
March 7, 2008
RT0781
Computer Science 10 pages

Research Report
Bytecode Transformation-Tolerant Bytecode-Transformation
in Java

Michiaki Tatsubori
IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It
has been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or
copies of the article legally obtained (for example, by payment of royalities).

Bytecode Transformation-Tolerant Bytecode
Transformation in Java

[Extended Abstract]

Michiaki Tatsubori
IBM Research, Tokyo Research Laboratory

1623-14, Shimotsuruma, Yamato, Kanagawa, 242-8502, Japan
mich@acm.org

ABSTRACT
Bytecode transformations at class-loading time in Java offer
a good trade-off point in terms of dynamicity and power of
transformation, execution performance, and portability of
the applications transformed. However, they often limits the
use of custom/system class loaders in application programs.
This limitation is especially the pain for developing stacked
containers, which are often used in application servers. This
paper presents a transformation framework called EMPL for
addressing this limitation. A transformation container using
EMPL allows its application software stacks to transform
the bytecode of their interest using customized class loaders.
This paper also presents how to implement EMPL on top of
the existing standard Java virtual machine and system class
libraries without modifying them.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.2 [Software
Engineering]: Design Tools and Techniques—modules and
interfaces, software libraries

General Terms
Algorithms, Design, Languages, Experimentation

Keywords
Generative programming, bytecode transformation, Java class
loader

1. INTRODUCTION
The customizable class-loading mechanism in Java [6] pro-
vides the language with great flexibility. The first-class class
loader objects allow customizing class-loading behavior by
assigning the responsibility for class loading to designated
class loaders, including user-defined class loaders [13]. Es-
pecially, techniques with bytecode transformation in a class
loader are getting popular these days for providing trans-
formational systems [11], which is middleware that rewrites

SIGSOFT 2008/FSE 16 November 9-15, 2008, Atlanta, GA, USA

overlaying application programs for the support of func-
tional extensions. They are popular because of the good
trade-off point offered by the techiniques in terms of dynam-
icity and power of transformation, execution performance,
and portability of the transformational systems and the ap-
plication programs transformed [3, 4].

However, program transformations face serious restrictions
when class loaders are used as first-class objects in an appli-
cation program, which is the target of the transformations.
In fact, existing transformational systems implemented as
customized class loaders often evade grappling squarely with
this situation. They disable these features when they find
any use of reflection in an transformed program or, in the
worst cases, their manuals simply state that any use of cus-
tomized class loaders unpredictable results.

It is desired that application programmers can benefit from
the flexibility of the customizable class loader mechanism
in their programs while still allowing the programs to be
supported by middleware platforms for functional exten-
sions like persistency, distribution, high performance, good
reusability, and so on. Unfortunately, current solutions do
not offer both benefits since it is not possible to combine
customized class loaders in application programs and trans-
formation by a middleware platform. However, both of these
capabilities are important for programmers. On the one
hand, customized class loaders are common and essential
techniques for a wide range of programs with dynamic be-
havior. On the other hand, program transformations are
essential techniques for supporting extended functions that
crosscut application programs and which cannot be provided
in the usual class libraries.

Existing proposals that achieves the mandatory transforma-
tion of application programs require modification of Java vir-
tual machine (JVM) or bootstrap class libraries. Such exam-
ples would be Binary Component Adaptation (BCA) [7] and
JMangler [10], both of which enables compiled Java classes
to be modified during load-time. With BCA, modifications
are declared in a special language that offers a predefined
set of transformations. It modifies a JVM implementation
to hook into the class loading process. It is tied in a specific
platform and a specific JVM version. JMangler only mod-
ifies bootstrap class libraries so it is portable to a platform
where bootstrap class libraries are written in a pure-Java
manner. Unfortunately, JVM vendors often prohibit to re-

1

place bootstrap classes through some legal restriction. For
example, doing so would contravene Sun’s binary code li-
cense for JVM (the Java 2 Runtime Environment binary
code license).

This paper addresses this problem with a framework called
EMPL. This framework:

• makes program transformations by middleware manda-
tory and transparent for the modified application pro-
grams so that the transformation by the middleware
is always ensured to be performed on the application
programs, and

• runs on the regular JVM without modifying its imple-
mentation or its bootstrap class library.

The design and implementation of EMPL described in this
paper is built just as a customized class loader thus it can
be run on regular Java virtual machines.

