
December 27, 2013

RT0955

Computer Science 10 pages

Research Report

Optimizing Memory Emulation in Full System Emulators

Xin Tong, Motohiro Kawahito

IBM Research - Tokyo

IBM Japan, Ltd.

NBF Toyosu Canal Front Building

6-52, Toyosu 5-chome, Koto-ku

Tokyo 135-8511, Japan

 Research Division

Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It

has been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of

copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer

communications and specific requests. After outside publication, requests should be filled only by reprints or

copies of the article legally obtained (for example, by payment of royalities).

Optimizing Memory Emulation in Full System Emulators

Xin Tong, Motohiro Kawahito

IBM Tokyo Research Laboratory

Abstract

Memory emulation remains to be one of the most exer-

cised components in full system emulators. Memory

emulation is consisted of 2 major components, 1. Trans-

lation - the emulator translates the guest virtual/physical

address to host virtual address using the emulated TLB

for every emulated guest memory instruction. 2. Refill -

the emulator walks the page table of the running guest

applications in case of a miss in the emulated TLB.

Traditionally implemented in hardware or highly opti-

mized software code, TLB translation and refill are

emulated in software and thus results in a significant

amount of time spent in them. This work quantitatively

measures where time is spent in, QEMU, an industrial

strength full system emulator and identifies memory

emulation as one of the most heavily exercised compo-

nents in the emulator. Additionally, this work explores

the design space of software emulated TLB and pro-

poses a series of optimizations to reduce memory emu-

lation overhead. The proposed optimizations are tar-

geted at optimizing TLB translation as well as refills,

reducing instruction cache misses, code cache flushes,

page table walks, time taken for TLB flushes and result-

ing in an average performance improvement of 22.6%

over the baseline on a wide range of benchmarks.

Keywords - full system emulation; memory emulation;

TLB optimization

1. Introduction

A full system emulator, or FSE, is a piece of software

that emulates an entire machine including the processor,

memory and devices. Some well known FSEs include

QEMU [1], BOCHS [2], GEM5 [3], Windriver Simics

[4] and SimFlex [5]. FSEs are used in various contexts.

They are used to study application behavior or as build-

ing blocks of full-timing simulators in computer re-

search and development [6][7]. Full system emulators

also serve as application development platforms when

hardware is unavailable, and they can accelerate system

development by making it easier to detect, recreate and

repair flaws, especially for kernel level software com-

ponents, e.g. kernel plug-ins, drivers, etc.

Full system emulators are typically one magnitude

slower than real machines due to the fact that multiple

host instructions are usually needed to emulate a single

guest instruction. One of the most exercised compo-

nents in a full system emulator happens to be the memo-

ry emulation. As shown in Figure 1, to emulate the

memory for the guest, the full system emulator has to go

through the process of dynamic address translation for

every memory instruction in the guest. Dynamic address

translation requires 2 steps. In the first step, the guest

virtual address is translated into the guest physical ad-

dress using the page table of the current running process

in the guest OS. In the second step, the guest physical

address is translated into the host virtual address by

adding a constant offset in case the emulated memory is

backed contiguous host memory.

Figure 1. Software TLB Lookup Assembly

To speed up this translation, a software TLB structure is

usually used to cache the translation between guest vir-

tual to host virtual address. Implemented using a hasht-

able, the software emulated TLB is maintained by the

emulator and walked in software. Due to the fact that

significant portion of the dynamic instructions of a pro-

gram are loads and stores, the TLB lookup code takes

up a significant portion of the time of the full system

emulator. On the other hand, TLB refills are expensive

as well, every TLB miss triggers a walk of the guest

page table. Emulated in software, a single page table

walking takes hundreds of host instructions and this is

expected to be much more expensive when nested page

walks are required, i.e. emulation of nested paging [9].

To reduce the amount of time spend in memory emula-

tion, this work proposes techniques to optimize the TLB

lookup as well as refill.

