
March 31, 2009
RT0850
Computer Science 21 pages

Research Report
Shared Management of Dynamic Business Process Extensions

Laurent Baduel, Hideki Tai, Takayuki Kushida
IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It
has been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or
copies of the article legally obtained (for example, by payment of royalities).

 Business Process Management Journal. , Vol. x, No. x, xxxx

Shared Management
of Dynamic Business Process Extensions

Abstract
The global marketplace becomes more and more competitive, and
business organizations need to team up and operate as a virtual
enterprise to utilize the best of their resources for achieving their
common business goals. As the business environment of an
enterprise is highly dynamic, it is necessary to develop a
workflow management technology that is capable of handling
dynamic workflows across enterprise boundaries. This paper
proposes a Workflow Extension Model (WEM) and a dynamic
workflow management system of WEM for modeling and
controlling the execution of multi-organizational business
processes. WEM enables the explicit specification of dynamic
properties associated with a business process model. It extends
the underlying processes by adding connectors, conditions of
application, extension process definition, and rules as its
modeling constructs. Using WEM as the underlying model, the
paper also describes the workflow engine which is extended by an
extension service to trigger extensions during the execution of a
workflow process to enforce business rules and policies and to
adapt the process model at run-time.

Keywords:
Worflows and Process Extensions, Management, Dynamic Adaptations.

Introduction
Nowadays organizations compel workflow management in order to ease
creation and execution of workflow so as to streamline business processes.
They are often required to develop custom activities; for instance a
multinational company must adapt its processes to comply with local laws
and regulations, or a delivery service must change its way to ship
materials depending on the weight, size and manipulation care.
Adaptation and flexibility of those local processes are keys for business

 Laurent Baduel, Hideki Tai, and Takayuki Kushida

success. In this paper we will employ the term business process to
identify a collection of related, structured activities or tasks that produce
a specific service or product for a particular customer or customers.
Business processes may describe IT, management, production, etc.
operations. The term workflow indentifies a model to represent real work
for further assessment. Workflow is a pattern of activity enabled by a
systematic organization of resources, defined roles and mass, energy and
information flows, into a work process that can be documented and
learned. Workflows permit to implement business processes.
 Most of existing workflow management solutions only handles static
business processes [Apache ODE, 2007], [Hanson J., 2006], [MSWF, 2008].
Specific cases are then expressed as branches in a unique and global
workflow process. This approach raises issues in terms of management
and maintenance of large and complex error prone workflow processes, as
well as extensibility and adaptation difficulty. Those companies would
benefits a lot from the delegation of governance: global business processes
should be defined at the coverage of company-wide while specific
adaptations should be handled within a local organization. Such approach
would avoid maintaining locally modified copies of the global process,
which may lead to coherency losses between the multiple copies and the
base process. We define an adaptation which is a modification of a
business process making it able to handle new cases or providing new
functionalities. Adaptation is a generic term as it does not specify which
way it must be achieved.
 We propose a workflow management method to extend existing
processes, which we call as “base processes”, without changing them. It
allows us to add multiple extensive processes conditionally to one base
process. Those multiple extensions can be defined concurrently by
different administrators. Extensions is the name we give to process parts
designed to be plug onto regular business processes in order to make
them adapted to new constraints or environments they should handle.
There are three advantages for this approach. First the base processes
are not copied nor modified to integrate adaptations. In that way losses of
coherency between copies are avoided and creation of adaptations does
not lead to a modification of the reference base process. Second, the
multiple adaptations are independent from each others. The benefit is
that one extension can be modified without concern about others. Third,
the manageability of such system is its biggest value: by separating and
sharing the administration of base processes and extensions we simplify
the maintenance of such composed business processes.

Problem statement

Workflows adaptations may range from ad-hoc modifications of the

 Shared Management of Dynamic Business Process Extensions

process for a single customer to a complete restructuring for the workflow
process to improve efficiency. Today’s workflow management systems are
often unsuitable to deal with workflow changes for several requirements.
They typically support more or less idealized version of the preferred
process. However, the real run-time process must be much variable than
the process specified at design-time. For instance one may want to add or
skip tasks in processes. An IT process whose role is to guide the
installation of an operating system may be required to add some
configuration steps like installing a specific language pack depending on
the installation environment. Another process about the asset purchase
may skip repeated approval task under specific conditions (e.g. limited
cost and time emergency). The only way to handle changes is to integrate
adaptation abilities within the system itself. If users are forced to bypass
the workflow management system quite frequently, the system is more a
liability than an asset. Therefore, we need to take up the challenge to find
the innovative technique to add flexibility for workflow management
without loosing the capability that is provided by today’s systems.

There are two major types of adaptations: ad-hoc changes and
evolutionary chanages. Ad-hoc changes are handled on a case-by-case
basis. In order to provide customer specific solutions or to handle rare
events, the process is adapted for a single case or a limited group of cases.
Evolutionary changes are often the result of reengineering efforts. The
process is changed to improve responsiveness to the customer or to
improve the efficiency (do more with less). [Paul C. J. 2007] outlines that
the trend is towards an increasingly dynamic situation where both ad-hoc
and evolutionary changes are needed to improve customer service and
reduce costs..

