
March 31, 2006
RT0782
Computer Science 19 pages

Research Report
Code Security in Transformed Java Bytecode

Michiaki Tatsubori, Akihiko Tozawa, Akira Koseki
IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Code Security in Transformed Java Bytecode

Michiaki Tatsubori1, Akihiko Tozawa1, and Akira Koseki

IBM Tokyo Research Laboratory
{tazbori,atozawa,akoseki}@jp.ibm.com,

Abstract. Program code transformation is a useful technique for achieving lan-
guage extensions like persistence of objects. However, a meta-level program may
often introduce security holes unexpectedly through its code transformation, and
result in breaking Java’s code security model that base-level application programs
assume in order to preserve their application-level security. This paper shows the
problem of code security as broken by program transformations and explains the
possibility of a security threat caused by it. Based on the security model of pro-
gram transformations, we formalize a novelaction-basedsecurity model, which
describes a mechanism suitable for safely handling program transformations in
Java. Also, this paper describes the design and implementation of our secure pro-
gram transformation framework. The framework is built upon the standard Java
virtual machine using a customized class loader. It checks and transforms byte-
code of application classes when they are loaded. Experimental results show its
overhead is acceptably small.

1 Introduction

Program transformationis a powerful and useful technique for providing a
functional extension which is difficult to provide with ordinary object-oriented
mechanisms like class inheritance [11]. Such extensions include object serial-
ization [9], state persistency [12], remote objects [14], behavioral reflection [16,
13] and security mechanisms [2], for example. Even though direct bytecode ma-
nipulation is difficult to implement, recent research works [7, 10, 3, 6] provide
toolkits or libraries for rewriting/generating bytecode easier. These efforts have
made load-time bytecode transformations commodities.

However, in a system using program transformation, ameta-levelprogram,
who transforms application (base-level) programs, often breaks the code se-
curity that base-level application programs assume in order to preserve their
application-level security. For example, a meta-level program may make a pri-
vate member field of a class accessible to the code generated by the meta-level
program on demand for probing the object status. In this case, misused or mali-
cious base-level programs can also access the field that was originally declared
private and not accessible. If the original base-level program is designed to pre-
serve their own security depending that the private fields of a class are only

accessible from the class itself, its security is broken due to the transformations
made by the meta-level program.

Even though the existing language environments such asJava2 security[8]
provide a flexible, programmer-definable security mechanism, it is not sufficient
to secure this situation. In a transformed program, what actually implements the
meta-level intent is code fragments deployed across the entire application (base-
level) program code. A meta-level program sometimes needs to allow these code
fragments to run with the access rights of the meta-level domain like accessing
the private resources. However, existing code security frameworks merely pro-
vide the package or class-based protection domains which cannot handle this.
Programmers need to do complex coding tricks and error-prone tasks for writ-
ing a meta-level program which does not break the security while giving rich
functions to base-level programs.

We think that to rigorously capture security requirements introduced by the
use of program transformation systems, it is essential to have a new fine-grained
security model. In this paper, we introduce a formal model ofaction-basedse-
curity. Comparing to Java2 security, our model differs in the definition of units
of programs which belong to a single domain, and to which a single security
policy is applied. In our action-based security model, a security domain can be
set to each atomic action, i.e., a minimum unit of the program. Thus, our model
gives a sufficient solution to the security of program transformation in which we
modify each atomic bytecode instruction of existing application classes.

We also give an algorithm to implement the proposed security model on top
of the standard Java virtual machine. Though the idea of action-based security
is simple, its implementation requires a careful design. For example, it is ob-
viously not feasible to associate each atomic action with a protection domain
object. Instead, we employ a load-time bytecode transformation technique to
modify the security property of each atomic action. Though the design of this
implementation is ingenious aiming at reducing runtime overhead as much as
possible, the correctness of this implementation with respect to the model is
guaranteed in terms of soundness and completeness theorems.

The contributions of the work presented in this paper are:

– The proposal of a new security model that can suitably treat a practical use
of the program transformations in Java.

– A design of the security mechanism on top of a standard Java virtual ma-
chine. We use static checking of bytecode by a customized class loader. This
does not imply any additional overhead over regular method execution since
all the checks are done at load time.

