
July 15, 2009
RT0865
Computer Science 6 pages

Research Report
A New Approach for Estimating
Per-Transaction-Type Resource Consumption

Kiyokuni Kawachiya, Michiaki Tatsubori,
and Kazunori Ogata
IBM Research, Tokyo Research Laboratory
IBM Japan, Ltd.
1623-14 Shimotsuruma, Yamato
Kanagawa 242-8502, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It
has been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or
copies of the article legally obtained (for example, by payment of royalities).

A New Approach for Estimating

Per-Transaction-Type Resource Consumption

Kiyokuni Kawachiya Michiaki Tatsubori Kazunori Ogata

IBM Research, Tokyo Research Laboratory
1623-14, Shimotsuruma, Yamato, Kanagawa 242-8502, Japan

<kawatiya@jp.ibm.com>

Abstract
In a middleware environment, various types of transactions are processed simultane-

ously. In such an environment, it is very important to know the amount of resources

necessary for processing each type of transaction. Such data can be used both for re-

source planning and bottleneck identification. This report proposes a new approach to

estimate the per-transaction-type resource consumption in a real production environ-

ment. Two types of execution logs are collected, and resource consumption is estimated

by solving simultaneous equations based on these logs.

1. Introduction
In a middleware environment such as WebSphere Application Server (WAS) [1], various types of

“transactions” are processed simultaneously. In such an environment, it is very important to estimate

the amount of resources (such as CPU time or memory) necessary for each type of transaction. Such

data can be used both for resource planning and bottleneck identification.

Two conventional approaches to estimating resource consumption are using trace code in the mid-

dleware or using a profiler [2]. However, such tracing or profiling code slows down the execution of

the application. Adding trace code depends on the internal structure of target middleware and is not

so simple. In addition, if a transaction is processed with the cooperation of multiple threads or if

multiple types of transactions are processed by single thread, it can be difficult to track which trans-

action should be credited with the consumption of various traced resources.

Another approach is to run each type of transaction separately in a special test environment.

However, preparing such an environment is also difficult, especially for a production system.

In this report, we discuss a new approach to estimate the per-transaction-type of resource con-

sumption in a real production environment, without adding extra trace code.

 1

trxA

trxC

trxA

trxB

trxD

trxC

trxB

trxD

trxA

trxB

:
:

Processing
requests

Resources

(a) Execution log of the
middleware for each
measurement period.

(b) Resource consumption
log of the middleware
for each period

trxA: 10~12
trxB: 20~25
trxC: 14~16
trxD: 30~40

O/H: 1~3/min

Transaction
processing
middleware

Create
simultaneous

equations

Estimates of the resources
required for each type of
transaction processing

Middleware
execution

information

Middleware’s
resource

consumption

~~~
~~~
~~~

~~~
~~~
~~~

Solve to
minimize

deviations

Transaction processing server Estimation framework

Figure 1: Overview of the estimation framework

2. Using Execution Logs for Estimation
Key idea of our approach is to estimate the resource consumption for each transaction based on

external observations. More specifically, execution logs of the middleware as it executes various

types of transactions in production mode, are used for the estimation. Figure 1 is a high-level view of

the proposed estimation framework.

For the estimation, two types of logs are collected for multiple periods.

(a) The execution log of the middleware, including the numbers of each type of transactions

executed during each period.

(b) A resource consumption log for the middleware for each period.

In general, such logs are already being recorded during the normal operation of the middleware for

maintenance and monitoring. Therefore, it is not necessary to add new measurement code.

Next, by considering the resource consumption of each type of transaction as a variable, an equa-

tion is created for each of the measured periods. By continuing the measurements for multiple

periods, we can get multiple equations. By solving these simultaneous equations while minimizing

the deviations, we can estimate the resource consumption for each type of transaction.

Since the number of equations increases the longer the application executes, the resource con-

sumption of each type can be estimated even when there are many types of transactions. In addition,

since the estimation is done from normal execution logs, it can be done for the actual operating con-

ditions, without slowing down or otherwise affecting the processing.

