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Abstract
A mixed integer programming is formulated for estimating the speed

and the acceleration of a vehicle as functions of the time based on the data
from a probe-car system. It is assumed that the data from the probe-car
system include the statistics (specifically, the maximum, the minimum,
and the average) of the speed and the acceleration, respectively, of the
vehicle. The estimated functions have the statistics that agree with those
measured by the probe-car system. Also, the estimated function of the
acceleration is smooth, which agrees with the observation that drivers are
less likely to change the acceleration radically. The estimated functions
of the speed and the acceleration of a vehicle can be used to estimate the
amount of CO2 emission from the vehicle.

1 Introduction

The manuscript considers the problem of estimating the amount of the
CO2 (carbon dioxide) emission from a vehicle based on the statistics of
the speed and the acceleration of the vehicle. The statistics include the
maximum values, the minimum values, and the average values. Such
statistics are available from a probe-car system (also known as a floating-
car system). The estimated amount of CO2 emission from each vehicle
can be used for example to understand the total amount of CO2 emission
in a particular area. The understanding allows one to take appropriate
actions for reducing CO2 emissions.

A mixed integer programming (MIP) will be formulated to estimate
the speed and the acceleration as functions of the time such that the
statistics of the estimated speed and acceleration approximately agree
with those of the measured speed and acceleration. It is assumed that the
amount of CO2 emission can be estimated from the estimated functions
of speed and acceleration.

The rest of the manuscript is organized as follows. Section 2 considers
the case where the statistics in a single interval are given. Section 3
extends the approach to the case with multiple intervals.

1



2 Single interval

Let a(min), a(max), and a(ave), respectively, be the minimum acceleration,
the maximum acceleration, and the average acceleration in a given inter-
val, (0, T ]. Let b(min), b(max), and b(ave) be the corresponding statistics for
the speed. The goal is to find the approximate functions a(t) and b(t) for
0 < t ≤ T , where a(t) denotes the acceleration at time t and b(t) denotes
the speed, such that the functions are consistent with the given statistics
and a(·) is smooth. The smoothness of the acceleration is desirable, since
drivers are less likely to change the acceleration radically.

The interval (0, T ] is divided into k intervals, where the j-th subin-
terval is ( T (j − 1)/k, T j/k] for j = 1, . . . , k. For each subinterval, the
acceleration will be uniquely determined from m candidates, a1, . . . , am,
and the speed from n candidates, b1 . . . , bn. Without loss of generality,
it is assumed that a(max) = a1 > · · · > am = a(min) and b(max) = b1 >
· · · > bn = b(min). Let xi,j be the indicator such that xi,j = 1 if the
acceleration at the j-th subinterval is ai and xi,j = 0 otherwise. Let yi,j

be the indicator such that yi,j = 1 iff the speed at the j-th subinterval is
bi. Note that each of a(t) and b(t) will be estimated as a step function
such that the function is constant for each subinterval.

Since the estimated maximum acceleration should agree with the mea-
sured maximum acceleration, it is required that max1≤j≤k Aj agree with
a(max). This requirement can be expressed as

k∑
j=1

x1,j ≥ 1. (1)

For analogous reasons for the minimum and for the speed, it is required
that

k∑
j=1

xm,j ≥ 1 (2)

k∑
j=1

y1,j ≥ 1 (3)

k∑
j=1

yn,j ≥ 1. (4)

Observe that the acceleration at the j-th subinterval is

Aj =

m∑
i=1

aixi,j , (5)

and the speed at the j-th subinterval is

Bj =

n∑
i=1

biyi,j (6)

for 1 ≤ j ≤ k.
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Since the estimated average acceleration should agree with the mea-
sured average acceleration, it is required that the average Aj over 1 ≤ j ≤
k agree approximately with a(ave). This requirement can be expressed as

1

k

k∑
j=1

Aj = a(ave) + ε(a), (7)

where ε(a) is a small constant. The small error of ε(a) is allowed, since
the acceleration is determined from the m discrete points, a1, . . . , am. For
analogous reasons for the speed, it is required that

1

k

k∑
j=1

Bj = b(ave) + ε(b), (8)

where ε(b) is a small constant.
Since the speed and the acceleration are related with the equation of

motion, it should hold that

Bj = Bj−1 +
T

k
Aj−1 + εj , (9)

for each j, where εj is a small constant. Again, the small error of εj

is allowed, since the speed and the acceleration are determined from the
discrete points.