The contributions of this work are as follow:

1) This work provides very extensive measurements

of the amount of time spent in the memory emula-

tion component of a industrial strength full system

emulator on a wide range of benchmarks using

hardware performance counters.

2) This work points out that making software TLB

very large is not the solution to reducing TLB re-

fills, because the time taken to flush the TLB on

context switches increases as the size of the TLB

is made bigger. Additionally, context switches

happen much more often in emulator than real

hardware as emulator runs one magnitude slower

than real hardware.

3) This work points out the differences between the

design space of hardware TLB and software emu-

lated TLB and examine the applicability of some

hardware TLB optimizations in the context of

software TLB to reduce the number of refills the

emulator needs to perform.

4) This work implements a series of TLB optimiza-

tions to reduce the cost of memory emulation and

these optimizations speed up the an industrial

strength full system emulator by an average of

22.6% on a wide range of benchmarks.

2. Where does Time Go ?

In order to optimize memory emulation, it is important

to understand where time is spent in full system emula-

tors as well as how much time is spent in memory emu-

lation. This provides an estimation of the space of opti-

mizations in the emulator.

Host

Machine

Intel(R) Xeon(R) CPU E5345@

2.33GHz. 16GB RAM. OpenSuse Linux

2.6.34.7.

Performance taken with oprofile 0.9.6 and

code cache monitored by the JVMTI

extension.

Emulator QEMU 1.7.0 (latest stable).

Compiled with GCC 4.5.0.

O3 optimization level. O3 carries auto-

vectorization which is beneficial for TLB

flushing. Turned on all available

hardware prefetchers as prefetchers may

be beneficially to TLB flush code.

Emulated

Machine

1 emulated X86 CPU,

1GB RAM. Linux 2.6.38 kernel.

Baseline TLB: 256-entries, directly

mapped TLB for each modes.

Table 1. Software TLB Lookup Assembly

This work provides detailed time breakdown of

emulator using hardware performance counters on a

wide range of benchmarks. FSEs are most often used to

develop applications. Therefore, this work chooses the

following 3 classes of benchmarks, geared towards

application development and testing. All the

measurements of this work is taken with the

configurations and benchmarks in Table 1 and 2

respectively.

Figure 1. QEMU Emulator Time Breakdown

Figure 2. QEMU Emulator Time Breakdown

Benchmarks Purposes

Kernelboot

Kernelbuild

Test kernel boot and performance of

the GCC compiler. Important for ap-

plication development.

single-

programmed

java dacapo

Application testing

multi-

programmed

java dacapo

Application testing, the linux kernel

this work uses does not flush TLB

unless the thread that is context

switching in runs in a different virtual

address space than the thread that is

context switching out. Therefore, sin-

gle-instance of java workload does not

suffice because TLB flushes do not

happen as much as multi-programmed

workloads, even though the java vir-

tual machine is multithreaded.

Table 2. Experimentation Benchmarks

As shown in Figure 2, 32.1% of the time is spent in the

TLB lookup and refill component of the emulator on

average. On average, 44.1% of the time is spent in the

code cache and 23.8% spent in the others. Others

include time taken to translate the guest code, lookup

next translation block, handle interrupts, etc. To

understand how this time is spent in the TLB

translation and TLB refill, this work first investigates

how TLB translations and refills are done.

2.1. Baseline TLB Layout

QEMU uses a software TLB to speed up the memory

emulation/translation process. It stores the offset of

guest virtual address to host virtual address in a TLB

table. When translating the guest virtual address to host

virtual address, it will search the TLB table firstly. If

there is a matching entry in the table, QEMU adds this

offset to guest virtual address to get the host virtual ad-

dress directly. Otherwise, QEMU walks the page table

of the current guest process and then fill the correspond-

ing entry to the TLB table. Certain TLB translations are

not filled in the TLB structure, e.g. pages that have

watchpoints set on which TLB misses are required to

implement watchpoint efficiently.

