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ABSTRACT
The Top-k Keyword Aggregation is a kind of Top-k query
processing that finds the k most frequent keywords in a
document set, where the documents are dynamically se-
lected through keyword searches. Top-k is often used in ex-
ploratory text analysis, where the response time for queries
is especially crucial in interactive analyses that are seeking
higher-level knowledge within a large document collection.
In this paper we show that, in a distributed environment
where the central master node aggregates the keywords sent
from the worker nodes, we can reduce the problem of opti-
mization of the number of keywords each worker node has
to return to the master node to a problem of pure combi-
natorics. To estimate the number of keywords that each
worker returns, our combinatorial analysis carefully defines
the probability that we obtain the correct answers. There
is a reasonable trade-off between the number of keywords
and the probability. With high probabilities, say 90% or
95%, we can significantly reduce the number of keywords
processed by all the worker nodes. Even when the answer is
not correct, our method assures that the end user can know
which of the returned k keywords in the answer are actually
correct and which of them may be spurious, and the number
of the latter is actually very small compared to that of the
former. We describe the column-based keyword partitioning
approach to implement our algorithm in distributed Top-k.
Experimental evaluations on a large archive of medical doc-
uments confirmed the results of our theoretical analysis.

Categories and Subject Descriptors
G.2.1 [Combinatorics]: Counting problems, Permutations
and combinations; H.2.4 [Systems]: Query Processing

General Terms
Theory, Algorithm, Performance

1. INTRODUCTION
One of the fastest growing areas of text search and analytics
applications has been business intelligence. It became ap-
parent in the late 1990s that human experts could no longer
analyze thousands of customer conversation logs (call-logs)
generated every week at a call center, although the analy-
sis of this data was vital for early problem detection and
customer claim analysis. Text mining tools were widely in-
troduced at call centers to address this problem and are also
useful in many other fields such as life sciences and compet-
itive intelligence (patent mining) [8].

Studies on text mining technology have found that comput-
ing the distribution of keywords (including terms, named en-
tities, and other types of entities extracted from text) is fun-
damental for aggregating the content of a document set and
in building more advanced analytic functions [16, 13]. More
specifically, Top-k keyword aggregation, which gives the k
most frequent keywords and their document frequencies in
a dynamically given document set, is known to be crucial
for exploratory text analysis. Here we mean by exploratory
text analysis a sequence of analytic operations by a human
analyzer. For example, an analyzer first searches for a spe-
cific keyword of interest, then runs Top-k keyword aggrega-
tion for the documents that are retrieved by the keyword
search. The Top-k result provides information about which
keywords are frequently mentioned in the context specified
by the search keyword. After investigating the keywords
in the result of Top-k, more keywords can be added to the
search condition to drill down into the documents. Top-k
is then performed again for the new search condition to see
what kinds of keywords are frequently mentioned in the new
document set.

In order for an analyzer to do analysis comfortably in such
a trial-and-error manner, it is essential for the analysis sys-
tem to provide Top-k keyword aggregation with response
times close to those of search engines. Some studies have ad-
dressed this problem and proposed efficient algorithms and
data structures for Top-k keyword aggregation [20, 18].

Motivated by these applications, we are investigating dis-
tributed Top-k query processing considering both scalabil-
ity and accuracy. These days we often have more than tens
of millions of documents for analysis, so we want to pro-
cess Top-k queries by using large numbers of distributed
worker nodes. For usefulness, a system should return either
a correct answer or a partly correct answer with informa-



tion about which of the k keywords are actually correct and
which may be incorrect.

In this paper we show that, in a distributed environment
where the central master node aggregates the keywords sent
from the worker nodes, optimization of the number of key-
words that each worker node has to return to the master
node is reduced to a problem of pure combinatorics. To es-
timate the number of keywords that each worker returns,
our combinatorial analysis carefully defines the probability
that we obtain the correct answers. There is a reasonable
trade-off between the number of keywords and the proba-
bility. With high probabilities, say 90% or 95%, we can
significantly reduce the number of keywords processed by
all the worker nodes. Even when the answer is not correct,
our method assures that the end user can know which of
the returned k keywords in the answer are actually correct
and which of them may be spurious, and the number of the
latter is actually very small compared to that of the former.
For example, we show that when we want to obtain the Top-
100 keywords and there are 32 worker nodes available, then
it is sufficient to compute only the Top-11 (instead of the
Top-100) on each worker node in order to obtain a correct
answer with probability 90%.

Our combinatorial method is sufficiently general such that
it is available for general distributed Top-k query processing
where each scored object to aggregate comes from only one
of the worker nodes. To discuss application of our method
to keyword aggregation, we describe the column-based key-
word partitioning approach for Top-k in a distributed en-
vironment. The keyword partitioning approach divides the
set of keywords that appear in the whole document set into
disjoint subsets, and each worker node corresponds to only
one of the subsets and processes only the keywords in the
subset. There are two major advantages of our keyword par-
titioning approach. First, it requires only one-pass between
the central master node and the worker nodes. Second, it
always gives a correct Top-k answer if each worker node re-
turns its local Top-k to the master node. On top of the
efficient calculation of local Top-k in each worker node [20,
18] we can construct an efficient algorithm for distributed
Top-k.

The rest of this paper is organized as follows. We present
the definitions and notations for our work in Section 2. In
Section 3 we review how to calculate Top-k on a single node.
In Section 4 we describe a framework to calculate Top-k in
a distributed computing environment in which each node
calculates its local Top-k by using a keyword partitioning
approach. Section 5 is the main part of this paper. We
propose a novel method to improve the keyword partition-
ing approach. Section 6 describes experimental results and
presents their analysis. We discuss related work in Section
7 and give our conclusions in Section 8.

2. PROBLEM FORMULATION

2.1 Top-k Keyword Aggregation
In a high-level view, Top-k Keyword Aggregation is to col-
lect keywords that appear most frequently in a specific doc-
ument set. The document set is given dynamically, usually
as a result of keyword search in the context of text analysis.

Definition 1. Let W be the set of all possible character
strings and a keyword is an element of W . For exam-
ple, “food”, “investigate” and “2011” are elements of W . A
document is a finite subset of W . This means that each
keyword represents a binary feature of a document.

Let us consider a finite multiset of documents D = {d1, · · · ,
dm}. We define D as a multiset so that we allow di = dj as
a set for i 6= j because it is natural to consider that distinct
documents may have exactly the same content. For a subset
DS ⊂ D and a keyword w ∈ W , let freq(DS , w) := |{d ∈
DS | w ∈ d}|, which is the number of documents in DS that
contain the keyword w1. We call freq(DS , w) the keyword
frequency of w in DS. In particular when DS = D we call
freq(D, w) the global frequency of w.

Each document of D is associated with a document id,
an integer unique in D. We often identify the symbol of a
document d ∈ D with its document id, and identify D (or
its subset) with the set of the corresponding document ids.

