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Abstract 

Memory emulation remains to be one of the most exer-

cised components in full system emulators. Memory 

emulation is consisted of 2 major components, 1. Trans-

lation - the emulator translates the guest virtual/physical 

address to host virtual address using the emulated TLB 

for every emulated guest memory instruction. 2. Refill - 

the emulator walks the page table of the running guest 

applications in case of a miss in the emulated TLB. 

Traditionally implemented in hardware or highly opti-

mized software code, TLB translation and refill are 

emulated in software and thus results in a significant 

amount of time spent in them. This work quantitatively 

measures where time is spent in, QEMU, an industrial 

strength full system emulator and identifies memory 

emulation as one of the most heavily exercised compo-

nents in the emulator. Additionally, this work explores 

the design space of software emulated TLB and  pro-

poses a series of optimizations to reduce memory emu-

lation overhead.  The proposed optimizations are tar-

geted at optimizing TLB translation as well as refills, 

reducing instruction cache misses, code cache flushes,  

page table walks, time taken for TLB flushes and result-

ing in an average performance improvement of 22.6% 

over the baseline on a wide range of benchmarks. 

Keywords -  full system emulation; memory emulation; 

TLB optimization 

 

1. Introduction 

A full system emulator, or FSE, is a piece of software 

that emulates an entire machine including the processor, 

memory and devices. Some well known FSEs include 

QEMU [1], BOCHS [2], GEM5 [3], Windriver Simics 

[4] and SimFlex [5]. FSEs are used in various contexts. 

They are used to study application behavior or as build-

ing blocks of full-timing simulators in computer re-

search and development [6][7]. Full system emulators 

also serve as application development platforms when 

hardware is unavailable, and they can accelerate system 

development by making it easier to detect, recreate and 

repair flaws, especially for kernel level software com-

ponents, e.g. kernel plug-ins, drivers, etc. 

 

Full system emulators are typically one magnitude 

slower than real machines due to the fact that  multiple 

host instructions are usually needed to emulate a single 

guest instruction. One of the most exercised compo-

nents in a full system emulator happens to be the memo-

ry emulation. As shown in Figure 1, to emulate the 

memory for the guest, the full system emulator has to go 

through the process of dynamic address translation for 

every memory instruction in the guest. Dynamic address 

translation requires 2 steps. In the first step, the guest 

virtual address is translated into the guest physical ad-

dress using the page table of the current running process 

in the guest OS. In the second step, the guest physical 

address is translated into the host virtual address by 

adding a constant offset in case the emulated memory is 

backed contiguous host memory.   

 

 
 

Figure 1. Software TLB Lookup Assembly 

 

To speed up this translation, a software TLB structure is 

usually used to cache the translation between guest vir-

tual to host virtual address.  Implemented using a hasht-

able,  the software emulated TLB is maintained by the 

emulator and walked in software. Due to the fact that  

significant portion of the dynamic instructions of a pro-

gram are loads and stores,  the TLB lookup code takes 

up a significant portion of the time of the full system 

emulator.  On the other hand, TLB refills are expensive 

as well,  every TLB miss triggers a walk of the guest 

page table. Emulated in software, a single page table 

walking takes hundreds of  host instructions and this is 

expected to be much more expensive when nested page 

walks are required, i.e. emulation of nested paging [9]. 

 

To reduce the amount of time spend in memory emula-

tion, this work proposes techniques to optimize the TLB 

lookup as well as refill.  

 



The contributions of this work are as follow: 

 

1) This work provides very extensive measurements 

of the amount of time spent in the memory emula-

tion component of a industrial strength full system 

emulator on a wide range of benchmarks using 

hardware performance counters. 

2) This work points out that making software TLB 

very large is not the solution to reducing TLB re-

fills, because the time taken to flush the TLB on 

context switches increases as the size of the TLB 

is made bigger. Additionally, context switches 

happen much more often in emulator than real 

hardware as emulator runs one magnitude slower 

than real hardware. 

3) This work points out  the differences between the 

design space of  hardware TLB and software emu-

lated TLB and examine the applicability of some 

hardware TLB optimizations in the context of 

software TLB to reduce the number of refills the 

emulator needs to perform. 

4) This work implements a series of  TLB optimiza-

tions to reduce the cost of memory emulation and 

these optimizations speed up the an industrial 

strength full system emulator by an average of 

22.6% on a wide range of benchmarks. 