The rest of this paper is organized as follows. First, we use
an example scenario to clarify the problems that a trans-
formation container faces when program transformation is
used in application programs. In Section 3, we introduce
our framework for addressing this problem and present the
design and implementation of the framework called EMPL.
Section 4 shows applications of EMPL and some experimen-
tal results of measuring overhead with EMPL. We finally
conclude this paper and talk about future directions of this
work in Section 5.

2. TRANSFORMATION CONTAINER MID-
DLEWARE

The high dynamism provided by reflection is a thorn in the
side of program analysis/rewriting technologies. This sec-
tion gives an example scenario of a middleware platform
that transforms the overlaying application programs to pro-
vide them with extended functionality. By showing example
problems with this scenario, we clarify the problems that a
transformation container faces when reflection is used in ap-
plication programs.

2.1 A Motivating Example Scenario
Suppose we want to provide application-scoped properties
instead of system properties. System properties use system-
wide key-value pairs for specifying parameters of the system
behavior. Instead, we want to provide properties scoped
only in each application program. For example, the following
code for the static method invocation of setProperty() in
java.lang.System sets a system property in Java.

System.setProperty(

"java.xml.sax.driver",

"org.apache.xerces.parsers.SAXParser")

This expression binds a value “org.apache.xerces.parsers.-
SAXParser”to the key“java.xml.sax.driver”in order to spec-
ify that an Apache implementation should be used when the
standard abstract XML parser API is used in the program.

ApplicationPlatform
class loader / launcher

run

translate
application bytecode
define class

run main

load “Application”

translate

define class

load implicitly
or explicitly

modified class

Figure 1: A sequence diagram of typical load-time
bytecode rewriting. A class loader performs byte-
code transformation when it is either explicitly in-
voked to load application classes from the platform
launcher, or is implicitly invoked to resolve required
classes in the application program.

To prevent this kind of application-setting method from af-
fecting other applications in an application server, such as
a Servlet platform, we can use program rewriting in the
application server middleware. With a utility class Thread-
LocalProperties which stores property key-value pairs in a
thread-local map, we can rewrite the original setProperty()
invocation code as:

ThreadLocalProperties.setProperty(

"java.xml.sax.driver",

"org.apache.xerces.parsers.SAXParser"))

Now the code invokes the method setProperty() on the
utility class. Since a map stored in each thread-local object
holds the property key-value pairs, the application server
can control the locality of properties by maintaining the
maps. By giving a new map to the thread-local object when
a thread for application execution starts, the server can pro-
tect the system-wide properties from being changed through
execution of an application.

2.2 Typical Implementation by Bytecode Rewrit-
ing

We can implement this kind of program rewriting either at
load-time[9, 7, 4, 5, 12, 3] or at compile-time[14]. Figure 1
shows the typical flow of bytecode rewriting at load time. An
application program or the bootstrap launcher for this trans-
formation container triggers the loading of a class when they
require the class in order to continue their execution. Load-
ing requests are caught by one of the class loaders. When
asked to load a class for the first time, a class loader ex-
tended for program transformation fetches the bytecode of
the class from the original bytecode repository, such as a
file or network. Instead of simply loading the fetched byte-
code into a Java virtual machine (JVM), the extended loader
lets a meta-program modify the bytecode before loading it

2

class Replacement extends ExprEditor {
void edit(MethodCall m) {

if (! m.getClassName().equals("java.lang.System")) return;
if (m.getMethodName().equals("setProperty"))

m.replace("$_=ThreadLocalProperties.setProperty($$)");
else if (m.getMethodName().equals("getProperty"))

m.replace("$_=ThreadLocalProperties.getProperty($$)");
}

}

Figure 2: Example rewriting code with Javassist.

into the JVM. It returns a class object for the loaded class,
which can be obtained through the defineClass() method
provided by the JVM.

A meta-program for this example seeks a method call expres-
sion in bytecode for every class. It replaces each method call
with the set/getProperty() of ThreadLocalProperties if
the method call meets these criteria:

• the target class of the method call is java.lang.System,
and

• the method name called is "getProperty" or "set-

Property".

For example, using Javassist[3] this translation can be writ-
ten as shown in Figure 2. The MethodCall instance repre-
sents a method call expression in the loaded bytecode. In
this Javassist code, we replace the bytecode fragments of
System.set/getProperty() with method calls on Thread-

LocalProperties using m.replace(), which is part of the
bytecode rewriting API provided by Javassist.