The rest of this paper is organized as follows. In Section 2, we state the
problem we address in this paper. Giving a few examples of program transfor-

2

mations at application platforms, we point out a security flaw caused by the
introduction of program transformation. Section 3 describes our approach of
security model extension and formally defines our security model using ABLP
logic. We propose a new security mechanism for safely using program transfor-
mations in Java. Section 4 explains the design and implementation of our pro-
gram transformation framework based on the proposed security model. Finally,
after discussing related work in Section 5, we conclude the paper in Section 6.

2 Security Threat in Transformed Code

Program transformation is regarded as a powerful tool to add new functionali-
ties to existing programs. We can think of many applications of the transforma-
tion, which can give us several benefits including high portability, productivity,
reusability, and so on. For a typical example, we use an application platform
where applications and libraries provided by some third parties run on top of
the platform middleware. In such a platform, the middleware provides extended
functionalities using transformation of application programs. Figure 1 illustrates
the architecture of the platform. In the application platform, a middleware pro-
grammer gives a meta-level program that controls the entire system. Applica-
tions are provided typically through the network and given some functionali-
ties, for example, in order to complete the application logic or to monitor the
object status. Later we see that while the programmer can enjoy the benefit of
the program transformation, the program has to be exposed to potential security
vulnerability.

JVMJVM

App AApp A App BApp B Generated
library

Generated
library

Application platform

Runtime
library

Runtime
library Transforming

library

Transforming
library

Platform middleware

generatemodify

Meta-level
program

Meta-level
program

invoke

Fig. 1. A multi-application platform transforming application programs.

3

2.1 Program Transformation

Before showing actual examples of security problems, it is better to refer to the
mechanism of program transformation and define our terminology. In this paper,
we refer to the program transformation as mechanisms found inJavassist[6],
which are powerful libraries for manipulating thestructureof programs by the
programs themselves. The modified programs are called thebase-levelpro-
grams, while the modifying programs are calledmeta-levelprograms. In object-
oriented languages like Java, the atomic declared units of programs are classes
and methods. A meta-level program inserts or modifies classes and methods,
so that we obtain new functionalities for the original base-level programs. The
common way of achieving these addition/modifications thought to be a compile-
time or load-time approach. In this paper, we focus on a load-time mechanism
as found in Javassist.

Application
/ Launcher

Extended
class loader

Original
bytecode pool

Meta-program
(translator)

load class

translate bytecode

fetch bytecode

original bytecode

modified/generated
bytecode

loaded class
define class

Fig. 2. The behavioral model of extended class loaders transforming bytecode of loaded classes.

Next we show the common program transformation mechanism model in
such platforms with extended class loaders as illustrated in Figure 2. The ex-
tended class loader of an application platform is invoked from an application or
an application launcher of the platform directly or indirectly through JVM as
classes required to execute a program. It first fetches original bytecode of the
specified class and then modifies the code using translators called by meta-level
programs, or it can just generate required bytecode from scratch. The loader
invokes its underlying JVM to make the binary representation executable and
returns a class object for a class name given as a parameter when it is invoked.

2.2 A Privileged Logging Example

Here, we consider a server platform that records application services behavior.
This platform tracks every method call within application services. The platform
provides aServerRecord class as follows.

4

package platform;

public class ServerRecord {

public static void log(..) {

AccessController.checkPermission(..);

.. priviledged access to a file system..

}

}

Since the record should not be accessed anonymously, it is protected using
an access control mechanism in Java. This access controller for the logging
methodlog() allows only the invocation originated from the server platform
code without involving application services code.

Below is an example of application code. The middleware programmer wants
to track and log any invocation on the methodserve() in the application code
ServiceApp.

package app2;

public class ServiceApp {

void serve() {...

ServerRecored.log(); // inserted code

}

}

We assume we want to utilize this logging mechanism from several places
in application services. Unfortunately, it would not help to simply insertSer-

verRecored.log() as illustrated. This is due to the call ofcheckPermiss-
ion(..) inside the mehtodlog(). The application classServiceApp may not
have a sufficient permission to pass the check.

Program Transformation A possible way of achieving this logging mech-
anism is to rewrite methods of application services and remove access check
code inlog(). Below is an example of resulting code. A middleware program-
mer wants to modify the methodserve() in the base-level classServiceApp
and he has to modify the methodlog().

package platform;

public class ServerRecord {

public static void log(..) {

// AccessController.checkPermission(..); <- removed

.. privileged access to a file system..

}

}

An alternative way is, to give a special permission to the classServiceApp

so that it can freely accesslog() using privileged actions provided by the Java
security mechanism.