 

 

2. Where does Time Go ? 

In order to optimize memory emulation, it is important 

to understand where time is spent in full system emula-

tors as well as how much time is spent in memory emu-

lation. This provides an estimation of the space of opti-

mizations in the emulator. 

 

 

 

Host 

Machine 

Intel(R) Xeon(R) CPU E5345@ 

2.33GHz. 16GB RAM. OpenSuse Linux 

2.6.34.7.  

Performance taken with oprofile 0.9.6 and 

code cache monitored by the JVMTI 

extension. 

Emulator  QEMU 1.7.0 (latest stable).  

Compiled with GCC 4.5.0.   

O3 optimization level. O3 carries auto-

vectorization which is beneficial for TLB 

flushing.  Turned on all available 

hardware prefetchers as prefetchers may 

be beneficially to TLB flush code. 

Emulated 

Machine 

1 emulated X86 CPU,  

1GB RAM.  Linux 2.6.38 kernel. 

Baseline TLB: 256-entries, directly 

mapped TLB for each modes.  

 

Table 1. Software TLB Lookup Assembly 

 

This work provides detailed time breakdown of  

emulator using hardware performance counters on a 

wide range of benchmarks. FSEs are most often used to 

develop applications. Therefore, this work chooses the 

following 3 classes of benchmarks, geared towards 

application development and testing.  All the 

measurements of this work is taken with the 

configurations and benchmarks in Table 1 and 2 

respectively.  

Figure 1. QEMU Emulator Time Breakdown 

Figure 2. QEMU Emulator Time Breakdown  



 

Benchmarks Purposes 

Kernelboot 

Kernelbuild 

Test kernel boot and performance of 

the GCC compiler. Important for ap-

plication development. 

single-

programmed  

java dacapo 

Application testing 

multi-

programmed  

java dacapo 

Application testing, the linux kernel 

this work uses does not flush TLB 

unless the thread that is context 

switching in runs in a different virtual 

address space than the thread that is 

context switching out. Therefore, sin-

gle-instance of java workload does not 

suffice because TLB flushes do not 

happen as much as multi-programmed 

workloads, even though the java vir-

tual machine is multithreaded. 

 

Table 2. Experimentation Benchmarks 

 

As shown in Figure 2, 32.1% of the time is spent in the 

TLB lookup and refill component of the emulator on 

average. On average, 44.1% of the time is spent in the 

code cache and 23.8% spent in the others. Others 

include time taken to translate the guest code, lookup 

next translation block,  handle interrupts, etc. To 

understand how this time is spent  in the TLB 

translation and TLB refill, this work first investigates 

how TLB translations and refills are done. 

 

2.1. Baseline TLB Layout 

QEMU uses a software TLB to speed up the memory 

emulation/translation process. It stores the offset of 

guest virtual address to host virtual address in a TLB 

table. When translating the guest virtual address to host 

virtual address, it will search the TLB table firstly. If 

there is a matching entry in the table, QEMU adds this 

offset to guest virtual address to get the host virtual ad-

dress directly. Otherwise, QEMU walks the page table 

of the current guest process and then fill the correspond-

ing entry to the TLB table. Certain TLB translations are 

not filled in the TLB structure, e.g. pages that have 

watchpoints set on which TLB misses are required to 

implement watchpoint efficiently. 

 

The baseline TLB is organized as a hashtable of 256 

entries for each mode as illustrated. The need to have 

TLBs for different modes stems from the fact that ad-

dresses should be treated differently depending on the 

mode the processor is currently in. The default index of 

this TLB table is bits [19:12] of guest virtual address 

and there is no ASID  field in TLB entry. This means 

the TLB table needs to be flushed in process switch.  

While it is possible to install an ASID into the TLB and 

generate additional instructions to make sure the ASID 

of the TLB translation matches the ASID of current 

process, thereby obviating the needs to flush TLB on 

context switch. QEMU is built to be a emulator for 

many different architectures, many of which do not have 

the notion of ASID. 

 

Besides helping speed up the process of translating 

guest virtual address to host virtual address, the emu-

lated TLB is also used to speed up the process of dis-

patching I/O emulation functions for memory-mapped 

IO regions, i.e. a TLB translation entry identifies 

whether a page is backed by RAM or it is a memory 

mapped page with bits in the page offset. Once identi-

fied as a memory mapped pages, an emulated IOTLB is 

used to find the right way to read/write to the page. 

