ‘//person/parent/@id’ is mapped to the Subject
by using F2-b(Client, Patient(x).Parent). The Rule’s effect
is set to ‘Deny’, The Action is set to ‘read’, and both of
the XPath expressions ‘//patient/status/text()’ and
‘//patient/course/text()’ are mapped into the Resource by
using D(Patient(x).Treatment). The condition F2-

c(SFa(Patient(x).Birthday), 18) and the implied condition
F2-b(Patient(x), Person) are mapped into the Condition.
The calculation of the patient’s age is based on the
semantics defined in the data mappings.

5.3. Rule transformation to Schematron

A Schematron description is generally used only for
data validation, although it is similar to XSLT processing
rules. When we transform the rules defined in Section 4 to
Schematron rules, we can map the data constraint
conditions to Schematron rules based on the hierarchy of
the conditions and reject the XML message. Figure 5
shows a snippet of the Schematron description
transformed from (r1) as described in Subsection 4.1,
showing only the key points. In Figure 5, the XPath
‘//patient/@id’ is embedded into the XPath evaluation. If
the XPath evaluation is false, then the message is rejected.

<Policy xmlns="xacml:1.0:policy"
PolicyId="sample-rules“
RuleCombiningAlgId="rule-combining-algorithm:deny-overrides">
<Rule RuleId= "sample-rules:rule1" Effect="Deny">
<Target>

<Subjects>
<Subject>

<SubjectMatch MatchId="function:string-xpath-node-match">
<AttributeValue DataType="#string">
/s:Envelope/s:Body/message/persons/person/parent/@id

</AttributeValue>
</SubjectMatch>

</Subject>
</Subjects>
<Resources>

<Resource>
<ResourceMatch MatchId="function:xpath-node-match">

<AttributeValue DataType="#string">
/s:Envelope/s:Body/message/patient/status/text()

</AttributeValue>
</ResourceMatch>

</Resource>
<Resource>

<ResourceMatch MatchId="function:xpath-node-match">
<AttributeValue DataType="#string">
/s:Envelope/s:Body/message/patient/course/text()

</AttributeValue>
</ResourceMatch>

</Resource>
</Resources>
<Actions>

<Action>
<ActionMatch MatchId="function:string-equal">

<AttributeValue DataType="#string">read</AttributeValue>
</ActionMatch>

</Action>
</Actions>

</Target>
<Condition FunctionId="function:and">

<Apply FunctionId="function:integer-equal">
<AttributeSelector RequestContextPath=

"/s:Envelope/s:Body/message/patient/@id“
DataType="#integer"/>

<AttributeSelector RequestContextPath=
"/s:Envelope/s:Body/message/persons/person/@id"

DataType="#integer"/>
</Apply>
<Apply FunctionId="function:date-greater-than-or-equal">

<Apply FunctionId="function:date-one-and-only">
<EnvironmentAttributeDesignator

AttributeId="environment:current-date" DataType="#date"/>
</Apply>
<Apply FunctionId="function:date-add-yearMonthDuration">

<Apply FunctionId="function:date-one-and-only">
<AttributeSelector RequestContextPath=

"/s:Envelope/s:Body/message/persons/person/birthday/text()"
DataType="#date"/>

</Apply>
<AttributeValue DataType="#date">18-00-00</AttributeValue>

</Apply>
</Apply>

</Condition>
</Rule>

</Policy>
Figure 4. The XACML policy transformed from (r6) in

Subsection 4.2.

<schema>

<pattern name="rule1">
<rule context="/">

<assert test=“string-length(/s:Envelope/s:Body/message/patient/@id) > 0">
</assert>

</rule>
</pattern>

</schema>
Figure 5. The Schematron description transformed from

(r1) in Subsection 4.1.

<!-- Rule 1 -->
<xsl:template match="//message/patient">
<xsl:variable name="_patientid_" select="@id"/>
<xsl:choose>

<xsl:when test="string-length($_patientid_) > 0"/>
<xsl:otherwise>Violation in Rule 1</xsl:otherwise>

</xsl:choose>
</xsl:template>

<!-- Rule 2 -->
<xsl:template match="//message/patient/status">
<xsl:variable name="_clientid_" select="001"/>
<xsl:variable name="_patientid_" select="//message/patient/@id"/>
<xsl:choose>

<xsl:when test="$_clientid_ != $_patientid_">
<xsl:copy>Deidentified by Rule 2</xsl:copy>