As depicted in the next section, for more than ten years different projects
attempted to fill the need for adaptation of business processes. None of
them succeed to become a reference, and be widely used in actual
business IT systems.
We can point out two main reasons. The first and major one is the
complexity of managing such systems. It is commonly tricky to guess
which adaptation can be executed by which users. For instance within a
process representing an insurance contract, hundreds of adaptations
represent particular cases such as promotional campaigns, specific
locations, contracts, agreements or time constraints. The overall resulting
process is huge and hardly manageable. It is difficult to guess which
adaptations might be triggered during a designated process instance.
Moreover the creation of new adaptations may override, invalidate, or
shortcut existing adaptations. The administration of such system becomes
incredibly messy and is not acceptable in its current status for business.
One of the main focuses of this paper is to provide a solution to

 Laurent Baduel, Hideki Tai, and Takayuki Kushida

dynamically adapt processes with an automated assistance to identify
and sort adaptations. Management of adaptations is shared between
several administrators, each group of them responsible for a set of
adaptations it is skilled to deal with. It becomes easier to manage a great
number of adaptations linked to processes.

The second reason is the total absence of validation mechanisms to
ensure the correctness of the adapted process in most of exiting systems.
During the edition of a new adaption the Workflow Extension Mechanism
should ensure that important properties of the basic process are
maintained after the process has been modified to enact the adaption. For
instance, mandatory tasks should not be skipped or tasks that must be
executed once and only once should not be allowed to be re-executed
because of the adaptation. Such functionality to verify the correctness of a
process at user level is offered by our system but is out of the scope of this
paper that is centered on processes and adaptations management.

Related work

Workflow management is now widely accepted as the technology to
support various business processes. Nowadays many commercial
solutions for workflow systems are available. However, one may regret
that a large majority of those workflow systems are restricted to
centralized and internal use within the boundary of small organizations.
They do not offer mechanisms to deal with runtime adaptation nor with
shared administration of process definitions.
The Workflow Process Definition Language, WPDL for short [WfMC,
1995] [WfMC, 1999], has become the reference standard for workflow.
WPDL has been originally developed by the Workflow Management
Coalition (WfMC) in the first half of nineties. It offers textual grammar
for the specification of process definitions and comes with a meta-model
providing a set of modeling constructs for defining business processes.
Typically a business process is represented by a set of inter-related
activities connected by different kinds of connection lines. The activities
represent tasks performed by human or computer that are related to a
context (workflow data, environment, and operators). The connection
lines that link those activities control the flow within a workflow process.
Unfortunately, WPDL has been designed to model business processes only
in the scope of a unique organization whose needs are uniform for all its
parts. WPDL fails to provide a system allowing the creation of inter-
organization or inter-division business processes. Along with evolution of
IT industries and complex business interactions the need for the
possibility to dynamically adapt processes to particular cases raised.

 Shared Management of Dynamic Business Process Extensions

Several projects attempted to address this issue by introducing some
dynamic capabilities to workflows. Their solutions appeared and can be
categorized as follow:
� The evolutionary changes have a structural nature. From a certain

moment in time, the process changes for all new cases to arrive at the
system. Those changes may result from the definition of a new
business strategy, the modification of a law, etc. It mainly consists in
the modification of running process. Such modification of process is a
global and does not allow specific adaptation.

� The inheritance of workflows defines a base process containing the
necessary tasks of a process and allowing additional tasks. The base
process identifies the sequences that can be extended. One can regret
that it becomes impossible to extend a piece of the process that has
not been originally intended to be extended.

� The dynamic inter-organizational workflow management provides
complex extensions by modifying the base process itself at runtime
depending on rules pre-defined by the user. Unfortunately, this
approach does not permit a shared and concurrent administration of
extensions. Moreover the extensions may be in conflict with each
others.

Later several research studies were made to solve this issue. The
approach chosen by some project was to define events and rules used to
define and enact the control flow in a business process model. The most
representative example among this solution is the EvE project [Geppert
and Tombros, 1998]. The EvE project introduced a distributed Event-
Condition-Action (ECA) rule-based enactment architecture. The use of
events and rules to handle exceptions and failures during workflow
execution falls into another category. In this category, events are produced
outside a workflow execution, by either system environment or customers.
Corresponding rules will be triggered when these events occur. An
example is the WIDE project [Ceri et al., 1997]. The WIDE project uses a
distributed architecture for workflow management based on a database
management system. It is enhanced with rule evaluation capabilities in
order to allow the definition of ECA rules to support exception handling
and implement asynchronous behaviors during workflow execution. One
may regret that this approach is very centralized and even so does not
provide management mechanism in addition to the adaptation
mechanism.

More recently the project AgentWork [Müller, 2002] is based again on the
concepts of event and rules, but slightly different. AgentWork deals with
dynamic adaptation appearing when the workflow instance encounters
unexpected failures. The main difference between the approach of
AgentWork and the ECA rules presented above comes from the fact that

 Laurent Baduel, Hideki Tai, and Takayuki Kushida

the rules and events are directly part of the workflow model. In order to
allow adaptation at runtime one describes at edition time the adaptation
to perform. The paper describes the given moments at which adaptations
start and the synchronous or asynchronous nature of the events. During
execution of workflow the system emits the events as described and
activates the rules to trigger adaptation. A second major difference with
ECA model is that the approach promoted by AgentWork is not restricted
within a single organization as it events can be defined and managed in a
distributed environment [Lee, 2000]. [Meng and al. 2006] names the
AgentWork’s approach ETR for Event-Trigger-Rule. Even if AgentWork
deals with distributed management, it is unfortunate that no mechanism
is introduced to share the management activities. They remain strongly
centralized even if implemented on a distributed environment.