 

2.1. Software TLB Translation is Slow 

As shown in Listing 1, using 9 X86 instructions to look 

up a TLB implemented on  a directly mapped hashtable, 

software TLB lookup poses a significant performance 

penalty on the emulation of memory instructions.  

 
Listing 1. Software TLB Lookup Assembly 

 

 

This is compounded by the fact that a significant 

portion of dynamic instructions of programs are 

memory load and store instructions and these 9 

instructions are executed on every single memory 

access.  This results in an average of 16.2% of the time 

/* rbx contains the guest virtual address */ 

mov    %rbx,%rdi  

/* find the appropriate TLB entry */               

shr      $0x7,%rdi 

/* bit 12-19 used to index into 256entries tlb */ 

and     $0x1ffe0,%edi 

mov    %rbx,%rsi 

/* check for page crossing, if not aligned, then it 

can potentially cross page */ 

and     $0xfffffffffffff003,%rsi 

/* the translating guest address */ 

lea      0x688(%r14,%rdi,1),%rdi 

/* compare with the translated guest address */ 

cmp    (%rdi),%rsi 

jne       tlb_miss; 

/* get the translated host virtual address */ 

add     (%rdi), %rbx 



spent in the TLB lookup code as shown in Figure 2.  

 

2.2. Software TLB Refill is Slow 

Emulated in software, TLB refills are expensive as well. 

Taken by running QEMU on Intel PIN, a TLB miss and 

walking a 4-level page table in Linux takes 457 X86 

instructions on average.  To understand why the refill 

takes hundreds of instruction, this work lists the steps1 

need to complete a TLB refill. 

 

1. Setting up context for page table walk. e.g. 

faulting virtual address, size of access, etc. 

2. Exiting code cache. 

3. Deciding faulting address is backed by memory 

page(s), not IO mapped pages. 

4. Checking for cross page accesses. 

5. Deciding how to walk the page table, e.g. 

PAGING_ENABLED, PAE_ENABLED,  

PSE_ENABLED, etc. 

6. Walking page table and checking for permission 

violations. 

7. Checking whether the translation can be put into 

the TLB (watchpoint, some of self-modifying code 

translations are not place into the TLB). 

8. Refilling software TLB structure. 

9. Returning to code cache. 

 

Furthermore, the TLB refill code is  implemented over 

multiple functions, having a maximum function call 

depth of 5+ and therefore requiring a non-trivial amount 

of host register saves and restores. The TLB refill is 

roughly 50X more expensive than the TLB lookup path. 

Therefore, even a very low TLB miss rate can make the 

                                                 
1 This is a general, but not exhaustive, list of steps 

needed for a TLB refill in QEMU 1.7.0. 

TLB refill path taking just as much time as the TLB 

lookup, e.g. on average 15.9% of the time is spent in 

TLB refill as shown in Figure 2. This makes TLB refill  

an important place to optimize. 

 

3. Optimizing TLB Translation 

TLB translation takes 16.2% of the time on the bench-

marks used. This work implements 1 TLB translation 

optimization technique - out-of-line TLB lookup. 

 

3.1. Out-of-Line TLB Lookup 

In QEMU,  a TLB lookup snippet is generated for every 

load/store instructions. This is very instruction cache 

unfriendly, as most of the generated TLB lookup code 

are the same. This optimization outlines these TLB 

lookup snippets and generate call to them for load/store 

instructions.  This work measures the L1 instruction 

cache miss reduction using HPM instruction cache 

event (L1I_MISSES - number of instruction fetch 

misses). There is an average of 6% instruction cache 

miss reduction by using out-of-line TLB, with the 

maximum reduction on 10% on dacapo fop (TLB miss 

reduction not shown here due to space limitation). This 

translates to 6.3% performance improvement as shown 

in Figure 3. 

 

Interestingly, a side effect from outlining TLB lookups 

is that there are fewer code cache flushes. This benefit 

manifests itself in case of kernel boot, fop+h2 and 

lunindex+pmd all which demonstrate large instruction 

footprints. 

 

4. Optimizing TLB Refill 

TLB refill takes 15.9% of the time on the benchmarks 

measured. This work experiments some of the hardware  

Figure 3. OOL TLB Lookup Performance Improvement  



TLB optimizations and examine their applicability to 

software TLB. Furthermore, this work proposes and 

implements some optimizations specific to software 

emulated TLB. 