To make the estimated acceleration smooth, one can minimize maxj |Aj−
Aj−1|, which together with (1)-(8) results in the following MIP formula-
tion:

min. d
s.t. xi,j ∈ {0, 1}, for i = 1, . . . , m, j = 1, . . . , k (A.1)∑m

i=1
xi,j = 1, for j = 1, . . . , m (A.2)∑k

j=1
x1,j ≥ 1 (A.3)∑k

j=1
xm,j ≥ 1 (A.4)

Aj =
∑m

i=1
aixi,j , for j = 1, . . . , k (A.5)

1
k

∑k

j=1
Aj = a(ave) + ε(a) (A.6)∑k

j=2
Aj −Aj−1 ≥ −d (A.7)∑k

j=2
Aj −Aj−1 ≤ d (A.8)

yi,j ∈ {0, 1}, for i = 1, . . . , n, j = 1, . . . , k (A.9)∑n

i=1
yi,j = 1, for j = 1, . . . , n (A.10)∑k

j=1
y1,j ≥ 1 (A.11)∑k

j=1
ym,j ≥ 1 (A.12)

Bj =
∑n

i=1
biyi,j , for j = 1, . . . , k (A.13)

1
k

∑k

j=1
Bj = b(ave) + ε(b) (A.14)

Bj = Bj−1 + T
k
Aj−1 + εj , for j = 2, . . . , k (A.15)

ε(a) ≤ δ (A.16)

ε(a) ≥ −δ (A.17)

ε(b) ≤ δ (A.18)

ε(b) ≥ −δ (A.19)
εj ≤ δ, for j = 2, . . . , k (A.20)
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(A.1) and (A.2) guarantee that, for each j, exactly one of x1,j , . . . , xm,j

is one, and the others are zero. (A.5) defines the acceleration at the j-th
subinterval for each j. (A.3) guarantees that the maximum acceleration
agrees with that measured, and (A.4) guarantees that the minimum ac-
celeration agrees with that measured. (A.6) guarantees that the average
acceleration matches with that measured with the error of ε(a). (A.7)
and (A.8) states that |Aj − Aj−1| ≤ d for any j. That is, the maximum
difference is within d. The objective function is to minimize d, so that the
maximum difference is minimized.

For the speed, (A.9)-(A.14) are the conditions analogous to (A.1)-
(A.6). (A.15) states the equation of motion with the error of εj for the
j-th interval. (A.16)-(A.20) guarantee that the errors are within δ, where
δ is a specifiable parameter.

The optimal solution to the MIP gives the estimated acceleration, A?
j ,

and the estimated speed, B?
j , for each j. Let f(a, b) be the amount of

CO2 emissions per unit time when the acceleration is a and the speed is
b. Then the amount, C, of CO2 emission in the interval is estimated with

C =

k∑
j=1

T

k
f(A?

j , B?
j ). (10)

Example

Let the measured statistics for the interval (0, 60] be a(min) = −1.0,
a(max) = 1.0, a(ave) = 0.5, b(min) = 0.0, b(max) = 18.0, and b(ave) = 6.0.
Let m = 5 and n = 7. Specifically, ai = −1.5+0.5i for i = 1, . . . , 5 are the
representative values of the acceleration, and bi = 3i − 3 for i = 1, . . . , 7
and the representative values of the speed. Let k = 10, so that the interval
is divided into 10 subintervals. The error is allowed within δ = 0.5.

Then the optimal solution to the MIP gives the speed and the acceler-
ation shown in Figure 1. The optimal solution is found with GLPK (GNU
Linear Programming Kit).

3 Multiple intervals

This section considers the case with N intervals for N ≥ 2. The speed and
the acceleration will be estimated as functions of the time for each interval
by taking into account the statistics in the other intervals. The extended
formulation differs in three cases: the first interval, the last interval, and
the other intervals.