Several projects attempted to solve the dynamic adaptation problem
using the Object-Oriented paradigm: [Zur Muehlen M. and Becker J.,
1999], [Basten T. 1997], [Basten T. 2002], [Manolescu D. A., 2001a],
[Manolescu D. A., 2001b], and [Sadiq, W. et al. 2006]. Thanks to dynamic
bindings this approach could provide mechanisms to call a task instead of
a similar one (an ancestor or interface task). The benefit of this approach
was more to produce enterprise-oriented implementations of workflow
engines for object-oriented languages than the actual flexibility it may
have allow to adapt processes. The rigid architecture defined by
inheritance limited the ability to freely modify a process. Moreover
dynamic bindings may be quite unpredictable thus making static edition
of processes and extensions a difficult task.

Lately a trend was to consider that a dynamic workflow management
system should to be able to dynamically modify a workflow definition in
order to adapt to dynamic business conditions and exceptional situations.
[Reichert and Dadam 1998] presents a formal foundation for supporting
dynamic structural changes of running workflow instances. [Muller and
Rahm, 1999] describes a rule-based approach for the detection of
semantic exceptions and for dynamic workflow modifications, with a focus
on medical workflow scenarios. The work in the TAM project [Zhou et al.,
1998] presents a dynamic restructuring of distributed transactional
activities. These works mainly focus on the structural changes of process
models. Finally, DynaFlow [Meng and al. 2006] supports both structural
(e.g. drop an activity or bypass some activities) and semantic (e.g. replace
an activity or modify a transitional condition) changes to an inter-
organizational business process model. The ‘Code Generation’ approach,
which is used to develop the workflow engine in DynaFlow, makes it easy
to support these changes. The adaptability a workflow instance is
enhanced with when these changes to the process model are performed
dynamically by the business rules that are triggered by synchronous

 Shared Management of Dynamic Business Process Extensions

events posted by the running business process. By modifying the process
itself at runtime DynaFlow permits a great flexibility however no
management mechanism ensures validity or isolates extensions among
them.

Despite some projects tried to address the problem of correctness or
validity of a composed process [van der Aalst, W.M.P. , 1999], [van der
Aalst, W.M.P. , 2003] [Kin, et al., 2004] none of the solutions presented
above provide an integrated mechanism to seamlessly define, extend,
adapt, and change a business process in a decentralized manner that
hierarchically assigns specific modifications to specific environments and
data. The projects presented here propose mechanisms to extend a
process but do not offer a complete end-user oriented approach to manage
such functionality. They miss both the concept of extension that can be
easily created, attached, and remove from a process, and the technique to
manage them within large organizations. One of challenages for the
workflow management system was to offer to customers a simple, elegant,
and flexible way to easily manage multiple adaptations efficiently
implemented. Those will be done with the proposed management shared
process extensions in the paper.

Extension

Proposal
Workflows systems are usually data-centered, i.e., every piece of work is
related and executed for a specific data object. Examples of data object
are an asset of a company, a person profile, a tax declaration, an order or
a request for information.

Workflow Management Coalition (WfMC) uses the term "process
instance" to denote the dynamic version of process definitions attached to
an object and which need to be handled by the workflow management
system (e.g. workflow engine). A task, also referred to as "activity" by the
WfMC, is an atomic piece of work. Tasks are not specific for a single
instance but are of course related to the object. In principle, a task can be
executed for any process instance. In this paper, we use term of workflow
as a way to implement a business process. Similarly the term extension
denotes the implementation of an adaptation.

The proposed approach consists in the addition of a new component
included within the workflow engine it self that describe how an
adaptation must behave, under which constraints, and when it should
stop. This new component comes with procedures to enhance
management of adaptations.

 Laurent Baduel, Hideki Tai, and Takayuki Kushida

Description of this solution
Our technology provides a mechanism to share the administration of
process extensions. It allows multiple administrators (process extensions’
editors) to deal with isolated and/or intersected (and included) extensions.
We define that two extensions are isolated if they can not happen at the
same time and at the same point during the execution of a process (i.e.
they can not enter in conflict). When editing one extension its isolated
peers should not be displayed to the administrators. On the other hand,
intersected and included extensions may happen at the same time and at
the same point during the execution of a process (i.e. they can enter in
conflict). It is necessary to identify the extensions in intersection and let
the administrator solve possible problems (by ordering extension for
instance).
We propose a new technique to identify isolated and intersected
extensions for processes. The goal is to simplify the edition of process
extensions. When editing an extension on a process the administrator will
be shown the entire set of extensions associated to the process (the entire
contents of the Extensions Table). It may result in a very complex and
large picture of the process. The editing method in this paper will select
the necessary set of extensions to display regarding to a specific extension
in order to ease the administrator’s work. As extensions are only executed
in accordance with their Condition of Application this takes an important
role in our selection.
 This mechanism takes place in 4 steps.

The first step consists in the definition of the CoA of a new extension. An
administrator creates a new extension and starts by defining its CoA

In the second step the variables trees is built with values used in the
CoAs of the existing extensions. For each variable we build a tree
following the rules: a child node is a value included in it parent node and
branches are disjoint values. In Figure 0 the black boxes, roots of the
trees, represent the case “any”. The nodes in the tree are conditions that
refine the condition of their ancestors.