 

5.1. Infinitely Large TLB ? 

Hardware TLB sizes have remained relatively small due 

to low access time requirements and hardware space 

limitations [10]. Software TLB is indexed using a hash. 

Therefore, the size of the hash does not affect access 

time.  This raises the question whether an infinitely 

large software TLB is the simple, and yet ultimate 

solution to reduce the number of page table walks ? 

 

Unfortunately, the software emulated TLB needs to be 

flushed on every context switch due to the lack of TLB 

contexts.  Therefore a larger TLB merely takes longer 

to flush. Furthermore, the full system emulator emulates 

time faithfully and thus executes fewer instructions in 

every allocated time slice determined by the guest 

operating system. Therefore, infinitely large TLB is not 

the solution. As shown in Figure 4, most benchmarks 

context switches once every few millions of 

instructions, while kernel boot and the multi-program 

mixes context switch much more often, with the lowest 

being kernel boot with 98K instructions per context 

switch. 

 

In order to find the optimal TLB size for the 

benchmarks, this work experiments with TLB size of 

256,  4096 and 64K. As shown in Figure 9,  There is no 

single configuration that performs the best for all 

benchmarks. This is a result of different working-set 

sizes for all the benchmarks tested. kernel boot suffers 

significant performance penalty as the TLB is made 

Figure 4.Frequency of Context Switches in QEMU  

Figure 5. Fast TLB Allocation in QEMU  



bigger, this is a result of that kernel boot incurs context 

switches much more often than all the other 

benchmarks. 

 

5.2.  O(1) TLB Allocation 

One way to optimize TLB refill is to have a large TLB 

but minimize the amount of time taken to flush the TLB 

on context switch. Using O(1) TLB allocation, TLB is 

not flushed on context switches, instead the emulated 

process simply gets a new TLB, This is same as the 

bump-the-pointer allocation used in memory allocation 

systems. A separate thread is then used to flush the 

TLB. This frees the main emulation thread from having 

to spend time to flush the TLB. Additional advantage of 

this optimization is that TLB flushes is done on a sepa-

rate thread , this  potentially gives better micro-

architectural behaviors for the emulation thread, e.g. 

better data cache, TLB, etc.  The disadvantages of this 

optimization is that it has more memory usage and in-

crease fast TLB lookup path. 

As shown in Figure 5, There is a small amount of per-

formance degradation in 256 entry TLB. This is a result 

of increasing the TLB lookup path by one additional 

instruction while not getting enough benefit from TLB 

bulk flushes to cover that cost. 

 

Experiment Parameters TLB Pool Size == 64.  

Flush done on separate thread. 

 

On the other hand, configuration with 64K TLB entries 

result in better performance because of time saved and 

the micro-architectural benefits gained by flushing the 

TLBs in bulks and on a separate thread. 

 

5.2 Dynamically-Sized TLB 

Software TLB is different from hardware TLB because 

it can be dynamically resized. Dynamically-sized TLB 

resizes TLB based on load.  i.e. Ii the TLB is getting 

close to full, the emulator double its sizes. If the TLB is 

under-utilized,  the emulator haves its size. The size of  

the TLB is kept in a hashtable structure indexed by the  

CR3 of the process. This optimization enables the 

emulated TLB be sized dynamically to the working-set 

of the running process and potentially giving better 

TLB hit rate and short TLB flush time. The 

disadvantage is that it increases fast TLB lookup path as 

the hash value used for indexing is now dynamically 

adjusted. This is implements by storing the hash value 

into the CPU structure at the time the context switch 

happens and load from the CPU structure at the time a 

memory operation needs to be translated. Additionally, 

the emulator also tracks the load of the hash as the guest 

program is running. This is achieved by incrementing a 

counter whenever a TLB translation is installed into an 

empty TLB entry.  This adds minimal performance 

impact to the TLB refill path. This work resizes the 

TLB based on the following parameters. The 

performance improvement is shown in Figure 9. In 

summary, dynamic size TLB performs second to best on 

average and it does not suffer from significant amount 

of time spent in TLB flushes in setups with frequent 

context switches, e.g. kernel boot and multiprogrammed 

dacapo. 

Experiment Parameters Half when TLB load    < 40%. 

Double when TLB load > 70%. 