5

package app2;

public class ServiceApp {

void serve() {...

AccessController.doPrivileged(// added

new PrivilegedAction() { //

public Object run() { //

.. ServerRecord.log(..) .. //

}}); //

}

}

Attacks Exploiting Transformed Code After changing the programs for the
sake of the middleware, it is now obvious that thelog() faces a security threat
of unsolicited misuses or malicious attacks as follows.

package app3;

public class Malicious {

public void doEvil (..) {

// able to put false information

.. ServerRecord.log(....) ..

}

}

In the alternative case, any code inServiceApp would have the special per-
mission. As a result, any malicious code in the class can do anything allowed
using the special permission. For example, it can use privilege actions to ille-
gally invokelog() from anywhere in the base-level classServiceApp.

package app2;

public class ServiceApp {

public void doEvil (..) {

AccessController.doPrivileged(

new PrivilegedAction() {

public Object run() {

// able to put false information

ServerRecord.log(....);

}

});

}

}

2.3 Problem Summary

We have seen the typical example of the use of program transformation which
causes problems. This logging example reveals problems in conjunction with
Java2’s security mechanism, where what we would like to do was to relax an
access restriction only for the method call code added by the middleware. How-
ever without exposing a security hole, this goal cannot be achieved neither by
relaxing the access restriction ofServerRecord.log(), nor by strengthening
the access right ofServiceApp.

6

The point of these problems is that a meta-level program is forced to give
base-level programs unnecessary extra permissions that allows more than the
intent of the meta-level program. We need an appropriate security model for
handling this issue and an application platform framework which allows meta-
level programs to avoid this problem.

3 Action-based Security

We have discussed the problem when a meta-level code programmer adds new
functionalities to an application platform. The programmer may want to make
the resources accessible to the meta-level code fragments, which are scattered
across the program.

To solve this problem we introduce primitive APIs for program transforma-
tion to which our new semantics to secure resources are newly added. We call it
action-based security. We give the formal description of the security properties
for each primitive API. Then, we introduce our model of action-based security.

3.1 The Semantics of Program Transformation

We here focus on several transformations that are essentially needed for our
purpose, i.e., building an application platform. We think it suffices to discuss
the following four fundamental functions that affect the base-level code. Other
functionalities are possibly used to implement the entire application logic, how-
ever, they impose no relevant issues for our interest on the subject.

addCall() Modify or add bytecode instructions in an existing method.
addMethod() Add a public method to an existing class.
replaceMethod() Replace an existing method by new one.
bePublic() Change a private method to be public.

For the simplicity, we do not discuss field modifications, such as transfor-
mations adding a new public field or changing a private field to be public. The
same functionality can be obtained by adding a public accessory method.

We could actually implement a secured version of Javassist [6] based on
the primitive operations above. Javassist is known to provide a powerful trans-
formation functionality. Its APIs for class generation and class member modi-
fication can be implemented usingaddMethod(), replaceMethod() andbe-
Public(). The APIs for method body modification can be implemented using
addCall().

For those functions, we add new semantics regarding security properties of
the affected method. Table 3.1 shows each API and defines the security prop-
erties of the affected method. Those have been carefully designed to facilitate

7

meta-level programmers to control the resources without jeopardizing security
or complicating the coding work.

security properties of affected method
API visibility from protection

meta levelbase level domain
addMethod() visible invisible meta level
replaceMethod(),
addMethod() (over-
ride)

visible unchangedmeta level

addCall() unchangedunchangedbase level
bePublic() visible unchangedbase level

Table 1.How program transformation APIs affect the security properties of methods.

For example, a public method added byaddMethod() will be executed with
the access rights of the meta-level domain, and is accessible from the meta-
level code but not from the base-level code, as long as not overriding an exist-
ing method. We treat method overriding differently, since it is natural to think
adding an overriding method as the replace of an existing inherited method. In
this case, the visibility of this method remains unchanged.

The underlying policy of our security design is that the meta-level code is
given analmighty passbut is never exploited by the base-level code. If needed,
the programmer can give the meta-level domain the stronger access rights than
the base-level domain and modify the base-level classes for the sake of the meta-
level code. Those are all safe.