2.3 Problems with Transformations in Appli-
cation Programs

Even though the solution by rewriting shown in Section 2.2
is typical and effective, it has a problem if application pro-
grams use the customizable class loader mechanism in Java.

Direct accesses to a system class loader
Direct invocation of class-loaders like system class loaders
(the bootstrap class loader) also makes our setProperty()

invocation on the System class escape from the net of code
rewriting. For example, application programmers can write
the following code in an application program to load a class.
It avoids the rewriting process described above for the class
XMLLib.

1: ClassLoader cl = ClassLoader.SystemClassLoader();
2: Class c = cl.load("app.XMLLibImpl");
3: XMLLib xmltool = c.newInstance();
4: xmltool.run();

This code first obtains the class loader object for the system
class loader in line 1 and loads the class app.XMLLibImpl

using that system class loader in line 2. It creates a new
XMLLibImpl instance in line 3. Using the type XMLLib, in
line 4, it invokes a method run() on XMLLibImpl. The
XMLLibImpl may be written as follows to set a system prop-
erty in it.

class AppClassLoader extends ClassLoader {
public Class findClass(String name) {

byte[] b = loadClassData(name);
return defineClass(name, b, 0, b.length);

}
byte[] loadClassData(String name) {

// load the class data from a specified location
}

}

Figure 3: A user-defined class loader. This class
loader fetches bytecode from the specified location
and generates a class object using defineClass().

class XMLLibImpl implements XMLLib {

static void run() {

System.setProperty(

"java.xml.sax.driver",

"org.apache.xerces.parsers.SAXParser");

....

The code replacement of setProperty() relies on the load-
time program analysis and modification by a customized
class loader. Since the class XMLLibImpl is not loaded by
the rewriting class loader of the middleware, it would be acti-
vated as is without replacement of the System.getProperty().
Invoking run() on the loaded XMLLibImpl results in an un-
desired setProperty() invocation.

User-defined class loaders
Similarly to the use of a system class loader, the use of user-
defined class loaders causes our setProperty() invocation
on the System class to fail to be rewritten. For example,
application programmers can define a class loader in an ap-
plication program as shown in Figure 3 for controlling their
own class loading behavior. Again, this avoids the rewriting
process if classes are loaded through this user-defined class
loader using code such as:

1: ClassLoader cl = new AppClassLoader();
2: Class c = cl.load("app.XMLLibImpl");
3: XMLLib xmltool = c.newInstance();
4: xmltool.run();

Figure 3 depicts bytecode in the scope of a customized class
loader that analyzes and rewrites programs. The range of
bytecode that a class loader can rewrite is only that which
is loaded through that class loader. Classes loaded using
a load() method on a class loader which is not a child of
the rewriting class loader are inaccessible to the rewriting
class loader. Even if classes are loaded using the load()

method on a child class loader of the rewriting class loader,
their loading is generally not delegated to the parent. They
are also not rewritable in such cases. In addition, system
(bootstrap) classes are prohibited to load by a customized
class loader so their loading must be delegated to the parent
system class loader, making it impossible to rewrite those
classes.

3. EMPL - A FRAMEWORK FOR CAPTUR-
ING REFLECTIVE BEHAVIORS

3

We propose a framework called EMPL, attaining a compre-
hensive net for capturing reflective behaviors. This frame-
work:

• allows program analyzing/rewriting software to detect
and replace indirect method invocations which are not
written in a visible way in application programs, and

• makes analysis and rewriting by middleware manda-
tory and transparent for modified application programs
so that the transformation by the middleware is always
certain to be performed on application programs.

Instead of requiring perfect, precise and static analysis of a
reflective program, which is generally not possible, the pro-
posed framework gives a comprehensive “net” for capturing
the use of reflective computation in application programs at
runtime.

A program in a meta-level layer (within analyzing/rewriting
software) can completely control or sense the behavior and
structure of programs in base-level layers overlaying the meta-
level. This section presents the design and implementation
of EMPL. The core of EMPL is a toolkit called the EMPL
toolkit that performs transformation of bytecode so that
proper use of meta-programming layers can be enforced in
the transformed bytecode. First, we show the application
programming interface for the EMPL toolkit and then ex-
plain how we implement the transformations.

3.1 The Application Programming Interface
The EMPL toolkit.
The EMPL toolkit provides a method:

Bytecode ensureEMPL(String name, byte[] buf,

int offset, int length)

This method receives bytecode in a byte array and returns
modified bytecode in the Bytecode object. The EMPL toolkit
transforms the given bytecode so that meta-programming
layers are certain to be applied there. The class Bytecode is
just the holder of a class name, a byte array, and the offset
and length of the bytecode stored in the array.

