
July 10, 2009
RT0859
Human-Computer Interaction 6 pages

Research Report
3D Manipulation Device Based on Z-direction Moves of the
Intersection of Two-Eye View Directions

Akira Koseki, Kiyokuni Kawachiya
IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It
has been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or
copies of the article legally obtained (for example, by payment of royalities).

3D Manipulation Device Based on Z-direction Moves of the Intersection of
Two-Eye View Directions
Akira Koseki, Kiyokuni Kawachiya

1. Introduction
The 3D virtual world gives new interaction between human and computers. To make it
easier to point a 3D object in the virtual world, existing methods like PUPA6-337756
use the intersection of two-eye view directions. They allow users to point objects not
using conventional pointing devices such as keyboards and mice. However, they assume
that the intersection should be on the surface of objects. In contrast, presented approach
gives more instinctive and immediate interactions using Z-direction moves of the
intersection of two-eye view directions.

2. Problem
In the aforementioned methods, the pixel (or pixels when using a two-eye display) at the
intersection of two-eye view directions is a point the user is looking at. Such a point
usually goes on the surface of an object. However, the two-eye view directions don’t
necessarily intersect at the pixel (or pixels of two screens that correspond to the same
point when using a two-eye display). As described in the figure 1, the two-eye view
directions may cross the different pixels and intersect at a far point (in the center), or
also cross the different pixels and intersect at a near point (on the right). The users’
viewpoints thus move in the Z-direction. Our problem to be solved is then detecting such
movements in the Z-direction to trigger actions associated to an object the user is
looking at or user’s current activity.

Looking at a near pointLooking at a far point Looking at a near pointLooking at a far point

Figure 1

3. Our Approach
Our method detects the change of the direction of two eyes and pixels that the user is
looking at on the screen (or screens when using a two-eye display). When the two-eye
view directions intersect at the pixel (or pixels that correspond to the same point of the
screens when using a two-eye display), the system detects the object that includes such
a pixel and set the object to be the “seen object.” In the case that the pixel is not included
in any object, the system set the “background object” which is a special object in the
system to be the “seen object.”
When the two-eye view directions move to intersect at different pixels, the system
recognize such changes as movements in the Z-direction and trigger appropriate actions
associated to the “seen object” or to user’s current activity.
Actions triggered based on such Z-direction movements can be provided by object
designers but typical ones are as follows:
1. when the user looks at a far point, make the seen object translucent (Figure 2),

using an existing algorithm. The object at the intersection point becomes visible by
making objects in front of the object translucent.

2. when the user is walking through (or flying), raise the speed of movement when the
user looks at a far point, and lower the speed when looking at a near point (Figure
3).

3. when the user looks at a far point, trigger a “push action” of the “seen object”
(Figure 4)

Figure 2

Moving at a lower speed Moving at a higher speed

Figure 3

Figure 4

4. Implementation
Figure 5 shows the overview of our system, mainly consisting of the rendering system
that draws the screen images of 3D virtual world from the position of an eye with its
view direction, and the user device that displays those images and sends the physical
direction and position data of the eyes and the face to calculate those direction and
position in the virtual world. Main part of the user device has a glasses-like shape and
can display the two different images for the eyes. Moves of human body are detected by
another user device called positioning device and position data of the eyes and the
direction data of the head are sent to the rendering system. The eye direction data are
also detected by an internal device of the glasses-shaped device and are sent to the
rendering system. The user also sends the navigation info to the rendering system using
the navigation device consisting of a keyboard or mouse to rotate or move in the virtual
world.

Figure 5

Screen for the left eye Screen for the right eye

Eye direction detectors

User device Rendering system

Screen images

3D virtual world server

Direction and position

of the eyes and the

head, and other

navigation controls

Positioning device

Navigation device

Figure 6 shows the flow chart of the system.
Figure 6

start

Assuming using a Cartesian coordinating system, obtain the direction and
position of the center of the face in the real world through the user device at the

current time, namely, Drf(t), Prf(t). The relative directions of two eye views to
Drf(t) represented as Θre1(t) and Θre1(t) that are rotation matrixes.

Calculate the direction and positions of the two eyes in the virtual world using the obtained data and the
current speed.