 

5.3 Set-Associative TLB 

Set-Associativity has long been the solution to conflict 

misses employed by modern hardware caches and 

TLBs. Most misses in software emulated directly 

mapped TLB are of conflict misses.  Therefore, this 

work investigates the possibility of  set- 

 Listing 2. 4-way set associative software TLB lookup assembly 

 

associativity in the context of software emulated TLB. 

 

Modern hardware TLBs usually have high associativity, 

sometimes can be fully associative [11]. This is feasible 

because hardware looks all the ways in the same set in 

parallel. However, software TLB has to be looked up in  

serial. Therefore, it is not clear whether increasing the  

associativity  of the TLB is a solution to conflict misses.  

 

One possible improvement is to look at all the ways in  

the same set in parallel using SIMD instructions, this is 

mov  %rbx,%rdi ;  

shr    $0x7,%rdi; 

and   $0x1fe0,%edi;  

mov  %rbx,%rsi  

and   $0xfffffffffffff003,%rsi 

lea    0x688(%r14,%rdi,1),%rdi;  

cmp  (%rdi),%rsi  

jne    set2; retq  

set2:   

cmp   0x20(%rdi),%rsi  

jne     set3; 

add    0x20, %rdi 

retq 

set3:   

cmp   0x40(%rdi),%rsi  

jne     set4; 

add    0x40, %rdi; retq 

set4:   

cmp   0x60(%rdi),%rsi  

jne     tlb_miss; 

add    0x60, %rdi 

retq 

 



left for future work. This work implements 2-way set 

Figure 6. TLB Miss Reduction Due to Set-Associativity 

Figure 7. TLB Lookup Time Increase Due to Set-Associativity 

Figure 5. TLB Lookup Time Increase Due to Set-Associativity 

Figure 8. Performance Improvement Due to Set-Associativity 



left for future work. This work implements 2-way set 

associative as well as 4-way set associative. As shown 

in Listing 2, the  generated code to walk a 4 walk set 

associative TLB is similar to walking directly mapped  

TLB twice in QEMU, i.e. the TLB lookup first hashes 

into matching set and then check the way for a match 

one by one, because all the ways in a set are  contiguous 

in memory,  only one hash is needed and a constant can 

be added to find the second, third and fourth way in the 

set. 

 

Experiment Parameters #1 256 entries directly mapped TLB 

Experiment Parameters #2 128 sets 2-way-set-associative TLB  

Experiment Parameters #3 64 sets 4-way-set-assocoative TLB 

 

As shown in Figure 6. With greater associativity comes 

fewer TLB misses. However, significantly more time  

spend in the TLB lookup code as shown in Figure 7.  

This is a result of hot TLB translation entries being 

installed into higher ways, e.g. way 2, 3 and 4. 

Therefore, to lookup those entries, additional 

comparisons need to be done.  One way to optimize this 

is to re-order how translations are placed based on their  

frequency of access. However, this requires collecting 

information regarding the access count of each TLB 

entries and thus increase the path-length of every TLB 

lookup, which makes the benefits provided by re-

ordering the translation entries unclear. This is left for 

future work. Given that the overall performance average 

of 2-way and 4-way set associative TLB is lower than 

directly mapped in Figure 8, this work concludes that 

associativity may not be the solution to TLB misses in 

software emulated TLB. 

 

5.4. Victim TLB 

A victim TLB [11]  is a TLB used to hold translations 

evicted from the primary TLB upon replacement. The  

victim TLB lies between the main TLB and its refill 

path. Victim TLB is generally of greater associativity. It                                                              

takes longer to lookup the victim TLB, but its likely 

better than a full page table walk. The advantage is that 

victim TLB can offer more associativity to a directly 

mapped TLB and thus potentially fewer page table 

walks while still keeping the time taken to flush within 

reasonable limits. However, placing a victim TLB be-

fore the refill path increase TLB refill path as the victim 

TLB is  consulted before the TLB refill. 

 

Dynamically resized TLB suffers from a conflict misses 

when  the load  of the TLB is not high enough to double 

its size. Therefore, this work finds that introducing a 

victim TLB for dynamically sized TLB provides 

significant benefits as shown in Figure 9.This work 

measures the performance improvement of employing a 

victim TLB of the following parameters. 