This method can be used in an analyzing/rewriting class
loader. If a normal class loader code without EMPL appears
as:

public Class findClass(String name) {

byte[] b = ..;

return defineClass(name, b, 0, b.length);

}

then a corresponding class loader which a programmer using
EMPL should write is formed as follows:

public Class findClass(String name) {

byte[] b = ..;

ApplicationPlatform
class loader / launcher

run

translate application bytecode

define class

ensure layering
& inject tracking

modified bytecode

EMPL toolkit

run main

load “Application”

Figure 4: A sequence diagram for bytecode rewrit-
ing in a transformation container using EMPL. Be-
fore defining a class, the EMPL toolkit is invoked to
transform the bytecode of the class to ensure access
for the meta-programming layers there.

Bytecode empl_b

= EMPLToolkit.ensureEMPL(name, b, 0, b.length);

return defineClass(empl_b.name, empl_b.buf,

empl_b.offset, empl_b.length);

}

Figure 4 shows a sequence diagram for a transformation con-
tainer using EMPL. Compared to the sequence diagram in
Figure 1, a control flow edge goes to the EMPL toolkit after
translating the bytecode of a class and before defining the
class in JVM.

Configuring EMPL.
The launcher (start-up program) of a transformation plat-
form (container) must configure its meta-programming layer
using a method in the EMPL toolkit:

setLayer(ClassLoader loader,

BytecodeTranforming translator)

The first parameter, loader, is a platform class loader in
which the system performs program transformations. The
second parameter, reflTrap, is a platform specific callback
handler for trapping reflective member accesses in applica-
tion programs running on the platform. The third param-
eter, translator, is also a callback handler, but for trans-
forming the bytecode before it is loaded by the application-
defined class loaders.

Typical configuration code in a platform launcher could be
written as follows:

1: EMPLToolkit empl = new EMPLToolkit();
2: ClassLoader loader = new PlatformClassLoader(empl);
3: PlatformTracker tracker = new PlatformTracker();
4: empl.setLayer(loader, tracker);
5: Class appClass = loader.load(applicationClassName);
6: Method mainMethod = appClass.getMethod("main", ..);
7: mainMethod.invoke(null, ..);

4

public interface TranslationEnforcing {
Bytecode enforceTranslation(String name,

byte[] buf, int offset, int length) ..;
}

Figure 5: The interface TranslationEnforcing in the
EMPL API. A callback handler for transforming
bytecode loaded in application-defined class loaders
must implement this interface.

ApplicationPlatform
translator

EMPL toolkit
tracker

run main

translate

define class

load

ensure layering
& inject tracking

modified bytecode

translate

modified bytecode

trap before
class defined

modified bytecode

Figure 6: A sequence diagram for enforced program
transformation in a user-defined class loader.

Callback for class loading.
A middleware programmer writes a callback handler for trans-
forming bytecode loaded in the application-defined class load-
ers by implementing the interface TranslationEnforcing in
Figure 5. Figure 7 shows how a handler is invoked by the
EMPL system. Before program execution reaches the appli-
cation code performing a class definition from bytecode in
an application-defined class loader, the EMPL tracker traps
the execution and invokes a registered callback handler of-
fered by the platform middleware. After bytecode rewriting
by the platform translator is done, the system transforms
the resulting bytecode using the EMPL toolkit so that the
bytecode conforms to the meta-programing layers.

3.2 Implementation
We implement the EMPL toolkit by bytecode rewriting. In
the method ensureEMPL(), the toolkit seeks code which:

• retrieves a class loader through certain system classes,
or

• defines a custom class loader

in bytecode passed as a parameter and inserts code or re-
places their code so that the meta-programming layers are
enforced there.

Transforming class loader accesses.
The objective of the first transformation is to avoid applica-
tion classes being directly loaded by a system class loader.

ApplicationPlatform
class loader

EMPL toolkit
tracker

run main

load class

modified class

ensure layering
& inject tracking

modified bytecode

get system
class loader

platform class loader
translate

define class

Figure 7: Trapped accesses to a system class loader.
Any attempt to retrieve a system class loader is
trapped by the EMPL system and a registered plat-
form class loader is passed instead. As a result,
the original code loading classes through a system
class loader becomes code loading classes through
the platform class loader.