The baseline TLB is organized as a hashtable of 256

entries for each mode as illustrated. The need to have

TLBs for different modes stems from the fact that ad-

dresses should be treated differently depending on the

mode the processor is currently in. The default index of

this TLB table is bits [19:12] of guest virtual address

and there is no ASID field in TLB entry. This means

the TLB table needs to be flushed in process switch.

While it is possible to install an ASID into the TLB and

generate additional instructions to make sure the ASID

of the TLB translation matches the ASID of current

process, thereby obviating the needs to flush TLB on

context switch. QEMU is built to be a emulator for

many different architectures, many of which do not have

the notion of ASID.

Besides helping speed up the process of translating

guest virtual address to host virtual address, the emu-

lated TLB is also used to speed up the process of dis-

patching I/O emulation functions for memory-mapped

IO regions, i.e. a TLB translation entry identifies

whether a page is backed by RAM or it is a memory

mapped page with bits in the page offset. Once identi-

fied as a memory mapped pages, an emulated IOTLB is

used to find the right way to read/write to the page.

2.1. Software TLB Translation is Slow

As shown in Listing 1, using 9 X86 instructions to look

up a TLB implemented on a directly mapped hashtable,

software TLB lookup poses a significant performance

penalty on the emulation of memory instructions.

Listing 1. Software TLB Lookup Assembly

This is compounded by the fact that a significant

portion of dynamic instructions of programs are

memory load and store instructions and these 9

instructions are executed on every single memory

access. This results in an average of 16.2% of the time

/* rbx contains the guest virtual address */

mov %rbx,%rdi

/* find the appropriate TLB entry */

shr $0x7,%rdi

/* bit 12-19 used to index into 256entries tlb */

and $0x1ffe0,%edi

mov %rbx,%rsi

/* check for page crossing, if not aligned, then it

can potentially cross page */

and $0xfffffffffffff003,%rsi

/* the translating guest address */

lea 0x688(%r14,%rdi,1),%rdi

/* compare with the translated guest address */

cmp (%rdi),%rsi

jne tlb_miss;

/* get the translated host virtual address */

add (%rdi), %rbx

spent in the TLB lookup code as shown in Figure 2.

2.2. Software TLB Refill is Slow

Emulated in software, TLB refills are expensive as well.

Taken by running QEMU on Intel PIN, a TLB miss and

walking a 4-level page table in Linux takes 457 X86

instructions on average. To understand why the refill

takes hundreds of instruction, this work lists the steps1

need to complete a TLB refill.

1. Setting up context for page table walk. e.g.

faulting virtual address, size of access, etc.

2. Exiting code cache.

3. Deciding faulting address is backed by memory

page(s), not IO mapped pages.

4. Checking for cross page accesses.

5. Deciding how to walk the page table, e.g.

PAGING_ENABLED, PAE_ENABLED,

PSE_ENABLED, etc.

6. Walking page table and checking for permission

violations.

7. Checking whether the translation can be put into

the TLB (watchpoint, some of self-modifying code

translations are not place into the TLB).

8. Refilling software TLB structure.

9. Returning to code cache.

Furthermore, the TLB refill code is implemented over

multiple functions, having a maximum function call

depth of 5+ and therefore requiring a non-trivial amount

of host register saves and restores. The TLB refill is

roughly 50X more expensive than the TLB lookup path.

Therefore, even a very low TLB miss rate can make the

1 This is a general, but not exhaustive, list of steps

needed for a TLB refill in QEMU 1.7.0.

TLB refill path taking just as much time as the TLB

lookup, e.g. on average 15.9% of the time is spent in

TLB refill as shown in Figure 2. This makes TLB refill

an important place to optimize.

3. Optimizing TLB Translation

TLB translation takes 16.2% of the time on the bench-

marks used. This work implements 1 TLB translation

optimization technique - out-of-line TLB lookup.