Consider the first interval, (0, T ). Let b̂(min) be the minimum speed in
the second interval and b̂(max) be the corresponding maximum. The MIP
formulation in Section 2 is extended by incorporating the following two
additional constraints:

Bk + T
k
Ak ≥ b̂(min) − δ (A.21)

Bk + T
k
Ak ≤ b̂(max) + δ (A.22)

The new constrains ensure that there exist consistent feasible solutions
for the MIP of the first interval and the MIP of the second interval for a
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Figure 1: The speed and the acceleration estimated with the MIP as functions
of the time, when a(min) = −1.0, a(max) = 1.0, a(ave) = 0.5, b(min) = 0.0,
b(max) = 18.0, b(ave) = 6.0, and δ = 0.5.

sufficiently large δ. Note that the equation of motion implies that the left
hand side of the new constraint expresses the speed at the first subinterval
in the second interval.

Consider the `-th interval for 2 ≤ ` ≤ N − 1. It is assumed that the
speed and the acceleration in the (`− 1)-st (i.e., preceding) interval have
been estimated as functions of the time. Let ā be the acceleration at the
last subinterval in the preceding interval and b̄ be the corresponding speed.
Let b̂(min) be the minimum speed in the (`+1)-st (i.e., succeeding) interval
and b̂(max) be the corresponding maximum. When the `-th interval is
considered, let (0, T ] be the interval, so that the MIP in Section 2 is
well defined for the `-th interval. The MIP formulation is extended by
incorporating the following five additional constraints:

Bk + T
k
Ak ≥ b̂(min) − δ (A.21)

Bk + T
k
Ak ≤ b̂(max) + δ (A.22)

B1 = b̄ + T
k
ā + ε̄ (A.23)

ε̄ ≤ δ (A.24)
ε̄ ≥ −δ (A.25).

Note that (A.21) and (A.22) are equivalent to the two constraints incorpo-
rated for the case of the first interval, establishing the consistency between
the `-th interval and the succeeding interval. (A.23) establishes the con-
sistency between the `-th interval and the preceding interval. Specifically,
(A.23) ensures that the speed and the acceleration at the last subinterval
in the preceding interval and the speed at the first subinterval in the `-th
interval are consistent with the equation of motion, allowing the error of
ε̄. (A.24) and (A.25) ensure that the error is within δ.

Consider the last (i.e., N -th) interval. It is assumed that the speed
and the acceleration in the preceding (i.e., (N − 1)-st) interval have been
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estimated as functions of the time. Let ā be the acceleration at the last
subinterval in the preceding interval and b̄ be the corresponding speed.
When the last interval is considered, let (0, T ] be the interval, so that the
MIP in Section 2 is well defined for the last interval. The MIP formulation
is extended by incorporating the following three additional constraints:

B1 = b̄ + T
k
ā + ε̄ (A.23)

ε̄ ≤ δ (A.24)
ε̄ ≥ −δ (A.25),

which are equivalent to the three constraints incorporated for the case
with the `-th interval for 2 ≤ ` ≤ N − 1.

4 Concluding remarks

The presented approach can be generally applicable to the time-series
data from sensors, where the speed is understood as the quantity of inter-
est, and the acceleration is understood as the differential of the quantity.
However, the presented approach is most effective when there is one of the
following three difficulties. First, it is expensive to send the data from the
sensor to the analyzer. For example, satellite communication is expensive.
The probe-car system is another example, since the users are sensitive to
the charge for the packet communication. Second, it is infeasible to store
all of the data. For example, the space of a storage might be limited.
Third, it is infeasible to record all of the data. For example, the rate of
transmission might be faster than the speed of a storage. With the pre-
sented approach, one can store only the statistics of the data from sensors
and send the statistics to the analyzer, who can restore the time-series
data as needed for analysis. Note that the maximum, the minimum, and
the average are the statistics that can be calculated very efficiently.

The presented approach allows the analyzer to select the intervals
where the time-series data should be restored for analysis. For exam-
ple, the analyzer might want to know whether the difference between the
data from one sensor and the from another is greater than a threshold at
some moment for anomaly detection. Then the analyzer can restore the
data only in the interval where the maximum from one sensor and the
minimum from another differ by more than the threshed.
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