One important feature of our framework is the support ofaddCall(). This
API adds a new bytecode inside an existing method so that only the added code
has the access rights of the meta-level domain. In code security, we split a pro-
gram into each unit which is associated with a domain, and in which a single
security policy is applied. In Java2, we can specify protection domains at the
granularity of classes. However, this is not enough for the security of program
transformation which modifies each atomic action of the program. We require a
newaction-basedsecurity in which a security property can be set to each atomic
action, e.g., bytecode instruction.

3.2 A Formal Model for Action-based Security

We introduce a new abstract model for the action-based code security. Our
model extracts the behaviors of program code and their security requirements in
terms ofactions andtargets. Intuitively, an action corresponds to each atomic

8

Java bytecode instruction inside a method, whereas a target is a target of access
control, e.g., a method to be invoked itself, or an access to the resource, etc.

Our model is based on ABLP logic [1] which is a modal logic designed to
model authentication systems. ABLP logic is suitable to represent our model
since it naturally represents an authentication system with concepts of delega-
tion. Its modal operatorsaysis defined overprincipals. In this logic, we do not
deal only with the absolute truth value of a statements, but we are also interested
in a value of the statementX sayss relative to a principalX. The code security
is also considered as an authentication system where each code fragment and
runtime object behaves as a principal.

The idea of Java2 security is briefly as follows.

– Each code belongs to a certain protection domain.
– Each domain is associated with a set of accessible resources.
– Whenever the code need to access the resource, we check domains of the

code and its runtime context, i.e., the history of stack frames, to see if this
access is allowed or not.

In modeling such a security, we first assume a certain execution environment
in which we have a fixed set of resourcesT, domainsD, actionsA and frames
F. We then introduce a set of axioms among these principals, according to the
given environment.

3.3 Security Mechanism for Program Transformation

Based on the new model, we formulate our security framework. All we have to
do is to add three fairly simple axioms (1), (2) and (3) in Figure 3. In defining
axioms, we assume that program transformation APIs are used in the meta-level
domainD. The use of APIs fromD also should be secured by defining some
actions and targets, but this does not explicitly appear in our model.

If D executesbePublic(T) thenD⇒ T (1)

If D executesaddCall(· · · ,A) thenA is privileged andA⇒ D (2)

If D executes eitheraddMethod(T, [A1, ...An]) or replaceMethod(T, [A1, ...,An]) then D ⇒
T andAi ⇒ D for i ∈ 1..n (3)

Fig. 3.Security Model for Program Transformation

The APIbePublic(T) adds an access to the methodT from the meta-level
domain. We introduceD⇒ T (Axiom (1)). It is easy to see the correspondence

9

of this axiom to Table 3.1 in Section 3. This axiom states that the use of the API
changes the visibility of the methodT from the domainD.

The APIaddCall(T,A) adds an actionA to a methodT. We can useA with
the privilege ofD. Thus we introduceA⇒ D (Axiom (2)). This means that we
newly set the domain of an actionA to D. We always treatA as a privileged call.

Lastly, the APIreplaceMethod(T, [A1, ...An]) replaces an existing (public)
methodT whose content contains a set of actionsA1, ...,An. SimilarlyaddMethod(T, [A1, ...An])
adds a (public) methodT. We allow an access to the methodT from the meta-
level domainD. Furthermore, for newly added actionsAi , similarly toaddCall(),
we associate them with the privilege ofD. These are modeled by Axiom (3).
When either we replace or override an existing methodT, we assume thatT
continues to have an access from the application domain. In any case, the above
D⇒ T just adds a new access toT from D, and does not modify existing access
to T.

4 Implementation

We design an implementation of the proposed security model by extending a
custom class-loader for program transformation. The approach to realize the
security is itself based on the bytecode transformation technique, which controls
the security property of each atomic bytecode instruction. Our algorithm realizes
the secure semantics to the program transformation functions described so far.
After giving the algorithm, we discuss its correctness lastly.

4.1 Assigning Protection Domains

First we assign two protection domains to groups of classes. This process is
same as the one for normal application platforms. We use the normal protection
domain mechanism in Java so the units of protection domain assignment are
classes or packages but not methods here.

Assigned protection domains are:

An application-level protection domain Each application running on the trans-
formational platform middleware belongs to this domain. The bytecode of
programs in this domain is transformed by a platform middleware, which
belongs to another domain.

A middleware-level protection domain Components of transformational plat-
form middleware belong to this domain. They include meta-level program
which translates bytecode, and the runtime library provided by the plat-
form. They should be able to put permission checking code (e.g.Access-

Control.checkPermission() in the Java2 security.) in order to deny un-
desirable accesses from application code.