3.1. Out-of-Line TLB Lookup

In QEMU, a TLB lookup snippet is generated for every

load/store instructions. This is very instruction cache

unfriendly, as most of the generated TLB lookup code

are the same. This optimization outlines these TLB

lookup snippets and generate call to them for load/store

instructions. This work measures the L1 instruction

cache miss reduction using HPM instruction cache

event (L1I_MISSES - number of instruction fetch

misses). There is an average of 6% instruction cache

miss reduction by using out-of-line TLB, with the

maximum reduction on 10% on dacapo fop (TLB miss

reduction not shown here due to space limitation). This

translates to 6.3% performance improvement as shown

in Figure 3.

Interestingly, a side effect from outlining TLB lookups

is that there are fewer code cache flushes. This benefit

manifests itself in case of kernel boot, fop+h2 and

lunindex+pmd all which demonstrate large instruction

footprints.

4. Optimizing TLB Refill

TLB refill takes 15.9% of the time on the benchmarks

measured. This work experiments some of the hardware

Figure 3. OOL TLB Lookup Performance Improvement

TLB optimizations and examine their applicability to

software TLB. Furthermore, this work proposes and

implements some optimizations specific to software

emulated TLB.

5.1. Infinitely Large TLB ?

Hardware TLB sizes have remained relatively small due

to low access time requirements and hardware space

limitations [10]. Software TLB is indexed using a hash.

Therefore, the size of the hash does not affect access

time. This raises the question whether an infinitely

large software TLB is the simple, and yet ultimate

solution to reduce the number of page table walks ?

Unfortunately, the software emulated TLB needs to be

flushed on every context switch due to the lack of TLB

contexts. Therefore a larger TLB merely takes longer

to flush. Furthermore, the full system emulator emulates

time faithfully and thus executes fewer instructions in

every allocated time slice determined by the guest

operating system. Therefore, infinitely large TLB is not

the solution. As shown in Figure 4, most benchmarks

context switches once every few millions of

instructions, while kernel boot and the multi-program

mixes context switch much more often, with the lowest

being kernel boot with 98K instructions per context

switch.

In order to find the optimal TLB size for the

benchmarks, this work experiments with TLB size of

256, 4096 and 64K. As shown in Figure 9, There is no

single configuration that performs the best for all

benchmarks. This is a result of different working-set

sizes for all the benchmarks tested. kernel boot suffers

significant performance penalty as the TLB is made

Figure 4.Frequency of Context Switches in QEMU

Figure 5. Fast TLB Allocation in QEMU

bigger, this is a result of that kernel boot incurs context

switches much more often than all the other

benchmarks.

5.2. O(1) TLB Allocation

One way to optimize TLB refill is to have a large TLB

but minimize the amount of time taken to flush the TLB

on context switch. Using O(1) TLB allocation, TLB is

not flushed on context switches, instead the emulated

process simply gets a new TLB, This is same as the

bump-the-pointer allocation used in memory allocation

systems. A separate thread is then used to flush the

TLB. This frees the main emulation thread from having

to spend time to flush the TLB. Additional advantage of

this optimization is that TLB flushes is done on a sepa-

rate thread , this potentially gives better micro-

architectural behaviors for the emulation thread, e.g.

better data cache, TLB, etc. The disadvantages of this

optimization is that it has more memory usage and in-

crease fast TLB lookup path.

As shown in Figure 5, There is a small amount of per-

formance degradation in 256 entry TLB. This is a result

of increasing the TLB lookup path by one additional

instruction while not getting enough benefit from TLB

bulk flushes to cover that cost.

Experiment Parameters TLB Pool Size == 64.

Flush done on separate thread.

On the other hand, configuration with 64K TLB entries

result in better performance because of time saved and

the micro-architectural benefits gained by flushing the

TLBs in bulks and on a separate thread.