 

Experiment Parameters #1 256 entries directly mapped TLB + 8 

entry fully associative victim TLB 

Experiment Parameters #2 Dynamic-Sized directly mapped 

TLB + 8 entry fully associative 

victim TLB 

 

 

5.5. Inter-Core TLB Fetching 

This optimization is designed to reduce the number of 

conflict and compulsory misses in the emulator. Using  

inter-core TLB fetching,  if a virtual processor does not  

have a translation for a given virtual address, it looks 

into other virtual processors running in the same virtual 

address space before doing the page walk. To identify 

the processors running in the same virtual address 

Figure 9. Performance Improvement Due to TLB Optimizations 



space, the emulator uses CR3. The advantage of this 

optimization is that it  potentially saves page table 

walks due to conflict as well as compulsory misses,  

especially effectively for multithreaded workloads. 

However, it does increase the increase TLB refill path. 

 

This work expects this optimization is potentially 

effective for multiple threads running in the same 

address space, e.g. garbage collection [12] thread could  

benefit from this optimizations as it will iterate over 

large set of pages which are probably being accessed by 

other threads in the virtual machine. 

 

5. Putting Everything Together 
This work experimented with many optimizations 

derived from hardware TLB design as well as the 

unique nature of software emulated TLB.   

 

As shown in Figure 9. Dynamic+Victim+Outlined TLB 

performs the best, achieving an average performance 

improvement of 15.8% over outlined 256 entry TLB, 

22.6% over inlined 256 entry TLB. Additionally, 

Dynamic+Victim+Outlined TLB performs better than 

baseline on all measured benchmarks. 

 

Furthermore, 256 entry + victim + outlined TLB 

performs 18.1% better than the baseline. Given the 

simplicity of adding a victim TLB to the emulator, the 

provided benefits make victim TLB a good choice to 

the QEMU. 

 

6. Conclusion 
This work quantitatively measures the time spent in 

MMU/TLB emulation.  This work points out that the 

design space of software emulated TLB are different 

from the design space of hardware TLB. Some of the 

optimizations implemented in hardware are not suitable  

for software, e.g.  set-associativity does not work well 

in software TLB, mainly due to the fact that software 

TLB needs to be walked in serial. It also exploits nature 

unique to software TLB to reduce the cost of memory 

emulation, more specifically, this work propose 

dynamically sized software TLB to reduce the cost of 

TLB refills while keeping the time taken to flush the 

TLB on context switches in check. Additional, this 

work proposes a series optimizations for software 

emulated TLBs and dynamically resized + victim TLB 

improves the performance of the emulator by an 

average of 22.6%.  

 

7. Future Work 
Additional optimizations, as listed in Table 3, can be 

investigated to reduce the cost of memory emulation in 

full system emulators. 

 

Table 3. Future Software TLB Optimizations 

 

 

 

 

 

TLB  

Lookup 

Optimization 

Translation Strength Reduction - In 

translation address strength reduction,  

given a series of effective addresses off 

the same base register: p = D1(X1,B) 

and q = D2(X2,B), there is a good 

chance that both references will be on 

the same page if the difference abs(D1-

D2) is small.  In such a scenario, we 

want to do only one translation (with a 

modified operand length) and compute 

the second address by doing arithmetic 

on the first. To ensure that optimization 

is correct, we need to make sure that X1 

== X2, and X1 and B are not modified in 

the section of code between p and q. The 

transformation is to do the 'earlier' 

(smaller address) translation first, 

however with a longer length.  Since we 

know that X and B are not getting 

modified in the snippet of code of 

interest to us, it is possible for us to 

move the trees around. 

 
TLB Lookup 

Optimization 
Invariant TLB Translation Caching - this 

optimization tries to find the invariant 

TLB translations and cache it in the CPU 

structure, suitable candidate of invariant 

translation is memory accesses within a 

loop, e.g. induction variables that are not 

promoted to registers or local variables 

with loop scope. 
TLB  

Lookup 

Optimization 

Vectorized TLB Lookup - One of the 

major obstacles to effectively make use 

of associativity in software TLB is the 

need to walk the ways in the same set in 

parallel. some modern processors come 

with vector instructions and this 

optimization should investigate how to 

walk the TLB in parallel using vector 

instructions. 
TLB  

Refill 

Optimization 

TLB Entry Reorder - In set associative 

TLB, it is desirable to order the 

translations with respective to their 

access count. A lightweight profiling 

technique is needed to track the access 

count of the TLB and reorder the TLB 

entries according to the access count. 
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