Assuming direction of positions of the center of the face in the virtual world is represented as Dvf(t) and
Pvf(t). Pvf(t) is given as Pvf(t-1) + k * Vc(t) + F*(Prf(t)-Prf(t-1), and Dvf(t) is given as Θn * F * Drf(t),

where k is a certain constant and F is a matrix that gives coordination system conversion from the real
world to virtual world coordination systems. The positions of the two eyes in the virtual world, Pve1(t),

Pve2(t), are calculated using the relative distance from Pvf(t). The directions of two eye views, Dve1(t),
and Dve2(t) are given as (F * Θre1(t)) * Dvf(t) and (F * Θre2(t)) * Dvf(t).

The points in the virtual world that are seen, I1(t), I2(t) are detected. Assuming I1(t)
is for the right eye and I2(t) for the left. They are obtained to find nearest cross
points with object from lines started from Pve1(t) and Pve2(t) to the direction of
Dve1(t) and Dve2(t), respectively. Here we use a special sphere-shaped object

which covers all the objects without any intersections so that such points are always
obtained. When I1(t) and I2(t) are the same point, the object which has such a point

is regarded as the “seen object.”
If I1(t) and I2(t) are different points, the system detects a Z-direction movement. If
I1(t) is right to I2(t), the user is looking at a far point, and if I1(t) is left to I2(t), the

user is looking at a near point.

Generate the current screen images based on
current position and speed.

Obtain the navigation control from the user
device, namely, velocity increment Vn, and

delta of rotation angle Θn. (Θn is represented
by a matrix, and Vn is a scholarr)

Obtain the current speed Vc(t).
Vc(t) is given as (1+Vn)*Vc(t-1)

If a Z-direction movement is detected and If the
user doesn’t move in the virtual world, trigger an

action of the latest “seen object” which is
associated with the movement.

If a Z-direction movement is detected and If the user is
moving in the virtual world, change the current speed

according to the movement. If the user is looking at a far
point, increase the speed. If the user us looking at a near

point, decrease the speed.

start

Assuming using a Cartesian coordinating system, obtain the direction and
position of the center of the face in the real world through the user device at the

current time, namely, Drf(t), Prf(t). The relative directions of two eye views to
Drf(t) represented as Θre1(t) and Θre1(t) that are rotation matrixes.

Calculate the direction and positions of the two eyes in the virtual world using the obtained data and the
current speed.

Assuming direction of positions of the center of the face in the virtual world is represented as Dvf(t) and
Pvf(t). Pvf(t) is given as Pvf(t-1) + k * Vc(t) + F*(Prf(t)-Prf(t-1), and Dvf(t) is given as Θn * F * Drf(t),

where k is a certain constant and F is a matrix that gives coordination system conversion from the real
world to virtual world coordination systems. The positions of the two eyes in the virtual world, Pve1(t),

Pve2(t), are calculated using the relative distance from Pvf(t). The directions of two eye views, Dve1(t),
and Dve2(t) are given as (F * Θre1(t)) * Dvf(t) and (F * Θre2(t)) * Dvf(t).

The points in the virtual world that are seen, I1(t), I2(t) are detected. Assuming I1(t)
is for the right eye and I2(t) for the left. They are obtained to find nearest cross
points with object from lines started from Pve1(t) and Pve2(t) to the direction of
Dve1(t) and Dve2(t), respectively. Here we use a special sphere-shaped object

which covers all the objects without any intersections so that such points are always
obtained. When I1(t) and I2(t) are the same point, the object which has such a point

is regarded as the “seen object.”
If I1(t) and I2(t) are different points, the system detects a Z-direction movement. If
I1(t) is right to I2(t), the user is looking at a far point, and if I1(t) is left to I2(t), the

user is looking at a near point.

Generate the current screen images based on
current position and speed.

Obtain the navigation control from the user
device, namely, velocity increment Vn, and

delta of rotation angle Θn. (Θn is represented
by a matrix, and Vn is a scholarr)

Obtain the current speed Vc(t).
Vc(t) is given as (1+Vn)*Vc(t-1)

If a Z-direction movement is detected and If the
user doesn’t move in the virtual world, trigger an

action of the latest “seen object” which is
associated with the movement.

If a Z-direction movement is detected and If the user is
moving in the virtual world, change the current speed

according to the movement. If the user is looking at a far
point, increase the speed. If the user us looking at a near

point, decrease the speed.

Figure 7 also shows the changes of screen images when a Z-direction movement is
detected. First the user looks at the same point which is on the surface of a button object.
Next the user looks at a far point, and a “push” action of the button object is trigged and
the screen images are then changed to reflect the action.

Figure 7

Left screen Right screen

Left screen Right screen

Left screen Right screen

Left screen Right screen

Left screen Right screen

Left screen Right screen

	RT0859cover
	RT0859.pdf