The third step is about the selection of displayed extension. Based on the
Conditions of Application of the existing extensions (CoAsext) and of the
new extension (CoAnew) the isolated extensions are hidden thus showing
only extensions whose CoA may intersect with the new extension. The
rules to decide if an extension is shown or hidden use the variables trees
as follow:

– If CoAext and CoAnew belong to different trees, or
If CoAnew is ancestor of CoAext (CoAext and CoAnew belong to a same
tree),
it is an intersection → show the existing extension

 Shared Management of Dynamic Business Process Extensions

– If CoAext is ancestor of CoAnew (CoAext and CoAnew belong to a same
tree),
it is an inclusion → show the existing extension

– If CoAext and CoAnew belong to different branches of a same tree,
it is an exclusion (isolation) → hide the existing extension

A

C

B DA

CC

BB D

Figure 0 - The relationship in trees

Figure 0 represents two trees, the first one composed by three nodes A, B,
and C, and a second containing a unique node D. The relationship among
those nodes is as follows: D intersects A, B, and C as it belongs to a
different tree. Symmetrically A, B, and C intersect D. B includes C as B is
an ancestor of C. A is in exclusion with B and C: they belong to different
branches of the same tree.

Finally during the fourth step the administrator completes the definition
of the new extension. The administrator finishes defining the new
extension (entry-point, branching connectors, process, order, and exit-
point). The administrator uses the order index to solve possible ambiguity
in execution order among extensions whose entry point is similar. The
order index is a real number comprise between 0 (excluded) and 1
(excluded).
The administrator is also free to narrow the CoA of the new extension; in
that case the step 3 will be re-executed in order to hide other extensions
that enter in isolation to the narrowed CoA.

The Extensions Table, even if distributively managed, is a centralized set
of information. This provides several benefits such as global validation or
audit of the extensions. A super-administrator may perform automatic
checks on the Extensions Table to verify that no locally defined extension
is illegal regarding the base process and to verify the compliance with
standards or rules that the company may follow.

Discussion of benefits
In summary, the Workflow Extension Model allows to provide adaptations
that are evaluated at runtime. The extensions are created after a base
process with which they are associated. The base process defines the
general objectives and rules to achieve a complex task while extensions

 Laurent Baduel, Hideki Tai, and Takayuki Kushida

refine the base process in order to adapt the general case to specific, local,
or particular cases. By opposition with many projects presented earlier in
this article our approach of process adaption allows new paths in a
business process and not only the replacement of designated tasks.
Flexibility of such approach is of course greater.

The first advantage is to avoid any modification of the base process (at
edition time and execution time). In that way processes remain a strong
reference to understand the goal they achieve as they give the general
outline of what will happen. Base processes are not copied. Multiple
copies of a base process may ease the adaptation mechanism but present
a risk for some copies to introduce differences within the base process
itself rather than in the extensions. The possible loss of coherency
between copies of base process is a great danger for management and
correctness of business process.

The second advantage is the isolation of multiple and independent
extensions. Each extension is independent from the others (except in the
particular case of hierarchical or nested extensions). It means that each
extension is self-sufficient and does not require modification on other
extensions. This permits to freely modify one extension with limited care
about the others. The mechanism we described above deal with possible
interaction between extensions. One user who may follow several
extensions on one process must be aware of them; the mechanism
presented here helps him to filter which extension he/she is subject to
execute depending on his/her environment of execution.

Thus the final and major advantage is the manageability it offers to
operators of business processes. The separation in base processes and
extensions allows keeping the base processes simple as they do not
include anymore the entire set of adaptations. It is then much easier to
add new extensions: the system will automatically select which already
existing extensions to show to the operator creating a new one. The base
process is shown with the subset of all its extensions that could be
triggered in a common execution environment to the new extension
attempted to be created. The separation in base processes and extensions
also allows reducing the number of updates of process definitions. As the
extensions deal with adaptations all the updates regarding adaptations
are performed on the extensions thus maintaining the base process
unchanged. It is valuable as extensions are locally managed and their
modifications only impact their users. In a standard and globally
integrated management of adaptations all users of a process suffers from
all modifications of any of its embedded adaptations. This is a critical
problem when a process is widely used and contains lots of adaptations.
The proposed approach can avoid this problem.

 Shared Management of Dynamic Business Process Extensions

Workflow engine, design & implementation

Principles and implementation
 As presented in [Bergmann S., 2008] Workflow engines are generally
implemented as state-machines, i.e. a model of behavior composed of a
finite number of states, transitions between those states, and actions. In
most of existing implementations we identify the main components of
workflows engine as a Process Table that stores entire set of process
definitions, a Process Definition Table that describes processes
(transitions & tasks), a Task Definition Table that associates actual
operations to process tasks, and a Process Instance Table that provides a
view of running processes.

A workflow engine periodically selects a process from the Process
Instance Table then looks up in the Process Definition Table to discover
the next task to perform. Tasks are operated by human (enter data,
approve action, etc.) or automated by computer (call to a web service,
query on database, etc.). Then this procedure is repeated until the process
instance reaches an end point in the process definition or raises some
sorts of unhandled errors.

We have created a new table that we included in the core tables presented
above. This new table describes the way an extension is attached to a
process. It does not describe the extension itself; we relay on the standard
process definition table to store the definition of extensions as well as the
definitions of base process.