10

Extended
class loader

Secure Transformation
toolkit

Meta-program
(translator)

load
class

translate bytecode

fetch bytecode

secured version of original bytecode

modified/generated
bytecode

loaded
class

define class

Original
bytecode pool

screen bytecode

fetch bytecode

modify bytecode
modify bytecode,
inject safety, &
record history

modified/generated
bytecode

Fig. 4. Secured bytecode transformation

4.2 Secure Transformation Toolkit

To add a security functionality, we extend the customized class loader for the
load-time program transformation. This class loader works for classes in the
application domain. Thesecurebytecode transformation behaves as shown in
Figure 4. Let us compare the new mechanism with the original one (Figure 2)
explained in Section 2. We can see that we now have a module calledSecure
Transformation Toolkit.

The toolkit processes the input bytecode through the following two phases.

– In thebytecode screeningphase, the toolkit checks and modifies any fetched
bytecode, according to the original bytecode pool and amodification history.
This guarantee that the pool does not contain anyillegal method calls in it.

– For thesecurity injectionphase, we provide secured versions of transfor-
mation APIs, which meta-level applications use in replace with the original
APIs. The new APIs inject some code in addition to the original transfor-
mation, so that the required security property is guaranteed. Also, it records
bytecode modifications by the translators of the platform middleware in the
modification historyto help static checks for fetched bytecode.

Here themodification historyis a table structure which records a set of pairs
of (1) the information of the modified method, and (2) the type of the API used
to modify the method. For the API type, it suffices to record eitherBEPUBLIC or
ADDMETHOD for our particular algorithm.

Bytecode ScreeningThe aim of bytecode screening is to enforce the require-
ment that “meta-level methods should not be visible from application domain”.

11

Here meta-level methods mean the methods either added byaddMethod(), or
made public bybePublic().

The screening process is implemented by a procedure (see methodscreen()

in Appendix for more details), in which we replace all call instructions (i.e., in-
voke instructions of JVML) in the input bytecode with the result ofscreenCall().
ThescreenCall() method actually replaces an illegal method access to added
or made-public methods with an instruction to throw an exception. Thus when
the execution reaches that point, we get aMetaLevelAccessException thrown
rather than wrongly calling a meta-level method.

It is possible that the target method of the call instruction is not available as
its defining class is not loaded, i.e., program transformation is not yet performed
on that class. The screening process fetches the target class to see if the target
method is available. If it is available and accessible then it is okay, becauseadd-

Method() andbePublic() only affect non-existing or inaccessible methods.
Fortunately, we need this fetch just one-level deep rather than recursing it, since
we just need a method information and not requiring the screening of the fetched
class. Thus the cost of fetch is not so large.

Security Injection The security injection is implemented as extensions to the
original translator APIs (Figure 5). These extensions ensure the requirement
“the modified programs have the privilege of the meta-level domain”.

In APIs addCall(), addMethod() andreplaceMethod(), we useget-
PrivilegedProxy() (Lines 2, 15, 24), which replaces a call to a certain method
with a call in the proxy class in the meta-level domain, which wraps the actual
method call as aPrivilegedAction.run(). Thus the actual method call is
performed with the access right of the meta-level domain.

The process ofreplaceMethod() is slightly complicated because a re-
placed method (and an overriding method (cf. Section 3)) is not always called
from the meta-level domain. If the replaced method is called from application
domain, since its stack frame contains an application code, we need to associate
each code with the application domain (which is the default behavior, as the
new method actually belongs to the application domain). However, when the
code contains a privileged call, it must be treated as a call from the meta-level
domain (Line 22–26 of Figure 5). Otherwise, the new method is called from
the meta-level domain, in which case we need to associate any call with the
meta-level domain (Line 29–32).