Definition 2. For any DS ⊂ D, let W (DS) := {w ∈
W | freq(DS , w) > 0} and sort all of the keywords of W (DS)
in descending order of frequency, freq(DS , w1) ≥ freq(DS , w2)
≥ · · · > 0. For a positive integer k and DS ⊂ D, we define
Top-k keyword aggregation for DS, or simply Top-k (if
DS is understood from the context), as the set of k pairs
{(w1, freq(DS , w1)), · · · , (wk, freq(DS , wk))}. We call each
of wi (i ≤ k) a Top-k most frequent keyword or simply a
Top-k keyword. When there exist p and q ((p, q) 6= (0, 0))
such that freq(DS , wk−p) = · · · = freq(DS , wk) = · · · =
freq(DS , wk+q), there is more than one valid Top-k (See Ex-
ample 1). Our problem is to get any one of the valid Top-
k’s for given DS and k. Note that we always assume that
|W (DS)| ≥ k, that is, there are sufficiently many distinct
keywords in DS to count.

agag cdgcdg cc aefaef cdcd abab bchbch aghagh ffd1 Dd2 d3 d4 d5 d6 d7 d8 d9
Figure 1: Example of D

Example 1. Let W = {a, b, c, d, e, f, g, h} and D is a
document set containing 9 documents as shown in Figure
1. Here we use a, b, · · · as symbols for keywords, so actu-
ally a may be “food”, b may be “investigate”, and so on.
The document id of di is i. Top-3 for D is {(a, 4), (c, 4),
(g, 3)}. Let DS = {d1, d2, d4, d7, d8}, then Top-3 for DS is
{(a, 3), (g, 3), (c, 2)}. Note that {(a, 3), (g, 3), (h, 2)} is an-
other correct answer in the latter case because both c and h
are eligible as the third most frequent keyword of Top-3.

A naïve approach to compute Top-k is to count each key-
word in each document of DS with a static counting table
that holds the frequency of each keyword that has been seen
1There are other methods to give weights to keywords such
as the TF-IDF scheme. Refer to Section IV of [8] for details.



so far, and sort the entries of the table after all of the doc-
uments of DS have been investigated.

However, this approach has two major drawbacks. First,
it requires O(|DS |L) time complexity where L is the av-
erage size of a document (i.e. the number of keywords in
the document) in DS . This is often unacceptable for inter-
active analysis that requires a response time within a few
seconds, especially when the number of documents of DS is
very large. For text analysis L may be from tens to several
hundreds, so this term cannot be ignored. Second, in order
to know the keywords in a specific document efficiently, the
whole of a keyword-document matrix should be in-memory,
because otherwise we cannot avoid slow random access to
secondary storage many times (Note that DS is dynami-
cally determined by the users and we cannot precompute all
of the possible answers).

2.2 Typical Scenarios
In the exploratory text analysis described in the introduc-
tion, the user initially identifies a “pivot” document set for
analysis by using a search engine. For example, if the user
wants to investigate descriptions about “cancer” in a large
set of biomedical documents, the user can search for “can-
cer” in the entire set of documents to focus on the documents
that contain “cancer” as a keyword. In this case D is the en-
tire document set and DS ⊂ D is the document set obtained
by searching for “cancer”. By running Top-k query process-
ing on DS , the user can find out which keywords frequently
occur in DS , in other words, which keywords frequently co-
occur with “cancer” in D. Of course, each keyword to be
counted is extracted from each document of D in advance,
typically by using natural language processing techniques[8].

After the first run of Top-k query processing, the user may
find some of the Top-k keywords interesting and may want
to see what would happen if the search condition changes
from “cancer” to “cancer AND (some of the newly found
keywords)”. The user changes the search condition and re-
runs Top-k query processing against the corresponding new
document set DS . Alternatively, the user may want to re-
move some unnecessary keywords from the current search
condition and re-run Top-k with the new search condition.

To provide an efficient way for users to analyze the docu-
ment set interactively, the response times of Top-k must be
close to those of search engines, limited to a few seconds. Al-
though counting keywords itself is not computationally hard
when it is done as batch processing, it is still a big challenge
to realize a system that handles real-time Top-k queries for
a large document set and a dynamically-given subset of the
document set.

At the end of this section we note that the values of k typ-
ically used for exploratory text analysis are from tens to
several thousands. In explorations of text documents, vari-
ous kinds of keywords including functional words, common
words, and symbols can be clues to discover valuable facts,
patterns, or rules in a set of documents. For example, in a
large collection of call logs, an exclamation mark in the de-
scription of inquiry from a customer may actually indicate
that the customer complained about the slow response time
and said “Move it!”. Hence it may be worth paying atten-

tion to the frequency of exclamation marks in the document
set retrieved by a specific keyword to understand how often
such problems were reported in association with the key-
word. However, a human analyzer cannot know in advance
which keywords will be useful for analysis, and so it is im-
portant to provide many frequent keywords to the analyzer
without regard to the original meanings of the keywords so
that the analyzer can scan them to find keywords of interest.

3. TOP-K KEYWORD AGGREGATION ON
A SINGLE NODE

In this section, we briefly describe an underlying technique
“Early-out” [18, 20], which is designed for efficient Top-k cal-
culation on a single node. This technique plays a fundamen-
tal role in the implementation of the distributed processing
we will discuss later. It finds the most frequent keywords
in a dynamically given document set DS , usually accessing
only a small portion of the keywords of W (DS).

3.1 Early-Out for Pruning Infrequent Key-
words

Here is the idea of early-out: We build an index structure to
search for a given keyword w and to retrieve freq(D, w), the
global frequency of w, with the posting list P [w] for w. A
posting list is a list of document ids sorted in ascending order
of id. Also, we prepare a sorted list of keywords w1, · · · , wl in
W (D) so that we can access each keyword in descending or-
der of its global frequency. For each w ∈ W (D), freq(DS , w)
can be calculated by intersecting DS with P [w].

Algorithm 1. Early-Out

1: P [w1],P [w2],· · · P [wl] : the posting lists sorted by the global
frequency of the keywords

2: DS : a (dynamically-given) document subset of D
3: k : Top-k parameter
4:
5: Create an empty priority queue Q of capacity k
6: for i = 1 to l do
7: if size of Q equals k and freq(D, wi) ≤ min. frequency in

Q then
8: break // Early-Out
9: end if

10: fi = |P [wi] ∩ DS | // computes freq(DS , wi)
11: if size of Q is less than k then
12: push (wi, fi) into Q
13: else if fi is greater than min. frequency in Q then
14: pop an entry with min. frequency from Q
15: push (wi, fi) into Q
16: end if
17: end for
18: return the entries in Q

Throughout the process of a query, we maintain a priority
queue of capacity k for the final Top-k answer. When we
check all of the posting lists then the queue should contain
the correct Top-k most frequent keywords with their fre-
quencies in DS . We investigate the posting lists in the index
structure one-by-one, P [w1], P [w2], · · · . If the number of
elements stored in the queue is less than k, or freq(DS , wi)
is greater than the minimum frequency of the keywords in
the queue, then (wi, freq(DS , wi)) is pushed into the queue.
If necessary, the least frequent keyword in the queue is re-
moved from the queue before adding (wi, freq(DS , wi)) to
the queue. If freq(D, wi) is not greater than the minimum



frequency of the keywords in the queue and the number of
elements stored in the queue is k, then none of wi, wi+1, · · ·
can be a Top-k most frequent keyword for DS , and we can
terminate the algorithm. Algorithm 1 describes the com-
plete early-out algorithm. In addition, [18] introduces an
effective way to reduce the computational cost of finding
the approximate intersection of DS and P [w]. Refer to [18]
for details. Here we will analyze a method to calculate exact
keyword frequencies.