E(1)OS_Type=Windows unconditionalTask 1
Entry point Condition of Ap. Process Exit pointBranching Order

user.domain=Japan

user.domain=USA
Task 2
Task 2

Task 1
End
End

parallel
parallel

E(2)

E(3)

0.5
0.5
0.5

E(1)OS_Type=Windows unconditionalTask 1
Entry point Condition of Ap. Process Exit pointBranching Order

user.domain=Japan

user.domain=USA
Task 2
Task 2

Task 1
End
End

parallel
parallel

E(2)

E(3)

0.5
0.5
0.5

Table 1 – The Extensions Table of the process shown in Figure 3

As shown in the example of Table 1, the Extension Table is basically
composed of the following data fields:

(1) the entry-point from where in the base process the extension
process must be started,

(2) the Condition of Application (CoA) that triggers the evaluation of
the extension process. At edit time the CoA is used to detect which
other extension must be shown or hidden to the administrator.

(3) the type of connectors to the base process that defines the
branching semantic of the extension (conditional, unconditional,

 Laurent Baduel, Hideki Tai, and Takayuki Kushida

parallel, etc.)
(4) the extension process itself describing the particular adaptation to

some concern,
(5) the order index used to order several extensions that may happen

at the same point,
(6) the exit-point where in the base process must be resumed after the

extension process termination,
 We also extend the Process Instances Table with a new field, the Exit-
points Stack, keeping references to the exit-points when executing an
extension process. The scope of our contribution to enact a workflow
extension model is shown by the shadowed box in Figure 1.

Process Table
stores entire set of process definitions

Process Definition Table
describes one process definition

Task Definition Table
describes basic logic of tasks

Process Instances Table
runtime view of processes

Extensions Table
describes extensions of processes

Invention
Process Table

stores entire set of process definitions

Process Definition Table
describes one process definition

Task Definition Table
describes basic logic of tasks

Process Instances Table
runtime view of processes

Extensions Table
describes extensions of processes

Invention

Figure 1 - The existing and the new

As shown in see Figure 2 the way a workflow engine operates becomes
slightly different: after selecting a process in the Process Instances Table,
the workflow engine picks up an extension process and identifies the next
task to perform. If extension processes are found to be applied at this
point (entry-point) they are sorted regarding their order index and the
first extension whose Condition of Application is satisfied is executed in
place of the regular task. The exit-point is registered in the Process
Instance Table. This table handles the exit-points in a stack object in
order to permit recursive extension. When the execution of the extension
process ends, the base process is resumed at the exit point popped up
from the stack. Bold steps (shadowed boxes) are parts of our contribution.

 Shared Management of Dynamic Business Process Extensions

Extensions exists?

Condition satisfied?

Pick up a process in
“Process Instance Table”

Find the next task in
“Process Definition Table”

Look up for extension process in
“Extension Table”

Sort extension processes
by order

Execution of extension process
and Add exit point in stack

Execute next task

End of extension process:
Pop up exit point from stack

Go to exit point

y
n

y

n

Evaluate condition for
extension processes

Extensions exists?

Condition satisfied?

Pick up a process in
“Process Instance Table”

Find the next task in
“Process Definition Table”

Look up for extension process in
“Extension Table”

Sort extension processes
by order

Execution of extension process
and Add exit point in stack

Execute next task

End of extension process:
Pop up exit point from stack

Go to exit point

y
n

y

n

Evaluate condition for
extension processes

Figure 2 - The workflow engine flowchart

Example scenario
 In the use case briefly introduced below (described in Table 1), the
condition to evaluate the extension processes is based on some
environment values such as user.domain and OS_Type. Figure 3 presents
the base process associated with its extensions defined in the Extensions
Table of Table 1.

Operating System
Installation

Patches
Installation

Start Task 1 End

Windows specific extension

Check License
Availability

C C
C
//

C
//

Language Pack
Installation

Japan specific extension

Task 2

C
//

C
//

Security Tool
Installation

USA specific extension

Operating System
Installation

Patches
Installation

Start Task 1 End

Operating System
Installation

Patches
Installation

Start Task 1 End

Windows specific extension

Check License
Availability

C C

Windows specific extension

Check License
Availability

CCC CCC
C
//

C
//

Language Pack
Installation

Japan specific extension

C
//
C
//

C
//
C
//

Language Pack
Installation

Japan specific extension

Task 2

C
//

C
//

Security Tool
Installation

USA specific extension

Task 2

C
//
C
//

C
//
C
//

Security Tool
Installation

USA specific extension

Figure 3 – An OS installation process with various specific extensions

The first extension (E(1)) is unconditionally performed by all users whose
domain is Japan. Two other extensions (E(2) and E(3)) consist in the
parallel execution of a new task along with the execution of a base process

 Laurent Baduel, Hideki Tai, and Takayuki Kushida

task.

We can consider to add new extensions on the process depicted in Figure
1, and will go through the 4 steps mechanism.

First administrators define the Condition of Application of the new
extensions they intend to create. We define three administrators who
independently want to add one new extension to the base process of
Figure 3. Each of them defines a CoA as described in Figure 4. The first
administrator, on the left, wants to define an extension related to users
whose domain is Tokyo. The second administrator, in the center, is
introducing an extension for users in America installing a Linux
operating system. Finally the third administrator’s will is to create an
extension that will concern all users world-wide.