The approach we take 1 for achieving this is:

• not to leak any reference to system loaders to applica-
tion programs, and

• not to allow invocations on system class methods which
load classes using a system class loader in their code.

For preventing leaks of system loader references, we trans-
forms uses of the system methods that return ClassLoader

objects. If a returned object is a reference to a system class
loader, EMPL returns a registered platform class loader in-
stead. General prevention of reference leaks requires more [16],
but this transformation is sufficient in this case. Figure 7
shows a sequence diagram for execution with this transfor-
mation. As a result of the transformation, original code
loading classes through a system class loader becomes code
loading classes through the platform class loader.

As of the Java 2 Standard Edition under the version 1.4.x,
the classes for which the uses are transformed by EMPL
are: Class.getClassLoader(), ClassLoader.getParent(),
ClassLoader.getSystemClassLoader(), SecurityManager-
.currentClassLoader() and Thread.getContextClassLoader()

in the java.lang package, and a few methods in other pack-
ages.

For example, the following code:

ClassLoader.getSystemClassLoader()

1There is an alternative transformation achieving the same
effect of this transformation. In the alternative transforma-
tion approach, we can allow leaks of references to system
loaders. Instead, we need to trap additional system meth-
ods; the EMPL toolkit must transform invocations on meth-
ods taking a class loader as a parameter and loading classes
using the given class loader.

5

is transformed into the following code:

Tracker0.filterLoader(

ClassLoader.getSystemClassLoader())

where the class Tracker0 is a class created at runtime by the
EMPL toolkit for bridging between a toolkit instance and
the base-level application programs. The method filter-

Loader() returns the registered platform class loader if the
class loader given as a parameter is a system class loader.

In addition to the leak prevention of system class loader
references, we need to take care of a few system methods
which internally use a system class loader to load application
classes whose names are given as parameters of the methods.
For example, the method findSystemClass() of the class
java.lang.ClassLoader allows a system class loader to load
a class whose name is given to an invocation of this method
as a parameter. EMPL replaces method calls with code
loading classes through a registered platform class loader.

Moreover, it takes care of reflective access to class loaders
in application programs. Fortunately in Java, classes pro-
viding reflective accesses to a class loader are limited to
the Method class in the java.lang.reflect package. For
method invocations, we only need to trap the declared re-
flective access method invoke() since, they are first (with-
out overriding) declared in the final classes. It replaces ev-
ery method calls through the invoke() with method calls
to EMPL framework which examines whether method calls
should be trapped by EMPL or not and traps them with
EMPL handlers in the case.

Transforming user-defined class loaders.
The objective of the second transformation is to inject re-
quired transformation code into application-defined class load-
ers.

The code defining a class using the final method define-

Class():

defineClass(name, buf, offset, length);

is transformed into:

Bytecode b1

= Tracker0.forceTranslation(name, buf, offset,

length);

Bytecode b2

= Tracker0.ensureEMPL(name, b1, 0, b1.length);

defineClass(b2.name, b2.buf, b2.offset, b2.length);

where the class Tracker0 is a class created at runtime by
the EMPL toolkit for bridging between a toolkit instance
and the base-level application programs.

Additionally, the superclass declarations of user-defined class
loaders whose direct superclass was originally java.lang-

.ClassLoader are replaced with ones for the class EMPL-

Loader, which is a subclass of the class ClassLoader. In the

class EMPLLoader, methods using defineClass() are over-
ridden to invoke forceTranslation() and ensureEMPL()

before the calls to defineClass().

Limitations.
System classes such as java.lang.String must be loaded by
a system class loader thus they are not modifiable for EMPL.
Transformations specified by users of EMPL are never ap-
plied to bytecode of system classes. Also this EMPL imple-
mentation by bytecode rewriting cannot capture reflective-
/non-reflective accesses from native methods, where the ac-
cessing bytecode is not available.

3.3 The EMPL framework
With the EMPL framework, middleware programmers can
reuse existing transformation containers without modifying
their code by hand. To do so, they must provide a platform
launcher wrapping for the original transformation container
in addition to a callback handler for enforced program trans-
formations.