4. DISTRIBUTED COMPUTING FOR TOP-
K KEYWORD AGGREGATION

In this section, we describe our distributed computing ap-
proach for Top-k query processing. Let M be the central
master node in the distributed environment and N1, · · · ,
Nn be worker nodes. M can exchange any kind of data with
any Ni, but each Ni can communicate only with M . We can
additionally assume that any node can take the role of M ,
and that all of the nodes can communicate with each other
for fault-tolerance, but in this paper we will not discuss such
kind of details of the implementation.

Top-k query processing is actively studied in both central-
ized and distributed settings and many algorithms have been
proposed [7, 1, 5, 15, 2, 21]. We will discuss the possibil-
ities of application of these approaches to our problems in
Section 7.

4.1 Framework Overview
The framework for Top-k has two logical components. One
is the search function and the other is the aggregate function.

The search function receives a search condition S and re-
turns DS , a list of document (integer) ids. In the following
discussion we assume that the search function is provided
by a standard keyword search engine and S is given as a set
of keywords, although we can use any other definitions of S
and a mapping S 7→ DS . We have already seen a typical
example of the search functions in Section 2.2.

The aggregate function receives DS and k as parameters,
and returns the Top-k answers as defined in Definition 2.
Here are the steps of the Top-k query processing:

1. For a given S, compute DS by using the search func-
tion.

2. For DS and k, compute Top-k by using the aggregate
function.

3. Return the Top-k answers.

In the distributed environment, each query for Top-k is is-
sued by the central master node M , each Ni receives and
processes the query, Ni returns its local result to M , and M
merges the results from Ni to produce the final output.

4.2 Two Partitioning Approaches
To get this framework to work in distributed computing,
there are two possible approaches, the document partition-
ing approach and the keyword partitioning approach, which
correspond to vertical partitioning and horizontal partition-
ing for distributed databases respectively [17]. We describe

their features in this section. In this paper, we will discuss
the techniques for improving the response times for our key-
word partitioning approach, although comparison of these
approaches is itself research for the future.

In distributed computing, network latency accounts for con-
siderable overhead in response times. We will concentrate
on a method that minimizes the number of communications,
which is achieved by our keyword partitioning approach.

We again use the example dataset in Figure 1. The rela-
tionship between documents and keywords is represented as
a matrix such as Figure 2, where the value in a cell (i, j) is
1 if and only if the document i contains the keyword j.a b c d e f g h1 10 0 0 00 0d1 0 11 1 0 00 0d2 0 01 0 0 00 0d3 1 00 0 1 10 0d4 0 01 1 0 00 0d5 1 00 0 0 01 0d6 0 01 0 0 01 1d7 1 10 0 0 00 1d8 0 00 0 0 10 0d9

Figure 2: A Document-Keyword Matrix

a b c d e f g h1 10 0 0 00 0d1 0 11 1 0 00 0d2 0 01 0 0 00 0d3 1 00 0 1 10 0d4 0 01 1 0 00 0d5 1 00 0 0 01 0d6 0 01 0 0 01 1d7 1 10 0 0 00 1d8 0 00 0 0 10 0d9

N1

N2

N3
Figure 3: Document Parti-
tioning Approach

a b c d e f g h1 10 0 0 00 0d1 0 11 1 0 00 0d2 0 01 0 0 00 0d3 1 00 0 1 10 0d4 0 01 1 0 00 0d5 1 00 0 0 01 0d6 0 01 0 0 01 1d7 1 10 0 0 00 1d8 0 00 0 0 10 0d9 N1 N2 N3
Figure 4: Keyword Par-
titioning Approach

4.2.1 Document Partitioning Approach
The document partitioning approach is a straightforward
way to make multiple nodes count the keywords in DS . In
the phase of preprocessing, the whole document set D is
partitioned into n subsets (where n is the number of worker
nodes) such that each document of D belongs to one and
only one Ni. When a query for Top-k is issued by M , search
is done in each Ni and the local search result (DS)i is ob-
tained on Ni. Note that ∪i(DS)i = DS . Then on each Ni

an aggregate function calculates Top-k for (DS)i. Early-out
(Section 3) is available for the aggregate function on Ni.
Finally each Ni returns its local result to M .

For example, Figure 3 depicts a situation where n = 3 and
D is the document set in Figure 1. Each Ni has 3 docu-



ments2 and no two worker nodes share a document in com-
mon. Next, let us assume that the search result is DS =
{d1, d2, d4, d7, d8}. Then on each Ni the local Top-3 is cal-
culated (for example N1 returns {(g, 2), (a, 1), (c, 1)}), and
Ni returns its local result to M . M decides on the most
frequent 3 keywords from the total of 9 keywords that M
received from all of the Ni.

This approach is clearly scalable with respect to the number
of documents. However, the essential problem is that for
an original query it cannot return a correct answer in two
ways. Let us see this in Figure 3. Assume that N1 returns
{(g, 2), (c, 1), (d, 1)}, N2 returns {(a, 1), (e, 1), (f, 1)} and N3
returns {(h, 2), (b, 1), (g, 1)} as their local Top-3’s for DS .
Then M merges these 9 keywords to produce {(g, 3), (h, 2),
(e, 1)} as the final Top-3 ((e, 1) may be replaced by any
other keyword of frequency one). In Example 1 we have
already seen that the correct Top-3 is {(a, 3),(g, 3),(c, 2)}
or {(a, 3),(g, 3),(h, 2)}. This example shows that document
partitioning may produce (i) incorrect keywords for Top-k
(a is missing), or (ii) incorrect frequencies for correct Top-
k keywords (even if M can correctly choose a as a Top-3
keyword, the frequency will be incorrect).

The frequency problem can be solved if M sends a request to
each Ni about the keywords whose frequencies are unknown,
and each Ni returns the frequencies of those keywords to M .
Meanwhile, to ensure that M returns the correct Top-k key-
words, on each Ni an aggregate function must calculate the
Top-k′ answers for k′ > k and return it to M , but we cannot
determine a sufficient value of k′ for correctness. Logically,
this (and the frequency problem) can be solved by setting
k′ = ∞, but this is very inefficient because the aggregate
function has to read all of the documents of DS and the
number of distinct keywords might be practically from mil-
lions to tens of millions (We will see this in Section 6).

4.2.2 Keyword Partitioning Approach
As the name implies, this approach splits the whole docu-
ment set up by the keywords. First, before preprocessing
D, the whole keyword set W is split into W1, · · · , Wn such
that W = ∪n

i=1Wi and Wi ∩ Wj = ∅ if i 6= j, where n is the
number of worker nodes. Although we do not know the set
of all the keywords that appear in D before we preprocess
D, we can logically split W by defining a rule for partition-
ing. Specifically, we can define Wi := {w ∈ W | (h(w) mod
n) = i} where h is any function that returns a non-negative
integer value for a given keyword such as a standard hash
function for the set of character strings.

Here is the strategy of the keyword partitioning approach:
For a given D and 1 ≤ i ≤ n, define a multiset Di as

Di := {d ∩ Wi|d ∈ D}. (1)

Note that d ∩ Wi can also be seen as a document, and
d = ∪n

i=1(d ∩ Wi) holds for any d ∈ D from the construc-
tion of Di. Then we can build on each Ni the Top-k index
structure described in Section 3 for Di. We will summarize
in Appendix A the way to build the index structure.
2It is not essential in this example that each server has the
same number of documents. In most cases it would be desir-
able for load-balancing of both preprocessing(data indexing)
and query processing.