To solve this requirement, we introduce two duplicate methods,Tmeta and
Tbase, for the same input bytecode. Theif statement in Line 35 is responsible
for detecting whether the caller context is meta-level or not to switch which
one of methods to call. This detection is actually implemented by exploiting

12

1 void addCall(Context c, CallInstruction A) {
2 super.addCall(c, getPrivilegedProxy(A));
3 }

4 void bePublic(Method T) {
5 add(T, BEPUBLIC) to the modification history
6 super.bePublic(T);
7 }

8 void addMethod(Method T, Instruction[] A) {
9 if (T overrides an existing method)
10 this.replaceMethod(T, A);
11 add(T, ADDMETHOD) to the modification history
12 Instruction[] A′;
13 for (int k = 0; k < A.length; k++)

14 if (A[k] instanceof CallInstruction)

15 A′[k] = getPrivilegedProxy(A[k]);
16 else

17 A′[k] = A[k];
18 super.addMethod(T, A′);
19 }

20 void replaceMethod(Method T, Instruction[] A) {
21 Instruction[] A′;
22 for (int k = 0; k < A.length; k++)

23 if (A[k] is a privileged call)
24 A′[k] = getPrivilegedProxy(A[k]);
25 else

26 A′[k] = A[k];
27 Instruction[] A′′;
28 for (int k = 0; k < A.length; k++)

29 if (A[k] instanceof CallInstruction)

30 A′′[k] = getPrivilegedProxy(A[k]);
31 else

32 A′′[k] = A[k];
33 Method Tmeta = meta version ofT;
34 Method Tbase = base version ofT;
35 super.replaceMethod(T, new Instruction[] {
36 if (the call stack has the meta-privilege)

37 invokeTmeta
38 else

39 invokeTbase
40 });
41 super.addMethod(Tbase, A′);
42 super.addMethod(Tmeta, A′′);
43 }

Fig. 5.The algorithms for security injection

13

Java’s security manager, and is thus costly because we need to look at the call
stack. However, we can use some optimization techniques here. When we use
getPrivilegedProxy() for the replaced method, since we know that the call
is always from meta-level, we directly set the target method toTmeta. Similarly,
when we know that the context is always application-level, we directly callTbase.

The secured translator is also responsible for recording modified methods in
the modification history. This is written in Lines 5 and 11.

Limitation Since the implementation relys on the static analysis of bytecode, it
cannot detect illegal method calls through the Reflection API in Java. We must
deprive applications of their permission to use the Reflection API in order to
prohibit application code from reflectively calling originally invisible methods,
such as methods newly added by a platform middleware.

4.3 Overhead Measurement

We measured the overhead of program transformations applied to application
software available in the SPEC JVM98 benchmarks1. The details of the ex-
periments will be given in Appendix. We observed slight overheads of security
injection in benchmark applications, due to static bytecode checking in the im-
plemented secure transformation toolkit. Our implementation does not impose
any overhead on normal execution of methods unless code accesses meta-level
code illegally.

5 Related Work

Security Model One of the earliest works on Java security is that by Wal-
lach and Felten [15], which explains the meaning of code security in Java us-
ing ABLP logic [1]. Indeed, their work precedes the notions of permissions
and protection domains introduced into Java by Gong [8] in 1999. Wallach
and Felten focus on the security mechanism based onenablePrivilege()
anddisablePrivilege(), which is slightly different from Gong’s mechanism
based ondoPrivilege(). Our formalization of the security model is inspired
by the Wallach-Felten’s work, but we completely reformulate and simplify their
model to do with Gong’s mechanism. More importantly, the crucial difference
of our model is the granularity of units to which we can set protection domains.
In our model, the minimum unit is each atomic action, and thus providing a
very fine-grained security suitable in securing program transformation. Also our
model handles member accessibility (e.g.,private, public, ..) which was not
modeled by Wallach and Felten.

1 http://www.spec.org/jvm98/

14

Secure ReflectionCaromel et al. investigated the security issues raised by the
use of meta-programming systems with Java [5]. They provided a set of rules
for combining together the permissions associated with the different protection
domains of a typical reflective-component-based application. Also, they pro-
posed an approach for making meta-level code transparent to base-level code
in the context of a simple proxy-based runtime meta-object protocol [4], using
the standard Java security mechanism. Our work, however, is about program
transformation rather than a simple proxy. Simply applying the regular security
model does not work for the program transformation. Instead, we need to extend
the security model.

6 Summary

In return for its power, the introduction of program transformations often breaks
Java’s code security model that the base-level application assumes in order to
preserve their application-level security. This paper points out a problem of code
security as broken by program transformations and explains a possible security
threat caused by it. We propose an extended access control model suitable for
safely using program transformations at class loading time in Java. We presented
the formal model of the proposed extension and also give a design and imple-
mentation. We employed static code checking in a customized class loader on a
standard Java virtual machine.