 2

3 times

trxA

2 times

3 times

5 times

4 times

2 times

trxB

5 times

6 times

1 times

3 times

97 sec

CPU

259 sec

210 sec

272 sec

209 sec

Measured
Period

Period 1

Period 2

Period 3

Period 4

Period 5

8:00~03

8:03~08

8:08~12

8:12~17

8:17~22

1 times 1 times 180 secPeriod 6 8:22~25

1 times

trxC

3 times

2 times

5 times

3 times

0 times

trxD

2 times

0 times

3 times

1 times

2 times 3 times

: : :: : : :

(a) Logs of the execution count
for each transaction type

(b) Logs of the CPU time consumption
by the application during the same period

Measured
Period

8:00~03

8:03~08

8:08~12

8:12~17

8:17~22

8:22~25

:

Period 1

Period 2

Period 3

Period 4

Period 5

Period 6

:

Figure 2: Examples of the two execution logs

3A + 2B + 1C + 0D + 3N ≒ 97
2A + 5B + 3C + 2D + 5N ≒ 259
3A + 6B + 2C + 0D + 4N ≒ 210
5A + 1B + 5C + 3D + 5N ≒ 272
4A + 3B + 3C + 1D + 5N ≒ 209
1A + 1B + 2C + 3D + 3N ≒ 180

:

Necessary CPU time
trxA: 10~12sec/each
trxB: 20~25sec/each
trxC: 14~16sec/each
trxD: 30~40sec/each
(O/H: 1~3sec/min)

1
2
3
4
5
6
:

Figure 3: Simultaneous equations formulated from

the logs of Figure 2, and estimated results

97-10% ≦ 3A + 2B + 1C + 0D + 3N ≦ 97+10%
259-10% ≦ 2A + 5B + 3C + 2D + 5N ≦ 259+10%
210-10% ≦ 3A + 6B + 2C + 0D + 4N ≦ 210+10%
272-10% ≦ 5A + 1B + 5C + 3D + 5N ≦ 272+10%
209-10% ≦ 4A + 3B + 3C + 1D + 5N ≦ 209+10%
180-10% ≦ 1A + 1B + 2C + 3D + 3N ≦ 180+10%

: : :

1
2
3
4
5
6
:

Figure 4: Simultaneous inequalities with explicit deviations

2.1 Example Estimation Flow

Figure 2 shows an example of execution logs divided into six measurement periods. These are:

(a) Logs of the execution counts for each transaction type (trxA, B, C, D).

(b) Logs of the CPU time consumption for the application during the same period.

From these logs, simultaneous equations are formulated as shown on the left side of Figure 3. Here,

variables A, B, ... denote the amount of CPU time required for the processing trxA, B, ..., and vari-

able N denotes the amount of CPU time that is consumed by the application itself in the background

(per minute).

 3

97 sec

CPU

259 sec

210 sec

272 sec

1

2

3

4

Measured
Period

8:00~03

8:03~08

8:08~12

8:12~17

Example of the ps command results
At 8:00, TIME=13:24. At 8:03, TIME=15:01. At 8:08, TIME=19:20.
At 8:12, TIME=22:50. At 8:17, TIME=27:22. At 8:22, TIME=30:51. ...

<= 15:01 - 13:24

<= 19:20 - 15:01

<= 22:50 - 19:20

<= 27:22 - 22:50

Figure 6: Examples of ps command results and calculated

“CPU consumption of each measurement period” log

ps 7684 <- Process ID of WAS
PID TTY STAT TIME COMMAND

7684 pts/0 S 13:24 /opt/IBM/WebSphere/AppServer/java/bin/java -Declipse.security
Figure 5: Measurement of CPU consumption by a ps command

However, no exact solution for such simultaneous equations normally exists since there are some

variations in the actual resource consumption. Therefore, we calculate the values of A, B, ... and N,

that minimize the deviations. These results become the estimates of the resources required for each

type of transaction processing (CPU time, in this example). For example, they can be calculated as

shown on the right side of Figure 3.

To solve simultaneous equations with deviations, general multiple linear regression analysis [3]

can be used. In addition, these equations can also be solved by setting up inequalities in which the

deviations are explicitly taken into account, as shown in Figure 4, and then obtaining the ranges for

A, B, ... and N using linear programming [4]. It is also possible to correct the estimation incremen-

tally by using more measurement periods.

3. Actual Examples of Log Collection
There are various possible methods for collecting the resource consumption log and dividing it

into multiple periods. This section describes two actual examples, for CPU consumption and object

generation. In each of the following examples, only one resource consumption is estimated. This is

because of making the explanation simpler, and it is also possible (and expected) to estimate multi-

ple resource consumptions at the same time, by collecting multiple resource consumption logs

simultaneously.