In Top-k query processing, first M runs its search function
to obtain DS . Since a search condition consists of keywords
of W , it is sufficient for each Ni to perform a local search
to retrieve the posting lists for the keywords in the search
condition that belong to Wi. M can collect the posting lists
from the relevant Nis to generate DS . Since the function h
for defining Wi is known, M only has to send queries to the
Nis that are relevant to the search condition.

Next M sends DS and k to all of the Ni. Each Ni receives
the query parameters and performs Top-k for DS by using
its local index (built on Di) to produce the local Top-k re-
sult. Note that the local Top-k result on Ni consists of only
the keywords of Wi, and hence no two distinct local results
have the same keyword. Finally, as with the document par-
titioning approach, M merges the local results from the Nis
to produce the final Top-k. We summarize the algorithm of
this aggregate function as Algorithm 2.

Algorithm 2. Aggregation by the Keyword Partitioning Ap-
proach

1: M : the central master node
2: N1, · · · , Nn : the worker nodes
3: DS : a document set obtained from the search function
4: k : a parameter for the number of keywords
5:
6: Compute Ti := Top-k for DS and k on each Ni

7: Merge Ti (i = 1, · · · , n) on M to obtain T , the set of the
k most frequent keywords

8: return T

Example 2. Figure 4 describes the keyword partitioning
approach for the document set in Figure 1. The entire key-
word set W is partitioned into 3 pieces, {a, b}, {c, d, e} and
{f, g, h}. For d1 ∈ D, N1 contains d1∩{a, b} = {a}, N2 con-
tains d1 ∩{c, d, e} = ∅, N3 contains d1 ∩{f, g, h} = {g}, and
so on. When we calculate Top-2 for DS = {d1, d2, d4, d7, d8},
each Ni calculates its local Top-2 for (DS)i. The results are
{(a, 3), (b, 1)}, {(c, 2), (d, 1)} (or {(c, 2), (e, 1)}) and {(g, 3),
(h, 2)} respectively. By merging these results and taking
the most frequent 2 keywords, we can get the final answer
{(a, 3), (g, 3)}.
The next proposition ensures the correctness of keyword par-
titioning approach for exact calculation of Top-k.

Proposition 1. The keyword partitioning approach al-
ways gives a correct Top-k answer for any Top-k query.

Proof. We prove by contradiction. Let Ti = {(wi1, fi1),
· · · , (wik, fik)} (fi1 ≥ · · · ≥ fik) be the local Top-k calcu-
lated on Ni, and T = {(w1, f1), · · · , (wk, fk)} (f1 ≥ · · · ≥
fk) be the final result merged on M . Since each wj in T
comes from a single Ni for some i, fj , the frequency of wj ,
is always correct. Suppose that (w, f) ∈ T is not a cor-
rect keyword of Top-k. There must be at least one keyword
w′ 6= w ∈ W (DS) that is a correct Top-k keyword. If w′ ex-
ists in one of Ti, then w′ must be selected as a member of T
when M merges T1, · · · , Tn, hence w′ does not exist in any
Ti. By the definition of the keyword partitioning approach,
there exists (only one) i0 such that w′ ∈ Wi0 , and w′ is not
in the local Top-k result on Ni0 . This means that w′ cannot
become a member of a correct Top-k, which contradicts the
assumption that w′ is a correct Top-k keyword.



5. EFFECTIVE ESTIMATION OF THE
NUMBER OF KEYWORDS TO COUNT

Our goal in this section is to substantially reduce the num-
ber of keywords that each worker node Ni (i = 1, · · · , n)
returns to the central master node M . The keyword parti-
tioning approach is efficient in that it requires only one-pass
between the master node and the worker nodes for exact
keyword aggregation. However, during query processing it
may generate too many candidate keywords for Top-k most
of which are eventually discarded. For example, let us con-
sider n = 32 and k = 100. We want to know the 100 most
frequent keywords, while the keyword partitioning approach
always generates 3,200 keywords. In the merging phase,
more than 96% (= 100 × (3100/3200)) of the keywords sent
from the workers will be thrown away, which is inefficient in
both the query processing time in each worker node and the
amount of communication between the worker nodes and
the master node.

Let us consider that each Ni returns its local Top-t (instead
of Top-k) for some t ≤ k and M merges nt keywords to
produce the final Top-k. Actually, very small t compared to
k is sufficient to have the correct Top-k answers with high
probabilities as we shall see below. It is possible that M
could not return a correct Top-k in such pathological cases
as when all of the correct Top-k keywords exist in only one
of Nis. However, the next proposition holds.

Proposition 2. Let t be an integer satisfying t ≤ k ≤
nt. Assume that each Ni returns Ti = {(wi1, fi1), · · · ,
(wit, fit)} (fi1 ≥ · · · ≥ fit) to M and M merges nt keywords
to decide T , the k most frequent keywords with their frequen-
cies. If for each i there exists j < t such that (wij , fij) ∈ T ,
(wi,j+1, fi,j+1) /∈ T and fij > fi,j+1, then T is a correct
Top-k.
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wnt…w2tw1t wn,t-1…w2,t-1w1,t-1 ………… wn2…w22w12 wn1…w21w11 Nn…N2N1
wnt…w2tw1t wn,t-1…w2,t-1w1,t-1 ………… wn2…w22w12 wn1…w21w11 Nn…N2N1

w2,t+1
Figure 6: A
case Top-k is not
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Let us analyze what Proposition 2 claims. Figure 5 shows
the nt keywords that M gathers from N1, · · · , Nn. Each
column corresponds to t keywords of Ti sorted by their fre-
quencies as we defined in the statement of Proposition 2. Let
us consider how the k most frequent keywords are chosen by
M from these nt keywords. Figure 6 and 7 are examples of
the k most frequent keywords, where those keywords are in
gray cells. w11 and w12 are chosen as the k most frequent
keywords, while w13, · · · , w1t are not chosen, and so on. In
the case of Figure 6, all of the t keywords of T2 are cho-
sen as Top-k keywords. This means that the worker node
N2 has many frequent keywords with respect to the search
condition S, and N2 may have additional Top-k keywords
besides those in T2. Specifically, w2,t+1 which is not in T2
may be a correct Top-k keyword and replace one of the key-
words of T . In this case we cannot determine that T is a
correct Top-k. In contrast, in the case of Figure 7, for each

Ni at most (t − 1) keywords are chosen as Top-k keywords.
Then we can always get a correct Top-k result. We have to
take care of keywords of equal frequency in order to give a
strict proof. The next proof implies that it is essential to
include the condition fij > fi,j+1 in the assumption of the
proposition.

Proof of Proposition 2. For each Ni, take j as in the
assumption of the proposition. Then (wi,j+1, fi,j+1) is not a
correct Top-k keyword because otherwise it must be chosen
as a member of T by M , which contradicts the assumption
that (wi,j+1, fi,j+1) /∈ T . Since Ti is the set of Top-t frequent
keywords in Ni, this means that any Top-k keyword in w ∈
Wi must be in Ti because otherwise freq(DS , w) ≤ fit ≤
fi,j+1 < fij ≤ (k-th frequency of keywords of T ), which
is a contradiction (Note that equality does not hold in the
inequality). Hence any correct Top-k must be constructed
from T1, · · · , Tn.