USA Linux

Condition of Application

•user.domain = USA
&& OS_Type = Linux

World

Condition of Application

• user.domain = World

Tokyo

Condition of Application

• user.domain = Tokyo

USA Linux

Condition of Application

•user.domain = USA
&& OS_Type = Linux

USAUSA LinuxLinux

Condition of Application

•user.domain = USA
&& OS_Type = Linux

World

Condition of Application

• user.domain = World

WorldWorld

Condition of Application

• user.domain = World

Tokyo

Condition of Application

• user.domain = Tokyo

TokyoTokyo

Condition of Application

• user.domain = Tokyo

Figure 4 – Administrators define CoAs

Secondly, variables trees with values used in the CoAs of the existing
extensions are built. Figure 5 shows possible variables trees for the
process of Figure 1. The left tree can organize the different values
associated with the user.domain variable within the extensions
attached on the base process. The domains “Tokyo” and “Kyoto” are
included in the domain “Japan”. Similarly, “Austin” is included in “USA”,
“Japan” and “USA” are included in “World”, and “World” is placed under

 Shared Management of Dynamic Business Process Extensions

the general root case “ANY”. To build the trees we rely on the data
definitions. We assume that variable type are defined along with some
comparable interface or comparator object able to deal at least with
included and excluded primitives.

user.domain
OS_type

AustinKyoto

World

USAJapan

Tokyo

ANY

Windows LinuxSolaris

ANY

user.domain
OS_type

AustinKyoto

World

USAJapan

Tokyo

ANY

AustinKyoto

World

USAJapan

Tokyo AustinAustinKyotoKyoto

WorldWorld

USAUSAJapanJapan

TokyoTokyo

ANY

Windows LinuxSolaris

ANY

Windows LinuxSolarisWindowsWindows LinuxLinuxSolarisSolaris

ANY

Figure 5 – Variables trees

The third step triggers the selection mechanism to identify which
extensions must be shown or hidden to the three administrators. The
rules to select the extension to show and hide are evaluated between the
CoA of a new extension and the CoAs of existing extensions.
Finally as presented in Figure 6 each administrator has a different view
of the base process and the existing extensions.

 Laurent Baduel, Hideki Tai, and Takayuki Kushida

Tokyo sees:

Windows extension is shown (intersection)

Japan extension is shown (inclusion: parent node)
USA extension is hidden (exclusion: different branch)

Linux
sees:

Windows extension is hidden (exclusion: different branch)
Japan extension is hidden (exclusion: different branch)

USA extension is shown (inclusion)

World sees:

Windows extension is shown (intersection)

Japan extension is shown (intersection (same branch))
USA extension is shown (intersection (same branch))

Tokyo sees:

Windows extension is shown (intersection)

Japan extension is shown (inclusion: parent node)
USA extension is hidden (exclusion: different branch)

TokyoTokyo sees:

Windows extension is shown (intersection)

Japan extension is shown (inclusion: parent node)
USA extension is hidden (exclusion: different branch)

Linux
sees:

Windows extension is hidden (exclusion: different branch)
Japan extension is hidden (exclusion: different branch)

USA extension is shown (inclusion)

LinuxLinux
sees:

Windows extension is hidden (exclusion: different branch)
Japan extension is hidden (exclusion: different branch)

USA extension is shown (inclusion)

World sees:

Windows extension is shown (intersection)

Japan extension is shown (intersection (same branch))
USA extension is shown (intersection (same branch))

WorldWorld sees:

Windows extension is shown (intersection)

Japan extension is shown (intersection (same branch))
USA extension is shown (intersection (same branch))

Figure 6 – Administrators’ view of the base process and its existing extension regarding to
the CoA they provide for a new extension.

In the fourth and last step administrators fully define the new extensions.
Let’s continue this scenario with the case of the most left administrator
who defines a Tokyo specific extension. This administrator wants to
provide two new extensions before the Task1 (OS installation) for
“provisioning the request” and “register the OS”. An ambiguity about the
order to perform those two extensions and the existing one “Check
license” appears. The administrators must properly set the order indexes
to order those extensions. Figure 7 presents the final view of the process
after the administrator complete to define the two new extensions.

 Shared Management of Dynamic Business Process Extensions

Operating System
Installation

Patches
Installation

Start Task 1 EndTask 2

Windows specific extension

Check License
Availability

C C C
//

C

//

Language Pack
Installation

Japan specific extension

Tokyo

Tokyo specific extension

Provisioning
Request

C C C C

Register Chosen
Operating System

Tokyo specific extension

Operating System
Installation

Patches
Installation

Start Task 1 EndTask 2

Windows specific extension

Check License
Availability

C C

Windows specific extension

Check License
Availability

CCC CCC C
//

C

//

Language Pack
Installation

Japan specific extension

C
//
C
//

C

//

C

//

Language Pack
Installation

Japan specific extension

TokyoTokyo

Tokyo specific extension

Provisioning
Request

C C

Tokyo specific extension

Provisioning
Request

CCC CCC CCC CCC

Register Chosen
Operating System

Tokyo specific extension

user.domain=TokyoTask 1 Task 1unconditional E(4) 0.3

E(1)OS_Type=Windows unconditionalTask 1
Entry point Condition of Ap. Process Exit pointBranching Order

user.domain=Japan

user.domain=USA

Task 2
Task 2

Task 1
End
End

parallel
parallel

E(2)

E(3)

0.5
0.5
0.5

user.domain=TokyoTask 1 Task 1unconditional E(5) 0.6
NEW

NEW

user.domain=TokyoTask 1 Task 1unconditional E(4) 0.3

E(1)OS_Type=Windows unconditionalTask 1
Entry point Condition of Ap. Process Exit pointBranching Order

user.domain=Japan

user.domain=USA

Task 2
Task 2

Task 1
End
End

parallel
parallel

E(2)

E(3)

0.5
0.5
0.5

user.domain=TokyoTask 1 Task 1unconditional E(5) 0.6
NEW

NEW

Figure 7 – The process view of the administrator after addition of two extensions and the
Extensions Table.