References

1. M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus for access control in dis-
tributed systems.ACM Transactions on Programming Languages and Systems, 15(4):706–
734, September 1993.

2. M. Ancona, W. Cazzola, and E. B. Fernandez. Reflective authorization systems: Possibilities,
benefits, and drawbacks. InSecure Internet Programming 1999, LNCS 1603, pages 35–49.
Springer-Verlag, 1999.

3. G. Back. Datascript – a specification and scripting languages for binary data. In D. Ba-
tory, C. Consel, and W. Taha, editors,Proc. of Generative Programming and Component
Engineering (GPCE 2002), LNCS 2487, pages 66–77, Pittsburgh, PA, USA, October 2002.
Springer-Verlag.

4. D. Caromel, F. Huet, and J. Vayssière. A simple security-aware MOP for Java. In
A. Yonezawa and S. Matsuoka, editors,Reflection 2001, LNCS 2192, pages 118–125, Kyoto
Japan, September 2001. Springer-Verlag.

5. D. Caromel and J. Vayssière. Reflections on mops, components, and java security. In
L. Knudsen, editor,ECOOP 2001 - Object Oriented Programming, LNCS 2072, pages 256–
274, Budapest, Hungary, June 2001. Springer-Verlag.

6. S. Chiba. Load-time structural reflection in Java. InECOOP 2000 - Object Oriented Pro-
gramming, LNCS 1850, pages 313–336, Sophia Antipolis and Cannes, France, June 2000.
Springer-Verlag.

15

7. M. Dahm. Byte code engineering with the javaclass api. Techincal Report B-17-98, Institut
für Informatik, Freie Universiẗat Berlin, Berlin, Germany, July 1999.

8. L. Gong.Inside Java2 Platform Security. The Java Series. Addison-Wesley Longman, 1999.
9. M.-O. Killijian, J.-C. Ruiz-Garcia, and J.-C. Fabre. Portable serialization of CORBA objects:

a reflective approach. InProceedings of the 2002 ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages and Applications, OOPSLA 2002, SIGPLAN
Notices vol.37, pages 68–82, Seattle, Washington, USA, November 2002. ACM.

10. G. Kniesel, P. Costanza, and M. Austermann”. JMangler - a framework for load-time trans-
formation of java class files. InProc. of IEEE Workshop on Source Code Analysis and
Manipulation. IEEE, 2001. none.

11. C. W. Krueger. Software reuse.ACM Computing Surveys, 24(2):131–183, 1992.
12. A. Marquez, J. N. Zigman, and S. Blackburn. Fast portable orthogonally persistent java.

Software — Practice and Experience, 30(4):449–479, April 2000.
13. E. Tanter, J. Noýe, D. Caromel, and P. Cointe. Partial behavioral reflection: Spatial and

temporal selection of reification. InProceedings of OOPSLA 2003, number 10 in SIGPLAN
Notices vol.38, pages 27–46, Anaheim, Carifornia, USA, October 2003. ACM.

14. M. Tatsubori, T. Sasaki, S. Chiba, and K. Itano. A bytecode translator for distributed ex-
ecution of “legacy” Java software. In L. Knudsen, editor,ECOOP 2001 - Object Oriented
Programming, LNCS 2072, pages 236–255, Budapest, Hungary, June 2001. Springer-Verlag.

15. D. S. Wallach and E. W. Felten. Understanding Java stack inspection. InProceedings of
1998 IEEE Symposium on Security and Privacy (S&P’98). IEEE, 1998.

16. I. Welch and R. Stroud. From Dalang to Kava — the evolution of a reflective Java extension.
In Proceedings of Meta-Level Architectures and Reflection, Second International Confer-
ence, Reflection’99, LNCS 1616, pages 2–21, Saint-Malo, France, July 1999. Springer.

A Appendix: Secure Transformation Alogrithms

Figure 6 describes the algorithm for scrrening bytecode. The screening pro-
cess is implemented by the methodscreen(), in which we replace all call
instructions (i.e., invoke instructions of JVML) in the input bytecode with the
result ofscreenCall(). ThescreenCall() method actually replaces an ille-
gal method access to added or made-public methods with an instruction to throw
an exception. Thus when the execution reaches that point, we get aMetaLevel-

AccessException thrown rather than wrongly calling a meta-level method.
It is possible that the target method of the call instruction is not available as

its defining class is not loaded, i.e., program transformation is not yet performed
on that class. Lines 25-29 handles this case by fetching the target class to see if
the target method is available.