Proposition 2 gives a sufficient condition for getting a correct
Top-k. This suggests a possibility for reducing the value of
t, but there are two fundamental questions:

1. If T is not a correct Top-k, how much can we know
about the correct Top-k from T ?

2. For a given t, how likely do we get a correct Top-k?

For the first question, the next proposition gives a strict
answer.

Proposition 3. Let Ti (1 ≤ i ≤ n) and T be as in Propo-
sition 2, and I0 := {i|(wit, fit) ∈ T }. Assume that I0 6= ∅.
Let f ′ := max{fit|i ∈ I0}. Then T ′ := {(w, f) ∈ T |f ≥ f ′}
is correct Top-|T ′| keywords and hence is a subset of a cor-
rect Top-k.

Proof. Let i′ be an element of I0 such that f ′ = fi′t.
It is sufficient to show that (wi′t, fi′t) = (wi′t, f ′) ∈ Ti′ is
a correct Top-k keyword. We prove by contradiction. As-
sume that (wi′t, f ′) is not a correct Top-k keyword. For each
i ∈ I0, any correct Top-k keyword w ∈ Wi must be in Ti

because otherwise freq(DS , w) ≤ fit ≤ f ′ means (wi′t, f ′)
is also a correct Top-k keyword, which contradicts the as-
sumption. Also, for each i /∈ I0, if (wij , fij) ∈ Ti is not in T
then (wij , fij) cannot be a correct Top-k keyword because
otherwise fij ≤ f ′ means (wi′t, f ′) is also a correct Top-k
keyword, which is a contradiction. Thus any correct Top-k
keyword w must be in T . It follows that T is a correct Top-k
because |T | = k, which contradicts (wi′t, f ′) ∈ T .

Next we consider the second question. What we want to do
is to define a probability that the condition of Proposition
2 is satisfied. Such a probability should be defined as a
function of n, k and t. Assuming that we can define the
probability P (n, k, t), Algorithm 3 is the improved version
of Algorithm 2.

For the applications, it is desirable that a user can determine
whether the output of Algorithm 3 gives a correct Top-k,
and can determine which of the keywords in the output are
correct if the output may include incorrect keywords. These
are ensured by Proposition 2 and 3. If Algorithm 3 returns
only T , then T is a correct answer. Otherwise, T ′ consists



of only correct Top-k keywords and T \ T ′ may contain one
or more incorrect Top-k keywords.

We note that although we defined fij as the keyword fre-
quency of wi in the original problem setting, Proposition 2
and 3 do not require any conditions on fij other than fi1 ≥
· · · ≥ fit. In particular, fij need not be an integer value or
a positive value. This means that Algorithm 3 is sufficiently
general such that we can apply it to arbitrary keyword scor-
ings.

Algorithm 3. Aggregation by using Estimation

1: M : the central master node
2: N1, · · · , Nn : the worker nodes
3: DS : a document set obtained from the search function
4: k : a parameter for the number of keywords
5: α : a threshold for P (n, k, t), 0 < α < 1
6:
7: Precompute t satisfying P (n, k, t) ≥ α
8: Compute Ti := Top-t for DS and k on each Ni

9: Merge Ti (i = 1, · · · , n) on M to obtain T, the set of
the k most frequent keywords

10: if Ti and T satisfy the condition of Proposition 2 then
11: return T
12: else
13: return T and T ′ in Proposition 3
14: end if

In the next subsections we show that we can define two
kinds of combinatorial probabilities for P (n, k, t) that ade-
quately describe the sufficient condition that Proposition 2
holds. Our idea for defining P (n, k, t) is to use the number
of combinations, where each combination represents a way
to choose k keywords from the nt keywords collected from
N1, · · · , Nn. In the next subsection we introduce a method
using histograms, and then we describe a method using key-
word rank combinations.

5.1 The Histogram Method
The histogram method uses all of the possible histograms,
each of which corresponds to a way to choose the k most
frequent keywords from nt keywords. Let us see an example
of the choice of k keywords from the nt keywords. Assume
that n = 3, k = 100, t = 50. If a worker node Ni (i = 1, 2, 3)
eventually provides xi keywords from Ti (the local Top-50
on Ni) for the most frequent 100 keywords respectively, then
x1 +x2 +x3 = 100 must hold. Note that 0 ≤ xi ≤ 50 for any
i because xi keywords are chosen from Ti and |Ti| = t = 50.

It is then natural to consider how many such combinations
(x1, x2, x3) exist and how many of them satisfy the condi-
tion of Proposition 2. Since a Top-k answer (and each local
Top-t answer) can contain keywords of equal frequency, the
condition fij > fi,j+1 in the assumption of Proposition 2
requires us to take into consideration the frequency of each
keyword. However, it is actually rare that fij = fi,j+1 holds
for some i, so we try to estimate the probability without this
condition. This enables us to determine the probability by
using only information about the choice of keywords, and
the estimation does not depend on frequencies of keywords.
We will see in Section 6 that this assumption is practically
reasonable. The discussion so far motivates the following
definitions.

Definition 3. Let n ∈ N and k, t ∈ Z≥0. We define
M(n, k, t) := {(x1, · · · , xn) ∈ Zn | x1 + · · · + xn = k,
0 ≤ xi ≤ t (1 ≤ ∀i ≤ n)} and f(n, k, t) := |M(n, k, t)|. We
define the probability Pf (n, k, t) := f(n, k, t − 1)/f(n, k, t).

We have already seen that f(n, k, t) is the number of possible
assignments of the number of Top-k keywords to each of
the n worker nodes. First let us see that P (n, k, t) actually
represents a probability, that is, f(n, k, t−1) ≤ f(n, k, t) for
any t. By definition of M(n, k, t), any element (x1, · · · , xn)
∈ M(n, k, t − 1) is also an element of M(n, k, t). Hence
M(n, k, t − 1) ⊂ M(n, k, t) and f(n, k, t − 1) ≤ f(n, k, t)
follows. By considering the range of x1 which corresponds to
the number of Top-k keywords provided by the first worker
of n workers, f(n, k, t) satisfies this recurrence formula:

f(n, k, t) =
min {k,t}∑

i=0

f(n − 1, k − i, t) (n > 1),

f(1, k, t) =
{

1 (t ≥ k)
0 (t < k)

This shows that we can compute f(n, k, t) by using the val-
ues of f(n′, k′, t) for n′ < n and k′ < k. Algorithm 4 based
on dynamic programming computes f(n, k, t).

Algorithm 4. Dynamic programming for f(n, k, t)

1: a, b : integer arrays of length k + 1 respectively
2: a[1] = 1, a[i] = 0 (i > 1), b[i] = 0 (i ≥ 1)
3: for i = 1 to n do
4: b[1] = a[1]
5: for j = 2 to k + 1 do
6: s := b[j − 1] + a[j]
7: if j − t − 1 > 0 then
8: s = s − a[j − t − 1]
9: end if

10: b[j] = s
11: end for
12: swap(a, b)
13: end for
14: return a[k + 1]

It is easy to see that the time complexity of the algorithm
is O(nk). We can calculate f(n, k, t) by using Algorithm 4,
but in fact f(n, k, t) can be expressed in an explicit form:

Proposition 4. If k ≤ nt, f(n, k, t) is given by

f(n, k, t) =
b k

t+1 c∑
i=0

(−1)i

(
n

i

)(
n − 1 + k − i(t + 1)

n − 1

)
(2)

where (a
b ) := a(a − 1) · · · (a − b + 1)/b! is the binomial coef-

ficient.
Proof. Here we give a sketch of the proof due to space

limitation. First we note that the assumption that k ≤ nt is
reasonable because otherwise the sum x1 + · · · + xn cannot
be k and f(n, k, t) is trivially zero. Remember that f(n, k, t)
= |M(n, k, t)|. If t ≥ k, then it is easy to see that f(n, k, t)
equals the number of elements of