5.2 Dynamically-Sized TLB

Software TLB is different from hardware TLB because

it can be dynamically resized. Dynamically-sized TLB

resizes TLB based on load. i.e. Ii the TLB is getting

close to full, the emulator double its sizes. If the TLB is

under-utilized, the emulator haves its size. The size of

the TLB is kept in a hashtable structure indexed by the

CR3 of the process. This optimization enables the

emulated TLB be sized dynamically to the working-set

of the running process and potentially giving better

TLB hit rate and short TLB flush time. The

disadvantage is that it increases fast TLB lookup path as

the hash value used for indexing is now dynamically

adjusted. This is implements by storing the hash value

into the CPU structure at the time the context switch

happens and load from the CPU structure at the time a

memory operation needs to be translated. Additionally,

the emulator also tracks the load of the hash as the guest

program is running. This is achieved by incrementing a

counter whenever a TLB translation is installed into an

empty TLB entry. This adds minimal performance

impact to the TLB refill path. This work resizes the

TLB based on the following parameters. The

performance improvement is shown in Figure 9. In

summary, dynamic size TLB performs second to best on

average and it does not suffer from significant amount

of time spent in TLB flushes in setups with frequent

context switches, e.g. kernel boot and multiprogrammed

dacapo.

Experiment Parameters Half when TLB load < 40%.

Double when TLB load > 70%.

5.3 Set-Associative TLB

Set-Associativity has long been the solution to conflict

misses employed by modern hardware caches and

TLBs. Most misses in software emulated directly

mapped TLB are of conflict misses. Therefore, this

work investigates the possibility of set-

 Listing 2. 4-way set associative software TLB lookup assembly

associativity in the context of software emulated TLB.

Modern hardware TLBs usually have high associativity,

sometimes can be fully associative [11]. This is feasible

because hardware looks all the ways in the same set in

parallel. However, software TLB has to be looked up in

serial. Therefore, it is not clear whether increasing the

associativity of the TLB is a solution to conflict misses.

One possible improvement is to look at all the ways in

the same set in parallel using SIMD instructions, this is

mov %rbx,%rdi ;

shr $0x7,%rdi;

and $0x1fe0,%edi;

mov %rbx,%rsi

and $0xfffffffffffff003,%rsi

lea 0x688(%r14,%rdi,1),%rdi;

cmp (%rdi),%rsi

jne set2; retq

set2:

cmp 0x20(%rdi),%rsi

jne set3;

add 0x20, %rdi

retq

set3:

cmp 0x40(%rdi),%rsi

jne set4;

add 0x40, %rdi; retq

set4:

cmp 0x60(%rdi),%rsi

jne tlb_miss;

add 0x60, %rdi

retq

left for future work. This work implements 2-way set

Figure 6. TLB Miss Reduction Due to Set-Associativity

Figure 7. TLB Lookup Time Increase Due to Set-Associativity

Figure 5. TLB Lookup Time Increase Due to Set-Associativity

Figure 8. Performance Improvement Due to Set-Associativity

left for future work. This work implements 2-way set

associative as well as 4-way set associative. As shown

in Listing 2, the generated code to walk a 4 walk set

associative TLB is similar to walking directly mapped

TLB twice in QEMU, i.e. the TLB lookup first hashes

into matching set and then check the way for a match

one by one, because all the ways in a set are contiguous

in memory, only one hash is needed and a constant can

be added to find the second, third and fourth way in the

set.

Experiment Parameters #1 256 entries directly mapped TLB

Experiment Parameters #2 128 sets 2-way-set-associative TLB

Experiment Parameters #3 64 sets 4-way-set-assocoative TLB

As shown in Figure 6. With greater associativity comes

fewer TLB misses. However, significantly more time

spend in the TLB lookup code as shown in Figure 7.

This is a result of hot TLB translation entries being

installed into higher ways, e.g. way 2, 3 and 4.