For an application platform which can be launched as follows
from a command line:

java platform.Launcher ...

programmers can write harness code for EMPL-ifying a launcher
class of the middleware, platform.Launcher, as follows:

1: EMPLified platform
= EMPLFramework.harness("platform.Launcher");

2: platform.setLoaderName("platform.Loader");
3: PlatformTracker tracker = new PlatformTracker();
4: platform.setLayer(tracker, tracker);
5: platform.run(args);

The EMPL framework transforms the class loader of the
platform middleware so that it invokes the method ensure-

EMPL() of the EMPL toolkit before invoking defineClass().
A sequence diagram for the behavior of the EMPL frame-
work launcher appears in Figure 8.

4. APPLICATION
EMPL is potentially useful for many middleware applica-
tions to enhance extension effects or enable them to func-
tion without causing unpredictable results. In this section,
we first describe how EMPL can be used to solve the prob-
lem described in the example scenario in Section 2.3. After
that, we mention other possible applications briefly.

4.1 Application to the Thread-Local Proper-
ties Example

We applied EMPL to the example scenario described in Sec-
tion 2. In addition to the rewriting middleware partially
shown in Figure 2, we needed to provide two EMPL call-
back handlers.

The utility class used in the transformed application code,
ThreadLocalProperties, can be formed as shown in Fig-
ure 9. This class uses the class java.lang.ThreadLocal

6

run

run main

EMPL framework
class loader / launcher ApplicationPlatform

class loader / launcher

translate application
bytecode

define class

ensure layering
& inject tracking

modified bytecode

run main

load “Application”

define class

load “Platform”

ensure layering

Figure 8: A sequence diagram for the EMPL frame-
work launcher. It transforms the class loader of the
platform middleware so that it invokes the method
ensureEMPL() before invoking defineClass().

class ThreadLocalProperties {
static ThreadLocal tlv = new ThreadLocal();
static String setProperty(String key, String value) {

Map properties = (Map) tlv.get();
return (String) properties.put(key, value);

}
static String getProperty(String key) {

Map properties = (Map) tlv.get();
String result = (String) properties.get(key);
return (result != null) ? result

: System.getProperty(key);
}

}

Figure 9: The class ThreadLocalProperties.
This class is a substitute for setProperty() and
getProperty() in the class java.lang.System. It main-
tains a thread-local property map.

provided in the standard Java API. All the properties set
through the class are stored in a map held as a thread-local
object. When getProperty() is invoked, the class first looks
up the given key in the thread-local map and returns the cor-
responding value if it is found. Otherwise it delegates the
request to getProperty() of the class java.lang.System.

We provide a callback handler for enforcing our transfor-
mation in the application-defined class loaders. If we use
Javassist for bytecode editing, the code can be written as in
Figure 10. The class Replacement used to transform each
method body in the code is the same class as already shown
in Figure 2 in Section 2.

4.2 Runtime overhead measurement.
The normal execution performance of application programs
is not degraded by EMPL since EMPL inserts interception
only in the class loader access code and reflective code. How-
ever, EMPL imposes a runtime overhead on reflective invo-
cations and a load-time overhead for program transforma-

Bytecode enforceTranslation(String name, byte[] buf,
int offset, int length) {

ClassPool cp = ClassPool.getDefault();
cp.insertClassPath(new ByteArrayClassPath(name, .. buf ..));
CtClass cc = cp.get(name);
CtMethod[] methods = cc.getDeclaredMethods();
for (int i = 0; i < methods.length; ++i)

methods[i].instrument(new Replacement());
}

Figure 10: The program transformation enforce-
ment for thread local properties. The class
Replacement used here is the same class presented
in Figure 2.

tions. We measured these overheads through experiments.
Following experiments were run on the Sun Java 2 Run-
time Environment, Standard Edition, version 1.4.2 (HotSpot
Server VM) / Linux 2.4.18-14 / IBM IntelliStation M Pro
with a single Pentium(R) 4 Processor 2.4GHz and 2GB of
memory.

We measured the overhead of program transformations ap-
plied to application software available in the SPEC JVM98
benchmarks 2. We prepared 2 platform middleware: mid-
dleware doing nothing (empty) and thread-local properties
middleware (tl). We run SPEC’s applications with the nor-
mal launchers and the EMPLified launchers (XX-EMPL).
In addition to the 4 (2x2) types of application execution, we
measured normal execution time of application (normal).
We focused on the program startup regime of benchmark
program execution by setting JVM option not to use any
JIT compiler (-int option) and giving size 1 inputs to SPEC
applications (-s1 option). (Figure 11.) Also, for seeing a
steady state, we measured by setting JVM option to use
a JIT compiler (-server option) and giving size 100 inputs
to SPEC applications (-s100 option). (Figure 12.) We run
the application benchmarks 3 times and took an average for
each.