M(n, k) := { (x1, · · · , xn) ∈ Zn |
x1 + · · · + xn = k, 0 ≤ xi }, (3)



and it is well known that

f(n, k, t) = |M(n, k)| =
(

n + k − 1
n − 1

)
. (4)

To compute f(n, k, t) for general t, let us consider the el-
ements of M(n, k) \ M(n, k, t). For each (x1, · · · , xn) ∈
M(n, k) \ M(n, k, t), at least one of xi must be greater than
t. Let M(n, k, t; i) := { (x1, · · · , xn) ∈ M(n, k) | xi > t }.
Then

M(n, k, t) = M(n, k) \
n∪

i=1

M(n, k, t; i)

and so

f(n, k, t) =
(

n + k − 1
n − 1

)
−

∣∣∣∣∣
n∪

i=1

M(n, k, t; i)

∣∣∣∣∣ (5)

holds. From the inclusion-exclusion principle, we get∣∣∣∣∣
n∪

i=1

M(n, k, t; i)

∣∣∣∣∣ =
n∑

i=1

|M(n, k, t; i)|

−
∑
i<j

|M(n, k, t; i, j)| +
∑

i<j<l

|M(n, k, t; i, j, l)|

− · · · + (−1)n|M(n, k, t; 1, · · · , n)| (6)
where M(n, k, t; i1, · · · , ip) := {(x1, · · · , xn) ∈ M(n, k, t) |
xij > t, j = 1, · · · , p} =

∩p

j=1 M(n, k, t; ij).
For each {i1, · · · , ip} ⊂ {1, · · · , n}, if M(n, k, t; i1, · · · , ip) 6=
∅ (or equivalently, k ≥ p(t+1)) then there exists a one-to-one
correspondence between M(n, k, t; i1, · · · , ip) and M(n, k −
p(t + 1)) because, for example, (x1, · · · , xp, xp+1, · · · , xn)
∈ M(n, k, t; 1, · · · , p) bijectively corresponds to (x1 − t − 1,
· · · , xp − t − 1, xp+1, · · · , xn) ∈ M(n, k − p(t + 1)).

By using (4), the right-hand side of (6) equals

b k
t+1 c∑
p=1

(−1)p−1
(

n

p

)(
n + k − p(t + 1) − 1

n − 1

)
(7)

By substituting (7) to (5) we get the explicit form (2). Note
that the sum in (7) is taken for 1 ≤ p ≤ b k

t+1 c because
M(n, k, t; i1, · · · , ip) 6= ∅ ⇐⇒ k ≥ p(t + 1) ⇐⇒ p ≤ b k

t+1 c
and b k

t+1 c ≤ n since we assume that k ≤ nt.

By using this formula, we can calculate f(n, k, t) directly by
substituting the values of n, k and t. Note that f(n, k, t)
is the coefficient of xk of a polynomial (1 + x + x2 + · · · +
xt)n. However, the formula of Proposition 4 does not follow
straightforwardly from this fact.

Next let us consider the time complexity for the computa-
tion of f(n, k, t). The time complexity for the computation
of (a

b ) is O(b), so the time complexity for the calculation
of equation (2) is O(np′2) where p′ = b k

t+1 c. Therefore
it is more efficient to calculate f(n, k, t) than the dynamic
programming approach when p′2 is smaller than k, which
usually holds for practical values of k and t.

For our application we want to find a value of t such that
Pf (n, k, t) := f(n, k, t − 1)/f(n, k, t) > α for given n, k, and

the threshold α. We can calculate such t in advance because
there are at most finite values of t such that f(n, k, t) is non-
trivial (d k

n
e ≤ t ≤ k). Note that if t ≥ k then Pf (n, k, t) = 1.

Moreover, if Pf (n, k, t) is a monotonic function of t for given
n and k, then we can use a binary search to find the value of
t much more efficiently. We confirmed that for many pairs
of (n, k) the following property holds, although it is not yet
proved:

Conjecture 1. For given n and k, Pf (n, k, t) is mono-
tonically increasing function of t, that is, Pf (n, k, t) ≤ Pf (
n, k, t + 1) for any t > 0.

This can be rewritten in terms of combinatorics. A se-
quence a1, · · · , am of non-negative numbers is said to be
log-concave if we have a2

i ≥ ai−1ai+1 for all 1 < i < n [19].
Then Conjecture 1 can be rewritten as:

Conjecture 2. For given n and k, f(n, k, 1), f(n, k, 2),
· · · , f(n, k, k) is a log-concave sequence.

Log-concavity of a sequence of real numbers has been long
studied and will be reviewed in Section 7.

5.2 The Rank Method
The definition of Pf (n, k, t) uses only the frequencies of the
keywords chosen from each Ti. Another way to define the
number of possible ways to choose k keywords is to take the
rank of each of the k keywords into consideration.

Again let us assume that n = 3, k = 100, t = 50, and 100
“ranked” keywords are chosen from 150 keywords. The 100
keywords are now ordered by the rank in the Top-k such
that w1 ≥ w2 ≥ · · · ≥ w100. Each wp is chosen from one of
Ti.

Definition 4. g(n, k, t) is the number of ways to put k
distinct balls into n distinct boxes where the capacity of each
box is t. We define Pg(n, k, t) := g(n, k, t − 1)/g(n, k, t).

In Definition 4, a ball corresponds to a keyword of the k
most frequent keywords, and a box corresponds to a worker
node. When we put i balls into the first box, then there
are g(n − 1, k − i, t) ways to put the rest of the balls. Thus
g(n, k, t) satisfies this recurrence formula:

g(n, k, t) =
min {k,t}∑

i=0

(
n

i

)
g(n − 1, k − i, t) (n > 1),

g(1, k, t) =
{

1 (t ≥ k)
0 (t < k)

By using this formula, g(n, k, t) can be computed with dy-
namic programming. Algorithm 5 shows the details of the
computation. The time complexity of this algorithm is O(nkt).
We state a conjecture corresponding to Conjecture 1.

Conjecture 3. For given n and k, Pg(n, k, t) is a mono-
tonically increasing function of t. In other words, g(n, k, 1),
g(n, k, 2), · · · , g(n, k, k) is a log-concave sequence.

g(n, k, t) is much more complicated to compute than f(n, k, t).
To the best of our knowledge, no explicit formula such as
(2) is yet known.
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Figure 8: Case (α, k) = (0.9, 100)
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Figure 9: Case (α, k) = (0.9, 1000)
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Figure 10: Comparison of α = 0.9
and 0.95 (k = 1000)

Algorithm 5. Dynamic programming for g(n, k, t)

1: a, b : integer arrays of length k + 1 respectively
2: a[1] = 1, a[i] = 0 (i > 1), b[i] = 0 (i ≥ 1)
3: for m = 1 to n do
4: for j = 1 to k + 1 do
5: for s = 0 to t do
6: if j − s > 0 then

7: b[j] = b[j] +
(

m

s

)
a[j − s]

8: else
9: b[j] = 0

10: end if
11: end for
12: end for
13: swap(a, b)
14: end for
15: return a[k + 1]

5.3 Comparison of Two Counting Methods
Let us compare the two methods in Section 5.1 and 5.2.
Since it is very difficult to compare analytically the proper-
ties of Pf (n, k, t) and Pg(n, k, t), here we show with examples
that the rank method produces a smaller value for t than
the histogram method.