Conclusion

The major benefit of our approach is an increased manageability of the
business processes. Related works hardly deal with the administration of
dynamic processes and only focus on the extension execution rather than
considering the entire life cycle of processes and process extensions.

Summary of advantages
In order to give an evidence of the eased management introduced by our
workflow extension model we will consider the case of an international
organization whose offices are spread in many countries. The head office
of this organization wants all its foreign offices to observe the rules and
process it defines. On the other hand, those offices will ask for
adaptations of the processes to comply with their local laws, customs, or
business rules. In a workflow model that does not permit the creation of
extensions the general administrator (or administrative group) receives
unceasing requests for integrating local adaptations to the general
processes. It commonly results in several issues: 1) the administrator may
have a limited knowledge or understanding of all local constrains and so
produce errors in the adaptation he provides; 2) in case of sudden peak of
requests the central administrator role represents a bottleneck that
delays the creation of adapted processes; 3) the global process resulting
from all adaptations is very complex and error-prone; 4) moreover any
new modification of an existing adaptation that regards only one local

 Laurent Baduel, Hideki Tai, and Takayuki Kushida

office has to be propagated to all local offices even if they are not
concerned by this adaptation.

Evaluation
To make it more concrete, we show the example to track how many
modifications and updates are necessary with and without our workflow
extension model. Let’s consider a company composed of 10 divisions (head
office, foreign offices, financial department, IT department, etc.). The
head office produces business mainlines under the form of base processes
that all other divisions would follow. Each of those divisions is free to add
its own extensions on top of the base processes. Once the set of processes
and extensions has been created, we are interested in observing their life
cycles.

Without a workflow extension model, the processes are common to all the
company’s divisions and completely integrate the entire set of adaptations.
Adaptations usually take the form of conditional branching in the
processes. The current result is that any modification required by a
division, even for its exclusive purposes, is shared with the entire
company in a process definition becoming more and more complex has the
company size is growing. Moreover confidentiality may be an issue: for
instance the IT division may not be aware of internal procedures of the
financial division. In this configuration if a division, let’s say the IT
division, introduces numerous extensions and modifies them often the
entire set of users, from all divisions, will have to suffer from the
numerous migrations to the ever new versions of the globalized processes.

With the workflow extension model in this paper, the impact of
modifications and updates are limited to the division that has produced
them. Let’s imagine the distribution of employees is equal within all the
division. In the scenario presented above only 10% of the employees (the
IT division out of 10) suffer from the migration of the processes to its new
version. 90% of process migrations are avoided. Moreover only the
persons who are concerned by a specific adaptation are concerned by the
updates of this adaptation. It is easier for an IT guy to understand what
is changing in the process he uses that it is for another guy who never
uses this particular adaptation in a globalized process. The last
advantage in moving adaptations out of a unique globalized process is to
stabilize the base process. Frequent updates regarding adaptation and
previously required on top of a globalized process are now performed on
the extensions. It increases the life time of each version of the base
processes, thus introducing a greater global stability in the set of business
practices within the entire company.

In terms of software performances the addition of our extension model

 Shared Management of Dynamic Business Process Extensions

had no sensible impact on the load of the application. CPU usage does not
vary as our implementation relays on existing mechanism and consists
mainly in re-routing the flow rather than in the introduction of additional
mechanisms. The memory usage remains constant because no dynamic
value is stored in memory; the architecture model keeps all information
in database. The data storage that maintains process definitions
increases in an insensible way. Only the definitions of extension are
added. The definitions of nodes and objects that consume much larger
space are not changed. Finally the logic itself only introduces a lookup to
find existence of extensions and if several extensions exists in the same
point a sort. Those operations are negligible in the whole process: they
represent less than 0.1% of the operations required for the flow to move
from one task to another.

To conclude, by opposition to existing solution our innovative approach is
much more dynamic and adaptable as extensions can be plugged or
removed without modification or copies of base process. This is permits by
the introduction of a new table within the core of workflow engine along
with a mechanism to help shared and distributed management. The
governance of final workflows is shared between different entities thus
dividing the complexity of base workflow. The edition of new extensions is
eased by hiding existing extensions in isolation. Finally, the Extension
Table centralizes the information about all extensions thus allowing
simplified inspections and audits.