 4

378,657,624 bytes

Object generation

429,557,472 bytes

1

2

Measured period

15:23:39~15:24:01

15:24:03~15:27:05

<af type="tenured" id="743" timestamp="Wed Jan 30 15:23:38 2008" intervalms="10336.546">
<tenured freebytes="0" totalbytes="758364160" percent="0" >
<gc type="global" id="743" totalid="743" intervalms="10339.717">

:
<tenured freebytes="434680128" totalbytes="758364160" percent="57" >
<time totalms="1421.258" />

</af>

<af type="tenured" id="744" timestamp="Wed Jan 30 15:24:01 2008" intervalms="21694.878">
<tenured freebytes="56022504" totalbytes="758364160" percent="7" >
<gc type="global" id="744" totalid="744" intervalms="21705.771">

:
<tenured freebytes="436162880" totalbytes="758364160" percent="57" >
<time totalms="2083.479" />

</af>

<af type="tenured" id="745" timestamp="Wed Jan 30 15:27:05 2008" intervalms="181793.488">
<tenured freebytes="6605408" totalbytes="758364160" percent="0" >
<gc type="global" id="745" totalid="745" intervalms="181801.983">

:
<tenured freebytes="435328072" totalbytes="750782464" percent="57" >
<time totalms="5018.665" />

</af>

During 15:23:39~15:24:01,
378,657,624 bytes of objects
were generated

During 15:24:03~15:27:05,
429,557,472 bytes of objects
were generated

(434680128 – 56022504 = 378657624)

(436162880 – 6605408 = 429557472)

Figure 7: Examples of “-verbose:gc” output and the calculated

“object generation in each measurement period” log

3.1 Estimation of CPU Resource Consumption

The cumulative CPU consumption of a process can be obtained using a “ps” command (for

UNIX-like operating systems) or any similar utility provided by the operating system. The example

in Figure 5 shows that 13 minutes and 24 seconds of CPU time was consumed since the WAS proc-

ess (process ID: 7684) was started. Note that this value is not the actual elapsed time, but the amount

of CPU time consumed by the process.

In this example, the measurement periods were divided at specific points in time at which the

fewest transactions were being processed. At each of these times, a ps command was used to record

the CPU time consumed by the WAS process. The CPU consumption of each measurement period

can be obtained by subtracting these values, as shown in Figure 6. By combining this with the trans-

action processing log for each period as generated by the WAS, we can get the necessary two types

of logs separated into multiple measurement periods, then can estimate per-transaction-type CPU

consumption.

3.2 Estimation of Object Generation

Another resource example is the estimation of the number of Java objects generated for each type

of transaction. In Java processes such as WAS, the Java heap status at each garbage collection (GC)

 5

 6

point can be obtained by specifying a “-verbose:gc” startup option [5]. Figure 7 shows an example

output with this option for three GC points. By looking at the reduction in the “freebytes” for these

log entries, the object generation between the GC points can be calculated. For instance,

378,657,624 bytes of objects were generated between 15:23:39 and 15:24:01 in the example in Fig-

ure 7.

By considering each GC-to-GC period as the “measurement period” and separating the transaction

processing log of WAS into these periods, we can get the necessary two types of logs separated into

multiple measurement periods, then can estimate per-transaction-type object generation.

4. Conclusion
In this report, we showed an approach for estimating resource consumption of each type of trans-

action without decreasing performance. Two types of execution logs are continuously collected for

multiple measurement periods, and resource consumption is estimated by solving simultaneous

equations while minimizing the deviations. This approach provides methods to estimate the

per-transaction-type resource consumption in a real production environment.

References
[1] IBM Corporation. WebSphere Application Server.

http://www.ibm.com/software/webservers/appserv/was/

[2] Frank Levine. JPROF - Java Profiler.

http://perfinsp.sourceforge.net/jprof.html

[3] George A. F. Seber and Alan J. Lee. Linear Regression Analysis, Wiley Series in Probability and

Statistics, 2003.

[4] Alexander Schrijver. Theory of Linear and Integer Programming, John Wiley & Sons Ltd, 1986.

[5] Mattias Persson and Holly Cummins.

Java technology, IBM style: Garbage collection policies, Part 2, 2006.

http://www.ibm.com/developerworks/java/library/j-ibmjava3/

	RT0865cover
	RT0865.pdf
	A New Approach for Estimating Per-Transaction-Type Resource Consumption
	Abstract
	1. Introduction
	2. Using Execution Logs for Estimation
	2.1 Example Estimation Flow

	3. Actual Examples of Log Collection
	3.1 Estimation of CPU Resource Consumption
	3.2 Estimation of Object Generation

	4. Conclusion
	References

