
February 3, 2014
RT0956
Computer Science 12 pages

Research Report

Optimizing Memory Translation Emulation in Full System
Emulators

Xin Tong, Toshihiko Koju, and Motohiro Kawahito

IBM Research - Tokyo
IBM Japan, Ltd.
NBF Toyosu Canal Front Building
6-52, Toyosu 5-chome, Koto-ku
Tokyo 135-8511, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It has been
issued as a Research Report for early dissemination of its contents. In view of the expected transfer of copyright to an
outside publisher, its distribution outside IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or copies of the article legally obtained (for
example, by payment of royalities).

Optimizing Memory Translation Emulation in Full System Emulators

Xin Tong
IBM Tokyo Research Laboratory

Toshihiko Koju
IBM Tokyo Research Laboratory

Motohiro Kawahito
IBM Tokyo Research Laboratory

Abstract

The emulation speed of a Full System Emulator (FSE)
determines for the most part how useful this FSE can be.
This work quantitatively measures where time is spent
in QEMU [1], an industrial strength full system emula-
tor, and confirms that dynamic address translation as one
of the most heavily exercised components in the emula-
tor. This is even though QEMU implements a Software
Translation Lookaside Buffer (sTLB) to accelerate dy-
namic address translation. Consequently, this work pro-
poses a series of sTLB optimizations that aim at reduc-
ing the address translation emulation overhead. The pro-
posed techniques optimize address translations as well
as sTLB refills and provide an average performance im-
provement of 24.1% over the baseline on a wide range of
workloads.

1 Introduction

A Full System Emulator, or FSE, is a piece of software
that emulates an entire machine including the processor,
memory and devices. An FSE emulates a guest machine
over a potentially different host machine. Some well
known FSEs include QEMU [1], BOCHS [2], GEM5 [3]
and Windriver Simics [4]. FSEs are valuable in many
contexts such as for example: (1) FSEs can serve as ap-
plication development platforms when hardware is un-
available. (2) They can accelerate system development
by making it easier to detect, recreate and repair flaws,
especially for kernel level software components such as
kernel plug-ins or drivers. (3) Finally, they can be used to
study application behavior or as building blocks of full-
timing simulators in computer architecture research and
development, e.g., [5] [6].

FSEs are typically one magnitude slower than real ma-
chines since actions that would normally executed di-
rectly in the guest hardware are emulated in software
by the FSE. As a result, an FSE has to execute multi-

ple host instructions to emulate a single guest instruction.
Some of these instructions the FSE uses for dynamic ad-
dress translation (DAT), that is to translate guest operat-
ing system virtual/physical addresses to host virtual ad-
dresses. As Figure 1 shows, dynamic address translation
comprises two steps. In the first step, the guest virtu-
al/physical address (VA/PA) is translated into the guest
physical address using the page table of the current run-
ning process in the guest OS. In the second step, the guest
physical address is translated into the host virtual address
by adding a constant offset in case the emulated memory
is backed by contiguous host memory.

Guest Virtual/Physical Address

Guest Physical Address

Host Virtual Address

So
ft

w
ar

e
Em

u
la

te
d

 T
LB 1

2

Figure 1: Memory Emulation in FSE

Given that memory accesses are relatively frequent, an
FSE ends up spending a considerable fraction of time just
for dynamic address translation. Accordingly, DAS ac-
celeration methods can greatly improve overall FSE per-
formance.

For this purpose, FSEs often use a software TLB struc-
ture (sTLB) which caches translations from guest virtu-
al/physical addresses to host virtual addresses. Imple-
mented using a hashtable, the sTLB is maintained by the
emulator and searched using highly optimized software
code. However, even with an sTLB, DAT still consumes
a considerable fraction of time in modern FSEs. Specif-
ically, this work measures that a modern FSE spends
about 38.4% of its execution time performing dynamic

address translation. Accordingly, the goal of this work is
to propose techniques for improving sTLB performance.

There are three sTLB actions that consume most of ex-
ecution time: sTLB lookups, sTLB refills, and to a lesser
extent sTLB flushes. Since every memory read or write
has to lookup the sTLB, the sTLB search code takes up
a significant portion of the overall execution time of an
FSE. Moreover, every sTLB miss triggers a guest page
table walk for locating the appropriate translation which
is then cached in the sTLB. This sTLB refill process can
take hundreds of host instructions, more so if nested page
walks are required [7]. Finally, when the sTLB does not
contain address space identifies (ASIDs), the sTLB must
be flushed when switching across emulated processes.