B Appendix: Experimental Results of Overhead Measurement

We measured the overhead of program transformations applied to application
software available in the SPEC JVM98 benchmarks2. We prepared 4 meta-level
programs of:

2 http://www.spec.org/jvm98/

16

1 Instruction[] screen(Instruction[] A) {
2 Instruction[] A′;
3 for (int k = 0; k < A.length; k++)

4 if (A[k] instanceof CallInstruction)

5 A′[k] = screenCall(A[k]);
6 else

7 A′[k] = A[k];
8 return A′;
9 }

10 Instruction screenCall(CallInstruction A) {
11 Instruction A′;
12 String C = A.getTargetClass();
13 Method T = A.getMethod();
14 if (the classC is already loaded)
15 if ((T, ADDMETHOD) is in the history)
16 A′ = getThrowingInstruction(A);
17 else if ((T, BEPUBLIC) is in the history)
18 if (original T is invisible)
19 A′ = getThrowingInstruction(A);
20 else

21 A′ = A;
22 else

23 A′ = A;
24 else

25 fetch bytecode ofC
26 if (T doesn’t exist)
27 A′ = getThrowingInstruction(A);
28 else

29 A′ = A;
30 return A′;
31 }

Fig. 6. The bytecode screening algorithm. It looks up illegal method calls to replace them with exception-
throwing code.

– doing nothing (XX-empty)
– adding a simple method to every loaded class (XX-onemeth)
– adding a method containing a call to a privileged operation to every loaded

class (XX-privmeth), and
– adding 100 methods to a single loaded class (XX-100meth).

We applied each meta-level program with the normal program transformations
with Javassist (refl-XX) to the SPEC’s applications, and also did with the se-
cured program transformations with an extended Javassist implemented using
the mechanism proposed in this paper (secure-XX).

We measured the elapsed time from the start to the end of application execu-
tion including the start up time of its underlying JVM. The start-up time of JVM
includes the loading time for some classes. In addition to 8 types of application
execution, we measured normal execution time of application (normal).

17

0

1

2

3

4

5

6

7

8

9

_201_compress _202_jess _209_db _213_javac _222_mpegaudio _227_mtrt _228_jack

SPEC JVM98 application

M
in

im
u

m
 e

la
p

se
d

 t
im

e
(s

ec
.)

normal

refl-empty

refl-onemeth

refl-privmeth

refl-100meth

secure-empty

secure-onemeth

secure-privmeth

secure-100meth

Fig. 7. Elapsed time for overall application execution (interpreter, input size=1)

We focused on the program startup regime of benchmark program execu-
tion. During program startup, an execution process includes class loading and
initializing. After a while, the program reaches a steady state. We evaluate the
startup regime by timing the first run of the SPECjvm98 benchmarks with the
size 1 (small) inputs, on a JVM with interpreter-mode. We also the steady state
by timing the benchmarks with the size 100 (large) inputs, on a JVM with server-
mode. We run the application benchmarks 3 times and took the minimum for
each.

Figure 7 and Figure 8 show our experimental results. These experiments
were run on the Sun Java 2 Runtime Environment, Standard Edition, version
1.4.2 (HotSpot Server VM)/ Linux 2.4.18-14/ IBM IntelliStation M Pro with a
single Pentium(R) 4 Processor 2.4GHz and 2GB memory.

The graph showed slight overhead because of static bytecode checking. Our
implementation does not impose any overhead on normal execution of methods
unless code accesses meta-level code illegally. A benchmark with secured trans-
formation mechanism sometimes ran faster than non-secured one. This might be
of the just-in-time (JIT) compiler behavior or in a possible error range. Since the
bytecode size of instrumented methods got larger than ones without security in-
jection, they interfere with optimal JIT compilation on the methods. The cost
of optimal JIT compilation sometimes does not pay before enough execution
repetition of the optimized methods.

18

0

5

10

15

20

25

_201_compress _202_jess _209_db _213_javac _222_mpegaudio _227_mtrt _228_jack

SPEC JVM98 application

M
in

im
u

m
 e

la
p

se
d

 t
im

e
(s

ec
.)

normal

refl-empty

refl-onemeth

refl-privmeth

refl-100meth

secure-empty

secure-onemeth

secure-privmeth

secure-100meth

Fig. 8. Elapsed time for overall application execution (JIT, input size=100)

19