The results show slight overhead by EMPL. In addition
to the overhead in class loading and reflective invocations,
EMPL seems to affect the execution performance of normal
code. This is because EMPL can interfere with some JIT
compilation since it increases the code size of some method
bodies. When there are relatively a lot of methods not exe-
cuted frequently, the interference of JIT compilation results
in a good score in a benchmark applications, and vice versa.

4.3 Possible Applications
Our experiences rewriting programs for distributed execu-
tion [15] are the original motivation of the work presented
in this paper. In partitioned programs running on several
hosts, which were originally a single program developed to
run on a single host, remote proxy classes substitute for
classes that exist on remote hosts. For example, a class
remote.File is substituted for the class java.io.File on
a GUI host, so that the file accesses on the host are inter-
preted as remote file accesses on a file system host. However,
if there are application-defined class loaders, the program
on a GUI host may try to access files that cause errors on
the GUI host where the file system is not available. With

2http://www.spec.org/jvm98/

7

0

1

2

3

4

5

6

7

8

9

_201_compress _202_jess _209_db _213_javac _222_mpegaudio _227_mtrt _228_jack

SPEC JVM98 application

M
in

im
u

m
 e

la
p

se
d

 t
im

e
(s

ec
.)

normal

empty

empty-EMPL

tl

tl-EMPL

Figure 11: Elapsed times for overall application execution (interpriter, input size=1).

0

5

10

15

20

25

_201_compress _202_jess _209_db _213_javac _222_mpegaudio _227_mtrt _228_jack

SPEC JVM98 application

M
in

im
u

m
 e

la
p

se
d

 t
im

e
(s

ec
.)

normal

empty

empty-EMPL

tl

tl-EMPL

Figure 12: Elapsed times for overall application execution (JIT compiler, input size=100).

8

EMPL, we can avoid this situation.

Automatic replicated state management [2] requires noti-
fying replicas of any state change in the replica’s original
source object. Field accesses on an original object must be
changed so that they are done through getter/setter meth-
ods, which include the notification code in them. It relys on
the code transformation for field access code so a field value
can be directly changed without any notification if a cus-
tomized class loader is used to load the accessor code. This
results in an inconsistent state of the replicas. Using the
EMPL toolkit, we can enforce rewriting of any field access
code.

The call pointcut in AspectJ [8] allows advice code to be
executed at the caller side of the designated classes. Imple-
mentation of an aspect weaver by compilation or bytecode
rewriting rewrites the caller side of classes designated by a
pointcut so that the corresponding advice code is inlined
there or invoked as a method before, after or around the
join-point. Use of customized class loaders easily bypasses
this weaving implementation. The proposed framework can
help the runtime system of AspectJ so that the system can
always insert the advice code when specified methods are
called.

Agesen et al. [1] have implemented a type-parameterizing
extension of Java as an extended class loader. The extended
loader accepts bytecode in their extended class file format
for instantiating the parameterized classes at loading time.
They reported that they needed to modify the JVM to avoid
their implementation being too restrictive for general use.
This is because bytecode in the extended format may be
loaded when not desired by the system class loader if the
application programs run on a regular JVM. The proposed
framework can ensure that application bytecode should al-
ways be transformed before it is activated on a JVM.

Behavioral reflection [17] is often implemented using byte-
code rewriting. In behavioral reflection, a meta-object in-
tercepts field accesses on objects so that it can change the
behavior of the objects of interest. Its implementation relies
on rewrites of field access code. If an application program
uses its own class loader in the program, this implementation
does not work. The proposed framework can help behavioral
reflection systems so that meta-objects can properly inter-
cept any field access to objects even in this case.

5. CONCLUSION
The customizable class loader mechanism in Java provides
the language with great flexibility but its use often imposes
some restrictions on program transformation technologies.
This paper addresses this problem. We are prototyping a
framework called EMPL, which:

• makes program transformations by middleware manda-
tory and transparent for the modified application pro-
grams so that the transformation by the middleware
is always ensured to be performed on the application
programs, and

• runs on the regular JVM without modifying its imple-
mentation or its bootstrap class library.

The described design and implementation of EMPL employs
a customized class loader on the regular Java virtual ma-
chine. Thus it is portable in the same way most of the
transformation containers are. Moreover, since the system
inserts interception only into reflective access code, the nor-
mal execution performance of application programs is not
degraded by EMPL.