Figures 8 and 9 show the values of t for each of the following
four cases: (1) Pf (n, k, t) ≥ 0.9, (2) Pg(n, k, t) ≥ 0.9, (3)
t = k/n, and (4) t = k. For example, t = 45 is the minimum
value of t that satisfies Pf (4, 100, t) ≥ 0.9, which means that
the histogram method tells that the system returns a correct
Top-100 answer with (at least) 90% probability when each
of the 4 worker nodes returns 45 keywords to the central
master node. t = k/n is the “luckiest” case that we obtain
a correct Top-k result, and t = k is the condition that is
necessary and sufficient for the naïve method (Algorithm
2) to work. It is easy to see from Figures 8 and 9 that as
a function of n, t is monotonically decreasing in all cases.
Also, Figure 10 shows the different values of t with α = 0.9
and α = 0.95 for both the histogram and the rank methods.
The histogram method is more sensitive to the value of α.

Both of these methods have dramatic effects in reducing the

number of keywords that each worker returns to the central
master. For example, with n = 32 and k = 100, the naïve
method requires 100 keywords from each worker, while the
histogram method requires 16 keywords, and when it comes
to the rank method, only 11 keywords.

The value of t of the rank method is always smaller than
that of the histogram method. The difference of the values
depends on n and k. When n = 32 and k = 1,000, the value
of the rank method (t = 47) is about 51% of that of the
histogram method (t = 92). Generally speaking, the his-
togram method estimates the value of t more conservatively
than the rank method, which will be confirmed in Section 6
as we show that the histogram method always gave correct
answers in all of the test cases.

6. EXPERIMENTAL EVALUATION
In this section we present the results of experimental evalua-
tions of our theoretical analysis. Since we have already seen
in Section 5.3 that our method can significantly reduce the
number of keywords that each worker node has to calculate,
the major goal of this section is to examine the effectiveness
of our method in a practical application.

6.1 Setup
System Implementation: We implemented our evalua-
tion system on a network with 1 central master node and 32
worker nodes. The central master node has 6 GB memory
and 3.0 GHz × 4 CPUs, and is running 64-bit KVM Linux.
Each worker node has 2 GB memory and 3.0 GHz × 2 CPUs,
and is running 64-bit KVM Linux. Both of preprocessing
and query processing are written in Java 6. For a hash func-
tion h (Section 4.2.2) we used java.lang.String#hashCode(),
the standard implementation of hash code for strings in
Java.

Data: We used MEDLINE [14] which is a public collec-
tion of medical documents with over 18 million references to
journal articles. Each document has its abstract and vari-
ous kinds of metadata such as the title, authors, publication
year, and technical terms related to the document. We pre-
processed the abstract and the title of each document by us-
ing natural language processing to generate keywords, and
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Figure 12: Effectiveness of Estimation Methods for n = 32 and α = 0.9 (Left: k = 100, Right: k = 1000)

created the index structure on each worker node by using
Hadoop-based batch processing (See Appendix A).

To evaluate the performance of query processing for differ-
ent numbers of worker nodes, with n ∈ {4, 8, 16, 32}, we
distributed approximately3 425,000 × n documents to the
n worker nodes according to the keyword partitioning ap-
proach. For example, when n = 32 total 13,600,000 doc-
uments were stored in 32 nodes. Note that the number of
documents was determined to be linear to n so that we could
check the system was scaling out. The number of keywords
in W , the set of all the keywords that appear in the doc-
ument set, is 89,093,177 when n = 32. We did not use
any kind of filtering methods for the keywords, so common
words, functional terms, proper nouns and compound nouns
with low frequencies were all included in W (D) (See Section
2.2 for the explanation).

Queries: We prepared keyword search queries for vari-
ous search hit ratios. For each of the hit ratios 1%, 0.5%,
0.1%, 0.05%, and 0.01%, we chose 3 distinct keywords so
that each of the keywords gave a search result DS approx-
imating that hit ratio. In the experimental results we av-
eraged the processing times of 3 keyword queries for each
search hit ratio. Our processing time is the total processing
time including search and aggregation, and we confirmed
that the time for searches was much less than that for ag-
gregation in all of the test cases.

3The reason that we did not split the document set in
bunches of equal size is that the length of text in a doc-
ument varies. We prepared the dataset so that the number
of 1 in the document-keyword matrix (not the number of
documents) was almost linear to n.

6.2 Scalability
Figure 11 shows the processing time for Algorithm 2 (the
naïve keyword partitioning approach) for each search hit ra-
tio, with n ∈ {4, 8, 16, 32} and k ∈ {100, 1000}. We found
that, for all values of (n, k), the processing times increase
as the search hit ratio decreases. The reason is that the
early-out algorithm on each worker node has this property.
As the search hit ratio (that is, |DS |) decreases, more key-
words with low frequencies have a chance of being Top-k
keywords, and so the early-out algorithm (Algorithm 1) has
to scan more posting lists. The evaluation system scaled
out well, considering that the overhead to merge keywords
at the central master is increasing as n is increasing.

6.3 Effectiveness of Estimation
We compared the runtime performance of our methods (the
histogram method and the rank method) with the baseline
naïve method. Figure 12 shows the processing time of each
method for various search hit ratios and k ∈ {100, 1000} on
n = 32 worker nodes. Here we used α = 0.9 for estimating
the probabilities.

We found that our methods are effective in speeding up the
query processing. The histogram method performed 1.47
to 1.90 times faster than the naïve method, and the rank
method was 1.49 to 2.07 times faster than the naïve method,
depending on the search hit ratio and k. We have already
seen that our estimation methods reduce the number of key-
words from each worker node from half to less than one-tenth
of k. The actual processing time was not proportional to
the value of t. This is understood as follows. Most of the
processing time of the early-out algorithm on each worker
node is occupied by the processing of the posting lists of
the most globally frequent keywords. For example, in the



Table 1: Correctness of Answers
α k Histogram (%) Rank (%)

0.9 100 100 95.2
0.9 1000 100 96.6
0.95 100 100 97.6
0.95 1000 100 98.4

case that α = 0.9 and the search hit ratio is 1%, the aver-
age of the number of keywords that the early-out algorithm
has read during the processing on each worker was 3,893
when t = 100, and was 504 when t = 11 that is less than
13% of the amount for t = 100. On the other hand, the
average of the number of document ids that the early-out
algorithm has read from the posting lists during the pro-
cessing on each worker was 32,409,617 when t = 100, and
was 26,451,484 when t = 11 that is as much as 82% of the
amount for t = 100. This overhead of reading the posting
lists of the most globally frequent keywords explains the gap
between the reduction rate of the number of keywords and
the effect of speeding up. For the same reason there are not
meaningful differences between the histogram method and
the rank method with respect to the processing time.