</xsl:when>
<xsl:otherwise>
<xsl:copy>…</xsl:copy>

</xsl:otherwise>
</xsl:choose>

</xsl:template>
<xsl:template match="//message/patient/course">
…

</xsl:template-->

<!-- Rule 3 -->
<xsl:template match="//message/persons/person/address">
<xsl:variable name="_clientid_" select="001"/>
<xsl:variable name="_patientid_" select="//message/patient/@id"/>
<xsl:variable name="_personid_" select="../@id"/>
<xsl:choose>

<xsl:when test=“
($_personid_ != $_patientid_) or ($_clientid_ != $_patientid_)

">
<xsl:copy>Deidentified by Rule 3</xsl:copy>

</xsl:when>
<xsl:otherwise>
<xsl:copy>…</xsl:copy>

</xsl:otherwise>
</xsl:choose>

</xsl:template>

<!-- Rule 4 -->
<xsl:template match="//message/patient/attendingDoctor">
<xsl:variable name="_doctorid_" select="@id"/>
<xsl:choose>

<xsl:when test=“
//message/persons/person[@id=$_doctorid_]/profession/text() =

'Doctor‘
"/>
<xsl:otherwise>Violation in Rule 4</xsl:otherwise>

</xsl:choose>
<xsl:copy>…</xsl:copy>

</xsl:template>

Figure 6. The XSLT processing rules transformed from
(r1) – (r4) in Subsection 4.1.

5.4. Rule transformation to XSLT

We can handle both data-constraint rules and privacy-
constraint rules as defined in Section 4 using the same
XSLT implementation if we transform the rules to XSLT
processing rules. Figure 6 shows the XSLT processing
rules transformed from (r1)-(r4) as described in
Subsection 4.1, again simplified for illustrative purposes.
When we transform the simple constraint conditions
described in Subsection 4.1, we can apply simple mapping
rules as follows:

l Define a context root for a template. For example, in
(r1) we can use ‘//patient’ as the context root.

l Store the necessary data into the variables. For
example, the patient’s identifier is stored in the
variable ‘_patientid_’ and the client’s identifier is
stored in the variable ‘_clientid_’ in (r2).

l Transform the condition into the XPath evaluation. For
example, the XPath evaluation ‘($_personid_ !=
$_patientid_) or ($_clientid_ != $_patientid_)’ is
generated by F2-a(Client, Patient) and F2-b(Patient,
Person) in (r3).

l Decide the behaviors based on the actions. If a
message is rejected, an exception will be thrown.
When a part of the message is determined to be
anonymized, that part may be removed from the
original message. For example, the message is rejected
with an exception when the condition is false in (r4).

5.5. Rule transformation to XSLT

When we transform the complex constraint conditions
described in Subsection 4.2, we sometimes need a
template for a rule transformation, especially for XSLT
processing rules. Figure 7 shows the XSLT processing
rules transformed from (r5)- (r6). Again the figure has
been simplified here.

We define a new function F2-c(Person(x).Parent,
Person) in (r5) in Subsection 4.2. The following template
realizes this function as an XSLT processing rule. A
sample of the XSLT rule is shown in Figure 7.

a) Whenever an element including the Person(x).Parent

is found,
i. Extract the Person(x).Parent and store it in the

variable ’_parentid_’.
ii. Check if the Person includes ‘$_parentid_’ using

the function ‘count’. If it is not included (i.e. the
count is zero), the message is rejected.

We also define a new function

SFa(Patient(x).Birthday) in (r6) in Subsection 4.3. For this
function, the template is given by the following. A sample
of the XSLT rule is shown in Figure 7.

b) When an element including the Patient(x).Birthday is

found,
i. Extract the Patient(x).Birthday and store it in the

variable ‘_sd_’.
ii. Extract the current date and store it in a variable

like ’_cd_’.
iii. Calculate the patient’s age using ‘$_sd_’ and

‘$_cd_’ (being careful about the date formats).

<!-- Rule 5 -->
<xsl:template match="//message/persons/person/parent">

<xsl:variable name="_parentid_" select="@id"/>
<xsl:if test="string-length($_parentid_) > 0">

<xsl:choose>
<xsl:when test=“

count(//message/persons/person[@id = $_parentid_]) > 0
"/>
<xsl:otherwise>Violation in Rule 5</xsl:otherwise>

</xsl:choose>
</xsl:if>

</xsl:template>

<!-- Rule 6 -->
<!--xsl:template match="//message/patient/status">

<xsl:variable name="_clientid_" select="001"/>
<xsl:variable name="_patientid_" select="//message/patient/@id"/>
<xsl:variable name="_parentid_" select=“