To reduce the amount of time spent in DAT this work
analyzes the behavior of DAT in a state-of-the-art FSE,
QEMU, and investigates several techniques for improv-
ing the performance of sTLB lookups and refills. Ta-
ble 1 enumerates the techniques evaluated. Some of the
techniques are motivated by corresponding optimizations
for hardware TLBs. This includes the set-associative
sTLB and the Victim sTLB. Others are enabled by the
flexibility provided by a TLB implemented in software,
such as the dynamically resized sTLB and the transla-
tion coalesing. Overall, a combination of the proposed
techniques proves robust and improves emulation perfor-
mance by 24.2% on average and as much as 43.1% for a
memory intensive workload.

Optimization Purpose
Adjusting sTLB size Reduce sTLB misses
Bump-the-sTLB allocation Reduce sTLB flush time
Dynamically resized sTLB Reduce sTLB misses
Set-associative sTLB Reduce sTLB misses
Victim sTLB Reduce sTLB misses
SIMD set-associative sTLB lookup Faster sTLB lookups
Translation Coalescing Fewer sTLB lookups

Table 1: sTLB Optimizations

The rest of this paper is organized as follows: Sec-
tion 2 analyzes where times goes during emulation in
QEMU and proceeds to review how sTLB lookups and
refills are implemented. Section 3 evaluates several
sTLB refill overhead reduction techniques. Specifically,
it evaluates performance trade offs with larger sTLBs,
Bump-the-sTLB allocation, dynamically adjusting sTLB
size, using a victim sTLB, and using a set-associative
sTLB. The bump-the-sTLB allocation technique uses a
pool of multiple sTLBs and a separate thread to take
sTLB flushing off the critical path. The victim sTLB uses
a small, fully associative sTLB to capture some of the
conflict misses of the main direct-mapped sTLB, while
the set-associative sTLB changes the main sTLB so that
it contains multiple entries per set. Section 4 considers
two techniques that reduce sTLB lookup time. The first

uses vector extensions in recent Intel processors to ac-
celerate searching through the ways of a set-associative
sTLB and the second, translation coalescing, services se-
quences of accesses to the same translation block with a
single sTLB access. Section 5 considers combinations
of the previously considered techniques identifying the
one that performs best. Finally, Section 6 summarizes
the findings of this work.

2 Where does Time Go in an FSE?

In order to optimize DAT, it is important to understand
where time is spent in FSEs as well as how much time is
spent in DAT. Accordingly, this section reviews the oper-
ation of the sTLB in QEMU and the proceeds to study
sTLB performance experimentally. The experimental
analysis identifies the sources of sTLB performance in-
efficiency and these results motivate the performance op-
timizations proposed in the sections that follow.

2.1 Baseline TLB

QEMU uses an sTLB to speed up DAT. The sTLB stores
the offset of the guest VA/PA to host VA. When trans-
lating a guest virtual address to a host virtual address,
QEMU searches the sTLB table first. If there is a match-
ing entry in the sTLB, QEMU adds this offset to the
guest virtual address to get the host virtual address di-
rectly. Otherwise, QEMU performs an sTLB refill where
it walks the page table of the current guest process and
installs the infomation mecessary for the translation into
the sTLB table.

In the current QEMU implementation, the sTLB is a
hashtable of 256 entries. There is a separate sTLB per
mode, where a mode indicates the current memory trans-
lation mode the processor is running in and thus the way
addresses should be translated, e.g., whether the process
is running in user space or kernel space, etc. When em-
ulating the x86 architecture, there are three modes and
hence three sTLBs. In this case, the default index of the
sTLB is bits [19:12] of the guest VA.

In QEMU, there is no address-space identifier (ASID)
field in the sTLB entries. As a result, the TLB needs to
be flushed on process switches. The performance over-
head of flushing the sTLB is proportional to its size. The
smaller the sTLB the lower the overhead for flushing it.
However, as this work shows, depending on the workload
the larger the sTLB the fewer the sTLB refills. Accord-
ingly, an implementation must carefully chose the sTLB
size to balance the costs of sTLB flushes vs. sTLB refills.

sTLB flushes could be avoided by incorporating
ASIDs into the sTLB. However, this approach is not free
of trade offs. Specifically, additional instructions would
be needed to lookup the ASIDs during sTLB lookups and

2

to install them during sTLB refills, adding to the sTLB
overhead. Increasing instruction count for sTLB lookups
wold slow down all emulated memory references. More-
over, QEMU is built to support many operating systems
and architectures, many of which do not utilize ASIDs.