Therefore, to lookup those entries, additional

comparisons need to be done. One way to optimize this

is to re-order how translations are placed based on their

frequency of access. However, this requires collecting

information regarding the access count of each TLB

entries and thus increase the path-length of every TLB

lookup, which makes the benefits provided by re-

ordering the translation entries unclear. This is left for

future work. Given that the overall performance average

of 2-way and 4-way set associative TLB is lower than

directly mapped in Figure 8, this work concludes that

associativity may not be the solution to TLB misses in

software emulated TLB.

5.4. Victim TLB

A victim TLB [11] is a TLB used to hold translations

evicted from the primary TLB upon replacement. The

victim TLB lies between the main TLB and its refill

path. Victim TLB is generally of greater associativity. It

takes longer to lookup the victim TLB, but its likely

better than a full page table walk. The advantage is that

victim TLB can offer more associativity to a directly

mapped TLB and thus potentially fewer page table

walks while still keeping the time taken to flush within

reasonable limits. However, placing a victim TLB be-

fore the refill path increase TLB refill path as the victim

TLB is consulted before the TLB refill.

Dynamically resized TLB suffers from a conflict misses

when the load of the TLB is not high enough to double

its size. Therefore, this work finds that introducing a

victim TLB for dynamically sized TLB provides

significant benefits as shown in Figure 9.This work

measures the performance improvement of employing a

victim TLB of the following parameters.

Experiment Parameters #1 256 entries directly mapped TLB + 8

entry fully associative victim TLB

Experiment Parameters #2 Dynamic-Sized directly mapped

TLB + 8 entry fully associative

victim TLB

5.5. Inter-Core TLB Fetching

This optimization is designed to reduce the number of

conflict and compulsory misses in the emulator. Using

inter-core TLB fetching, if a virtual processor does not

have a translation for a given virtual address, it looks

into other virtual processors running in the same virtual

address space before doing the page walk. To identify

the processors running in the same virtual address

Figure 9. Performance Improvement Due to TLB Optimizations

space, the emulator uses CR3. The advantage of this

optimization is that it potentially saves page table

walks due to conflict as well as compulsory misses,

especially effectively for multithreaded workloads.

However, it does increase the increase TLB refill path.

This work expects this optimization is potentially

effective for multiple threads running in the same

address space, e.g. garbage collection [12] thread could

benefit from this optimizations as it will iterate over

large set of pages which are probably being accessed by

other threads in the virtual machine.

5. Putting Everything Together
This work experimented with many optimizations

derived from hardware TLB design as well as the

unique nature of software emulated TLB.

As shown in Figure 9. Dynamic+Victim+Outlined TLB

performs the best, achieving an average performance

improvement of 15.8% over outlined 256 entry TLB,

22.6% over inlined 256 entry TLB. Additionally,

Dynamic+Victim+Outlined TLB performs better than

baseline on all measured benchmarks.

Furthermore, 256 entry + victim + outlined TLB

performs 18.1% better than the baseline. Given the

simplicity of adding a victim TLB to the emulator, the

provided benefits make victim TLB a good choice to

the QEMU.

6. Conclusion
This work quantitatively measures the time spent in

MMU/TLB emulation. This work points out that the

design space of software emulated TLB are different

from the design space of hardware TLB. Some of the

optimizations implemented in hardware are not suitable

for software, e.g. set-associativity does not work well

in software TLB, mainly due to the fact that software

TLB needs to be walked in serial. It also exploits nature

unique to software TLB to reduce the cost of memory

emulation, more specifically, this work propose

dynamically sized software TLB to reduce the cost of

TLB refills while keeping the time taken to flush the

TLB on context switches in check. Additional, this

work proposes a series optimizations for software

emulated TLBs and dynamically resized + victim TLB

improves the performance of the emulator by an

average of 22.6%.

7. Future Work
Additional optimizations, as listed in Table 3, can be

investigated to reduce the cost of memory emulation in

full system emulators.