//message/persons/person[@id=$_patientid_]/parent/@id
"/>
<xsl:variable name="_cd_" select="date:date-time()" />

<xsl:variable name="_cdy_" select="substring($_cd_, 1, 4)"/>
<xsl:variable name="_sd_" select=“

//message/persons/person[@id=$_patientid_]/birthday/text()
"/>
<xsl:variable name="_sdy_" select="substring($_sd_, 1, 4)"/>
<xsl:variable name="_svy_" select="18"/>
<xsl:choose>

<xsl:when test=“
not (($_patientid_ = $_clientid_) and ($_cdy_ < $_sdy_ + $_svy_))

">
<xsl:copy>Deidentified by Rule 6</xsl:copy>

</xsl:when>
<xsl:otherwise>
<xsl:copy>…</xsl:copy>

</xsl:otherwise>
</xsl:choose>

</xsl:template-->
<xsl:template match="//message/patient/course">

…
</xsl:template>
Figure 7. The XSLT processing rules transformed from

(r5)-(r6) in Subsection 4.2..

Since we considered only two cases in this paper, we
need more investigation and discussion in order to
formalize these templates and to include them into our
definitions. This is part of our future work. Also, we may
find conflicts in a set of rules. For example, both (r2) and
(r6) define D(Patient(x).Treatment) as the action. To
resolve conflicts, the system checks all the conceptual
notations used in the actions and, for each notation that is
used more than one action. Then, the system can ask the
rule designer which one is preserved or in which order
those rules are applied or may be able to merges the rules.

6. Concluding Remarks

In this paper, we have presented a uniform rule-based
approach to realize the functions as a XML mediation for
data validation and privacy anonymization, which makes
it easy to maintain consistency of the functions when they
are updated in accord with the changes to the
specifications. Therefore, application developers can
readily utilize it with many applications in SOA without
additional modification to the applications. Our approach

allows the developers to define a set of rules that consists
of constraint conditions in a conceptual data notation in
the XML message and actions performed only when the
conditions are satisfied. In order to make the rules
independent from both the implementation-specific data
notation and the industry-specific knowledge, we
automatically transform the rules into the implementation-
specific data representation using two more factors; data
mappings from the data notation in the rules to the
concrete data representation in the implementation and the
implied data relationships hidden in the rules.

Our future work will include application of existing
natural language processing techniques to generate the
rules, validation of our definitions for rules, and
formalization of the template descriptions required for
new functions defined in the rules.

References

[1] Simple Object Access Protocol (SOAP) Version 1.2,
http://www.w3.org/TR/soap12/
[2] Healthcare Level Seven (HL7), http://www.hl7.org/
[3] Extensible Business Reporting Language (XBRL),
http://www.xbrl.org/
[4] G. Pernul, A. M. Tjoa and W. Winiwarter, “Modeling Data
Secrecy and Integrity”, Data & Knowledge Engineering, Vol. 26,
pp. 291-308, 1998.
[5] B. Vela, E. F. Medina, E. Marcos, and M. Piattini, "Model
driven development of secure XML databases", ACM SIGMOD
Record, Vol.35 No.3, pp.22-27, 2006.
[6] C. A. Brodie, C. Karat, and J. Karat, “An Empirical Study of
Natural Language Parsing of Privacy Policy Rules Using the
SPARCLE Policy, ” Proceedings of the second symposium on
Usable privacy and security (SOUPS '06), pp. 8-19, 2006
[7] A. Tolk, "XML Mediation Services Utilizing Model-Based
Data Management," Proceedings of IEEE Winter Simulation
Conference, IEEE CS Press, pp. 1476–1484, 2004.
[8] R. J. Kate, Y. W. Wong, and R. J. Mooney, “Learning to
Transform Natural to Formal Languages,” in Proceedings of the
Twentieth National Conference on Artificial Intelligence (AAAI-
05), pp. 1062--1068, 2005.
[9] Core Specification: eXtensible Access Control Markup
Language (XACML) Version 1.0, http://www.oasis-
open.org/committees/download.php/2406/oasis-xacml-1.0.pdf
[10] Sun’s XACML implementation,
http://sunxacml.sourceforge.net/
[11] ISO Schematron, http://www.schematron.com/spec.html
[12] Schematron implementation,
http://xml.ascc.net/schematron/1.5/basic1-5/schematron-
basic.html
[13] XSL Transformations (XSLT) Version 1.0,
http://www.w3.org/TR/xslt
[14] SAXON – The XSLT and XQuery processor,
http://saxon.sourceforge.net/
[15] Xalan-Java, http://xml.apache.org/xalan-j/