The sTLB also accelerates the process of dispatching
I/O emulation functions for memory-mapped IO regions.
That is, an sTLB translation entry identifies, using bits in
the page offset, whether a page is backed by RAM or it
is a memory mapped page. If an access is identified as a
memory mapped page, QEMU dispatches this access to
the registered I/O emulation functions.

The rest of this section measures the amount of time
spent in sTLB operations and the reviews the implemen-
tation of these operations so that inefficiencies can be
identified and rectified.

2.2 Experimental Methodology

This section presents a detailed execution time break-
down of the emulator using hardware performance coun-
ters on a wide range of benchmarks. Since FSEs are most
often used to develop applications, this work focuses on
workloads representative of common application devel-
opment and testing scenarios. Table 2 lists the workloads
used which include building or booting a Linux kernel,
SPEC CPU 2006, and Dacapo. In addition, multipro-
grammed workloads combining applications from SPEC
CPU 2006 and Dacapo are also used as Table 4 shows.
To create these multiprogrammed workloads, the appli-
cations are first categorized according to their sensitivity
to sTLB performance. Three categories of sensitivity are
used: high, medium, and low. Then, mixes are created
contain applications from these categories. Each mix is
chosen to represent a point along the spectrum of possi-
ble multi-programmed workload mixes with the two ex-
tremes being a mix containing applications that are all
highly sensitive to sTLB performance and the other ex-
treme containing applications that are little sensitive. All
the measurements are taken with the configurations Ta-
ble 3 details. The linux kernel this work uses does not
flush the sTLB unless the thread that is context switched
in runs in a different virtual address space than the thread
that is context switched out.

In QEMU, an sTLB lookup snippet is generated for
every emulated load or store instruction. This is instruc-
tion cache unfriendly and wastes code cache space, as
most of the generated sTLB lookup code is identical.
This work improves the baseline sTLB implemenation
by outlining these TLB lookup snippets and generating
calls to common functions for all emulated memory in-
structions. The outlined sTLB is used as a baseline for
all measurements. To track the amount of time spent in
the sTLB lookup, the JVMTI extension is dynamically

linked into QEMU and all the outlined sTLB lookup
snippets are registered with the JVMTI extension such
that they show up in a separate category from the emula-
tion code cache in the final profile output.

Benchmark Input Purpose
KernelBuild Building

the
3.12.9
Linux
Kernel

GCC (make -j1) kernel build
used to measure perfor-
mance of GCC compiler.
Application Development.

DACAPO[8] Default Application Development
SPECINT2006 [9] Train Application Development
KernelBoot Booting

2.6.31.4
Linux
Kernel

multi-programmed - Appli-
cation Development

Multi-Programmed
Workload Mixes

Dacapo
Default
SPEC
Train

multi-programmed . Appli-
cation Testing.

Table 2: Workloads.

Systems Configurations
Host Machine Intel(R) Core i7-4770 Haswell archi-

tecture [10]. 16GB RAM. Ubuntu
Linux 2.6.34.7. Performance taken with
oprofile 0.9.6 [11] performance counter
CPU CLK UNHALTED and code cache
monitored by the JVMTI extension [12].

Emulator Emulator QEMU 1.7.0 (latest stable).
Compiled with GCC 4.5.0. O3 opti-
mization level. O3 carries autovector-
ization which is beneficial for TLB flush-
ing. Turned off HyperThreading, Turned
on all available hardware prefetchers as
prefetchers are beneficially to TLB flush
code.