For the correctness of the answers, we ran 500 random search
keyword queries with n = 32 and k ∈ {100, 1000}. The
results are shown in Table 1. The histogram method re-
turned correct answers for all of the queries, which indicates
that the histogram method behaves conservatively as we ex-
pected in Section 5.3. In the case of the rank method, it
returned answers with slightly higher probabilities than the
estimation calculates. Also, we confirmed that the average
of the number of the correct Top-k keywords in each answer
that is not a correct Top-k answer was 97.9, 98.1, 994.7
and 996.2 for (α, k) = (0.9, 100), (0.95, 100), (0.9, 1000) and
(0.95, 1000) respectively. These results suggest that our es-
timation methods always provide Top-k answers with satis-
factory accuracy.

7. RELATED WORK
Top-k query processing has been intensively studied because
it has various kinds of applications including information
retrieval, similarity search for multimedia databases, and
business intelligence. In particular, the threshold algorithm
(TA) [7] and its variants [1, 2] have been proposed. The ker-
nel of TA-based methods is that, during query processing,
they compare a lower bound of the score to the current Top-k
elements to be aggregated, and an upper bound of the score
to the other candidate elements that have not been inves-
tigated yet, enabling “early-out” before all of the elements
in the index are scanned. TA and its variants assume that
random access and/or sorted access to each scored object
in each list (worker node) are available, but in distributed
settings the repeated use of these access methods causes
prohibitive overhead between the master node and worker
nodes.

Distributed Top-k processing addresses the situations where
data is fragmented over then network and neither random
access nor sorted access are performed at a small cost. [5,
21] efficiently estimate the lower bound of the k-th score
of the correct Top-k by collecting the local Top-k answer

from each worker node and determine which unseen objects
have to be additionally collected from the worker nodes. The
naïve keyword partitioning approach we introduce in Section
4.2.2 can be seen as a special case of these algorithms when
each scored object belongs to only one of the worker nodes.

Most of the previous studies assume that, at least on each
worker node, the score of each object is readily available re-
gardless of the kind of access methods. That is, the score is
in advance stored in the list, or can be easily calculated. In
our problem settings this assumption is not true because the
rank of a certain keyword with respect to keyword frequen-
cies depends on the frequencies of other keywords, which
are not easily determined because the underlying document
set DS is dynamically given. That is why we adopted the
early-out algorithm [18, 20] for efficient calculation of local
Top-k keyword aggregation on each worker node.

Dynamic cost estimation for efficient processing is another
major topic of Top-k research. [2] proposed an effective
scheduling method for sequential scans and random lookups
of the underlying index structure, based on the statistics
that is available from the collected data during the query
processing. Our method also estimates the probability that
the central master node successfully obtain a correct Top-k
result without communicating with the worker nodes again.
[10] classifies the techniques for Top-k processing from many
different dimensions.

Log concavity of a sequence of real numbers has long been
studied in combinatorics. It is known that in general it
is difficult to prove that a certain sequence is log-concave.
Unimodality is another property of a sequence that is a
necessary condition for log-concavity under an additional
hypothesis, and hence it has also been thoroughly stud-
ied along with log-concavity. A sequence of real numbers
a1, · · · , an is said to be unimodal if there exists 1 ≤ j < n
such that a1 ≤ a2 ≤ · · · ≤ aj ≥ aj+1 ≥ · · · ≥ an. It is
easy to see that a log-concave sequence is unimodal if all
the elements in the sequence are positive, but the converse
does not hold. f(n, k, t) we defined in Section 5.1 trivially
forms a unimodal sequence f(n, k, 1), f(n, k, 2), · · · because
0 = f(n, k, 1) = f(n, k, 2) = · · · = f(n, k, p − 1) < f(n, k, p)
≤ · · · ≤ f(n, k, k − 1) ≤ f(n, k, k) = f(n, k, k + 1) = · · · ,
where p=bk/nc. Note that what we want to prove is that
f(n, k, 1), f(n, k, 2), · · · is log-concave (Conjecture 2). In
contrast, as a sequence indexed by k, f(n, 1, t), f(n, 2, t), · · · ,
is log-concave. This follows from the fact that f(n, k, t) is
the coefficient of xk in (1+x+ · · ·+xt)n, and the next theo-
rem. Note that a polynomial is log-concave if its coefficients
form a log-concave sequence.

Theorem 1 ([11, 12]). Let h1(x) and h2(x) be log con-
cave polynomials with non-negative coefficients and no in-
ternal zero coefficients. Then the product h1(x)h2(x) is also
log-concave.
[19] surveys a variety of methods to prove that a sequence
is log-concave or unimodal. A typical example of a com-
binatorial proof for log-concavity of an integer sequence is
found in [3]. [4] gave another formula for f(n, k, t) for the
transformation of a generating series of a sequence of com-
plex numbers, although the formula is not an explicit form.
To the best of our knowledge, there have been no studies on
the log-concavity of g(n, k, t) (Section 5.2).



8. CONCLUSIONS
We presented a framework for Top-k keyword aggregation
in distributed computing based on the keyword partition-
ing approach. Our novel estimation method can determine
the number of keywords that each worker must return to
the central master in order to obtain a correct Top-k an-
swer with high probability. We focused on the number of
ways to choose the k most frequent keywords from nt key-
words sent from the worker nodes, and defined the proba-
bility that the aggregation algorithm can terminate with a
correct answer. We gave two different kinds of definitions
for the probability, whose calculations are reduced to purely
combinatorial problems. Also, we introduced some interest-
ing properties of these problems including the conjectures
for log-concavity of f(n, k, t) and g(n, k, t). Experimental
evaluation with real data showed that our method was ef-
fective in practical applications for speeding up the Top-k
query processing. The histogram method is more conser-
vative than the rank method with respect to the number
of keywords, but in most cases there was no significant dif-
ference in the runtime performance. We showed that this
comes from the property of the early-out algorithm running
on each worker node.

Our future work will involve two directions. First, the es-
timation methods we presented in this paper work well in
more general settings where each worker node returns a list
of objects with scores to the central master node. Algorithm
3 is applicable to any real-valued scores. It is interesting
to find application scenarios using our method beyond text
analysis. Second, there are some open mathematical ques-
tions about the combinatorial properties of f(n, k, t) and
g(n, k, t). Log-concavity is worth considering because if it
holds for f(n, k, t) or g(n, k, t) we can calculate appropriate
values of t much more efficiently.
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APPENDIX
A. INDEX BUILDING FOR THE KEY-

WORD PARTITIONING APPROACH
For efficient query processing by the keyword partitioning
approach, we consider building on each Ni the index struc-
ture used for early-out (see Section 3). Since it is sufficient
for each Ni to have {(w, d)|w ∈ Wi, d ∈ D, w ∈ d} for index
building on Ni, we can apply the MapReduce[6] program-
ming model to distribute all of the input data (that is, D)
to N1, · · · , Nn, by using an arbitrary number of mappers
and n reducers. In the map phase, each document of D is
given as input to a mapper in the form of a key-value pair
(j, {w1, · · · , wp}) where j is a document id and wi ∈ dj (i =
1, · · · , p). For each wi the mapper emits a key-value pair
(h(wi), (wi, j)) where h is the hash function to define the
partitioning of W . Then each reducer receives (h(w), (w, j))
satisfying h(w) = h for some 0 ≤ h ≤ n − 1, and hence
the reducer can collect all the pairs for h. In the actual
implementation using Hadoop[9], an open-source library for
MapReduce, we can use (w, j) instead of (h(w), (w, j)) for
the intermediate key-value format, because we can specify
the hash function that is used internally in the shuffle phase
(between the map phase and the reduce phase) so that each
reducer can receive only the (w, j) that the reducer should
process.