Table 3. Future Software TLB Optimizations

TLB

Lookup

Optimization

Translation Strength Reduction - In

translation address strength reduction,

given a series of effective addresses off

the same base register: p = D1(X1,B)

and q = D2(X2,B), there is a good

chance that both references will be on

the same page if the difference abs(D1-

D2) is small. In such a scenario, we

want to do only one translation (with a

modified operand length) and compute

the second address by doing arithmetic

on the first. To ensure that optimization

is correct, we need to make sure that X1

== X2, and X1 and B are not modified in

the section of code between p and q. The

transformation is to do the 'earlier'

(smaller address) translation first,

however with a longer length. Since we

know that X and B are not getting

modified in the snippet of code of

interest to us, it is possible for us to

move the trees around.

TLB Lookup

Optimization
Invariant TLB Translation Caching - this

optimization tries to find the invariant

TLB translations and cache it in the CPU

structure, suitable candidate of invariant

translation is memory accesses within a

loop, e.g. induction variables that are not

promoted to registers or local variables

with loop scope.
TLB

Lookup

Optimization

Vectorized TLB Lookup - One of the

major obstacles to effectively make use

of associativity in software TLB is the

need to walk the ways in the same set in

parallel. some modern processors come

with vector instructions and this

optimization should investigate how to

walk the TLB in parallel using vector

instructions.
TLB

Refill

Optimization

TLB Entry Reorder - In set associative

TLB, it is desirable to order the

translations with respective to their

access count. A lightweight profiling

technique is needed to track the access

count of the TLB and reorder the TLB

entries according to the access count.

8. Reference

[1] Bellard, Fabrice. "QEMU, a Fast and Portable Dy-

namic Translator." USENIX Annual Technical Confe-

rence, FREENIX Track. 2005.

[2] Kevin P. Lawton. 1996. Bochs: A Portable PC Emu-

lator for Unix/X. Linux J. 1996, 29es, Article 7 (Sep-

tember 1996).

[3] Binkert, Nathan, Bradford Beckmann, Gabriel

Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu,

Joel Hestness et al. "The gem5 simulator." ACM SI-

GARCH Computer Architecture News 39, no. 2 (2011):

1-7.

[4] Magnusson, Peter S., Magnus Christensson, Jesper

Eskilson, Daniel Forsgren, Gustav Hallberg, Johan

Hogberg, Fredrik Larsson, Andreas Moestedt, and

Bengt Werner. "Simics: A full system simulation plat-

form." Computer 35, no. 2 (2002): 50-58.

[5] Wenisch, Thomas F., Roland E. Wunderlich, Mi-

chael Ferdman, Anastassia Ailamaki, Babak Falsafi, and

James C. Hoe. "SimFlex: statistical sampling of com-

puter system simulation." Micro, IEEE 26, no. 4 (2006):

18-31.

[6] Android emulator.

http://developer.android.com/guide/developing/tools/em

ulator.html.

[7] Prashanth P. Bungale and Chi-Keung Luk. 2007.

PinOS: a programmable framework for whole-system

dynamic instrumentation. In Proceedings of the 3rd

international conference on Virtual execution environ-

ments (VEE '07).

[8] Thomas W. Barr, Alan L. Cox, and Scott Rixner.

2010. Translation caching: skip, don't walk (the page

table). In Proceedings of the 37th annual international

symposium on Computer architecture (ISCA '10).

[9] Binh Pham, Viswanathan Vaidyanathan, Aamer

Jaleel, and Abhishek Bhattacharjee. 2012. CoLT: Coa-

lesced Large-Reach TLBs. In Proceedings of the 2012

45th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO-45).

[10] Hennessy, John L., and David A. Patter-

son. Computer architecture: a quantitative approach.

Elsevier, 2012.

[11] Kumar, Rajendra, and Paul G. Emerson. "TLB

organization with variable page size mapping and vic-

tim-caching." U.S. Patent 5,717,885, issued February

10, 1998.

[12] Jones, Richard, and Rafael D. Lins. "Garbage col-

lection: algorithms for automatic dynamic memory

management." (1996).