References
[Bogia and Kaplan, 1995] Bogia, D. P., and Kaplan, S. M., ‘Flexibility and
control for dynamic workflows in the WORLDS environment’ Proceedings
of conference on Organizational computing systems
[WfMC, 1995] WfMC: The Workflow Reference Model, WFMC-TC-1003,
January 1995.
[Basten T. 1997] Basten, T., ‘Life-cycle inheritance: A Petri-net-based
approach’ Application and Theory of Petri Nets 1997, volume 1248 of
Lecture Notes in Computer Science, p62—81, 1997
[Ceri et al., 1997] Ceri, S., Grefen, P. and Sanchez, G. ‘WIDE – a
distributed architecture for workflow management’, Proceedings of the
Seventh International Workshop on Research Issues in Data Engineering,
Birmingham, UK, April 1997.
[Geppert, A. and Tombros, D., 1998] Geppert, A. and Tombros, D.‘Event-
based distributed workflow execution with EVE’, IFIP International
Conference on Distributed Systems Platforms and Open Distributed
Processing, The Lake District, England, September 1998.
[Reichert and Dadam 1998] Reichert, M. and Dadam, P. ‘Adept_flex-
supporting dynamic changes of workflows without losing control’, Journal

 Laurent Baduel, Hideki Tai, and Takayuki Kushida

of Intelligent Information Systems, Special Issue on Workflow and
Process Management, Vol. 10, No. 2, pp.93–129, 1998.
[Zhou, T. et al., 1998] Zhou, T., Pu, C. and Liu, L. ‘Dynamic restructuring
of transactional workflow activities: a practical implementation method’,
Proceedings of the Seventh International Conference on Information and
Knowledge Management, Washington D.C., November 1998.
[Muller and Rahm, 1999] Muller, R. and Raham, E. ‘Rule-based dynamic
modification of workflows in a medical domain’ Proceedings of BTW99,
p429 – 448, Freiburg, Germany, March 1999.
[van der Aalst, W.M.P. , 1999] van der Aalst, W.M.P. ‘Generic workflow
models: how to handle dynamic change and capture management
information?’ Cooperative Information Systems, p115—122, 1999.
[Zur Muehlen M. and Becker J., 1999] Zur Muehlen, M., and Becker, J.,
‘Workflow Management and Object-Orientation - A Matter of Perspectives
or Why Perspectives Matter’, OOPSLA Workshop on Object-Oriented
Workflow Management, 1999
[WfMC, 1999] WfMC ‘Interface1: process definition interchange V 1.1
final (WfMC-TC-1016-P)’, October, Available at: http://www.wfmc.org.
1999
[Lee, 2000] Lee, M. ‘Event and rule services for achieving a web-based
knowledge network’, PhD Dissertation, Department of Computer and
Information Science and Engineering, University of Florida, Available at:
http://www.cise.ufl.edu/tech-reports/tech-reports/tr00-abstracts.shtml,
TR-002. 2000.
[Manolescu D. A., 2001a] Manolescu, D. A., An extensible Workflow
Architecture with Object and Patterns, TOOLSEE 2001.
[Manolescu D. A., 2001b] Manolescu D. A., Micro-workfow a workflow
architecture supporting compositional object-oriented software
development, PhD Thesis, University of Illinois at Urbana-Champaign,
2001.
[Basten T. 2002] Basten, T., ‘Inheritance of Workflows: An approach to
tackling problems related to change’, Theoretical Computer Science, vol.
270, 2002
[Müller, 2002] Müller, R. ‘Event-oriented dynamic adaptation of
workflows: model, architecture and implementation’, PhD Dissertation,
University of Leipzig, 2002.
[van der Aalst, W.M.P. , 2003] van der Aalst, W.M.P., ‘Inheritance of
Interorganizational Workflows: How to agree to disagree without loosing
control?’, Information Technology and Management, Vol.4, Issue 4, p345—
389, October 2003.
[Kin, et al., 2004] Kim. J., Sparagem, M., and Gil, Y., ‘An inteligent
Assistamt for Interactive Workflow Composition’, Proceedings of the
International Conference on Intelligent User Interface, Portugal, 2004.
[Hanson J., 2006] Hanson J. ‘Manage your business processes with JBoss
jBPM’, JavaWorld.com, May 2006

 Shared Management of Dynamic Business Process Extensions

[Meng and al. 2006] Meng, J., Su, S.Y.W., Lam, H., Helal A., Xian, J., Liu,
X., and Yang, S. ‘DynaFlow: a dynamic inter-organisational workflow
management system’ Int. J. Business Process Integration and
Management, Vol. 1, No. 2, p101—115, 2006
[Sadiq, W. et al. 2006] Sadiq, W.; Sadiq, S.; Schulz, K. ‘Model Driven
Distribution of Collaborative Business Processes’, Proceedings of the
International Conference on Services Computing, September 2006.
[Apache ODE, 2007] Apache ODE ‘User Guide’ http://ode.apache.org/user-
guide.html, 2007
[Paul C. J. 2007], Paul C. J. ‘The process of building a process manager:
architecture and design patterns’ IBM Systems Journal, volume 46, issue
3, p479—495, July 2007.
[Pinheiro W. A., et al. 2007] Pinheiro W. A., Vivacqua, A.S., Barros, R.
Mattos, A.S., Cianni, N.M, Monteiro, P.C. Jr., Martino, R.N. Marques, V.,
Xexéo, G., Souza, J.M., ‘Dynamic Workflow Management for P2P
Environments Using Agents’, Proceedings of the 7th international
conference on Computational Science, 2007.
[Bergmann S., 2008] Bergmann S. ‘Design and Implementation of a
Workflow Engine’, PhD Thesis, Rheinische Friedrich-Wilhelms-
Universität, Germany, 2008.
[MSWF, 2008] Microsoft Library, ‘Microsoft Workflow Foundation
Overview’ MSDN Library, .NET Framework 3.5, 2008