The wide applicability of EMPL in analyzing and rewrit-
ing middleware includes applications of automatic program
distribution, replicated state management, aspect-oriented
programming runtime systems, parameterized type exten-
sions, behavioral reflection, and so on.

6. REFERENCES
[1] O. Agesen, S. N. Freund, and J. C. Mitchell. Adding

type parameterization to the Java language. In
Proceedings of the 1997 ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA ’97), number 10 in
SIGPLAN Notices vol.32, pages 49–65. ACM, ACM
Press, October 1997.

[2] G. C. Berry, J. S. Chase, G. A. Cohen, L. P. Cox, and
A. Vahdat. Toward automatic state management for
dynamic web services. In Proceedings of the Network
Storage Symposium (NetStore ’99), Seattle, WA, USA,
October 1999.

[3] S. Chiba. Load-time structural reflection in Java. In
ECOOP 2000 - Object Oriented Programming, LNCS
1850, pages 313–336, Sophia Antipolis and Cannes,
France, June 2000. Springer-Verlag.

[4] G. A. Cohen, J. S. Chase, and D. L. Kaminsky.
Automatic program transformation with JOIE. In
USENIX Annual Technical Conference ’98, New
Orleans, Louisiana, USA, June 1998. USENIX.

[5] M. Dahm. Byte code engineering with the javaclass
api. Techincal Report B-17-98, Institut für Informatik,
Freie Universität Berlin, Berlin, Germany, July 1999.

[6] J. Gosling, B. Joy, and G. L. Steele Jr. The Java
Language Specification. Addison-Wesley, 1997.

[7] R. Keller and U. Hölzle. Binary component
adaptation. In E. Jul, editor, ECOOP ’98 — Object
Oriented Programming, LNCS 1445, pages 307–329,
Brussels, Belgium, jul 1998. Springer-Verlag. July
20-24, 1998.

[8] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Grisworld. An overview of
AspectJ. In L. Knudsen, editor, ECOOP 2001 - Object
Oriented Programming, LNCS 2072, pages 327–353,
Budapest, Hungary, June 2001. Springer-Verlag.

[9] G. N. C. Kierby, R. Morrison, and D. W. Stemple.
Linguistic reflection in Java. Software — Practice and
Experience, 28(10):1045–1077, August 1998.

[10] G. Kniesel, P. Costanza, and M. Austermann”.
JMangler - a framework for load-time transformation
of java class files. In Proc. of IEEE Workshop on
Source Code Analysis and Manipulation. IEEE, 2001.
none.

[11] C. W. Krueger. Software reuse. ACM Computing
Surveys, 24(2):131–183, 1992.

[12] C. Laffra, D. Lorch, D. Streeter, F. Tip, and J. Field.
Jikes bytecode toolkit. Online, March 2000.

9

http://www.alphaworks.ibm.com/tech/jikesbt/.

[13] S. Liang and G. Bracha. Dynamic class loading in the
Java virtual machine. In Proceedings of OOPSLA ’98,
number 10 in SIGPLAN Notices vol.33, pages 36–44.
ACM, ACM Press, 1998.

[14] M. Tatsubori, S. Chiba, M.-O. Killijian, and K. Itano.
OpenJava: A class-based macro system for Java. In
W. Cazzola, R. J. Stroud, and F. Tisato, editors,
Reflection and Software Engineering, LNCS 1826,
pages 119–135. Springer-Verlag, July 2000.

[15] M. Tatsubori, T. Sasaki, S. Chiba, and K. Itano. A
bytecode translator for distributed execution of
“legacy” Java software. In L. Knudsen, editor, ECOOP
2001 - Object Oriented Programming, LNCS 2072,
pages 236–255, Budapest, Hungary, June 2001.
Springer-Verlag.

[16] E. Tilevich and Y. Smaragdakis. J-Ohrchestra:
Automatic Java application partitioning. In
B. Magnusson, editor, ECOOP 2002 - Object Oriented
Programming, LNCS 2374, pages 178–204, Malaga,
Spain, June 2002. Springer-Verlag.

[17] I. Welch and R. Stroud. From Dalang to Kava — the
evolution of a reflective Java extension. In Proceedings
of Meta-Level Architectures and Reflection, Second
International Conference, Reflection’99, LNCS 1616,
pages 2–21, Saint-Malo, France, July 1999. Springer.

10