Emulated Ma-
chine

1 emulated X86 CPU, 1GB RAM.
Ubuntu Linux 2.6.38 kernel. Base-
line TLB: 256-entries, directly mapped
TLB for each mode. Java Dacapo and
SPECINT2006 benchmarks

Table 3: System Configuration

2.3 FSE Execution Time Breakdown

Figure 2 reports a breakdown of total execution time for
QEMU. Since our focus is on sTLB performance, execu-
tion time is broken down into four categories: (1) sTLB
lookups, (2) sTLB refills, (3) emulation code cache, and
(4) others which includes the time taken to translate the
guest code, lookup the next translation block, handle in-
terrupts, flushing the sTLB on context switches, etc. As
Figure 2 shows, 13.2% of the time is spent in sTLB

3

0

10

20

30

40

50

60

70

80

90

100

ke
rn

el
b

u
ild

av
ro

ra

b
at

ik

ec
lip

se fo
p

h
2

jy
th

o
n

lu
in

d
ex

lu
se

ar
ch

p
m

d

su
n

fl
o

w

to
m

ca
t

xa
la

n

4
0

0.
p

er
lb

en
ch

4
0

1.
b

zi
p

2

4
0

3.
gc

c

4
2

9.
m

cf

4
4

5.
go

b
m

k

4
5

6.
h

m
m

er

4
5

8.
sj

en
g

4
6

2.
lib

q
u

an
tu

m

4
6

4.
h

2
6

4
re

f

4
7

1.
o

m
n

et
p

p

4
7

3.
as

ta
r

4
8

3.
xa

la
n

cb
m

k

ke
rn

el
b

o
o

t

4
0

1.
b

zi
p

2
+4

2
9.

m
cf

h
2

+p
m

d

4
0

3.
gc

c+
4

5
6

.h
m

m
er

4
0

3.
gc

c+
4

2
9

.m
cf

p
m

d
+

45
6

.h
m

m
er

av
er

ag
e

SP

av
er

ag
e

M
P

av
er

ag
e

A
ll

Pe
rc

en
ta

ge
 T

im
e

B
re

ak
d

o
w

n
tlb lookup tlb refill code cache others

Single-Program (SP) Multi-Program (MP) Average

Figure 2: QEMU Emulation Time Breakdown

Workload Mixes sTLB sensitivity
401.bzip2+429.mcf High + High
h2+pmd Medium + Medium
403.gcc+456.hmmer Low + Low
403.gcc+429.mcf Low + High
pmd+456.hmmer Medium + High

Table 4: Multi-Programmed Workload Mixes

lookups and 24.9% spent in sTLB refills on average.
sTLB operations take more of th over time for bench-
marks with relatively large memory footprints compared
to the sTLB size. For example, 61.2% of the time is spent
in sTLB refills in the 429.mcf benchmark. On average,
38.3% of the time is spent in the code cache and 28.1%
spent in the others. In kernel boot, 35.7% of the time is
spent in others, this is a result of large amount of guest
instructions with low re-use probability that need to be
translated as the kernel boots.

Having established that sTLB lookups and refills con-
stitute a significant fraction of the overall execution time
in an FSE, the next sections detail how these operations
are implemented. This discussion forms the basis upon
which performance inefficiencies will be identified and
exploited.

2.4 Dissecting sTLB Refills

Measured by running QEMU over Intel’s PIN [13], an
sTLB miss including walking the four-level page table
in Linux takes 457 x86 instructions on average. To un-
derstand why the refill takes hundreds of instructions,
Listing 1 enumerates the steps necessary1 to complete
an sTLB refill.

1This is a general, but not exhaustive, list of steps required to walk
the page table

1. Setting up context for page table walk. e.g. faulting
virtual address, size of access, etc.

2. Exiting code cache.
3. Deciding faulting address is backed by memory page(s),

not IO mapped pages.
4. Checking for cross page accesses.
5. Deciding how to walk the page table, e.g. is paging

enabled, is X86 address extension enabled, etc.
6. Walking pagetable and checking for permission

violations.
7. Checking whether the translation can be put into the

TLB (watchpoint, some of self-modifying code
translations are not place into the TLB).

8. Refill the software TLB structure.
9. Returning to code cache.

Listing 1: sTLB refill: Emulated Page Table Walk

Additonally, the sTLB refill code implementation
comprises several functions. At runtime, the sTLB im-
plementation exhibits a function call depth that exceeds
five deep and therefore it requires a non-trivial amount
of host register saves and restores. Compared to sTLB
lookups (covered in Section 2.5), an sTLB refill is much
more expensive. Therefore, even when the sTLB miss
rate is low, sTLB refills end up taking much of the total
emulation time. Figure 3 shows that on average the sTLB
missrate is 3.34%, with the highest of 8.09% in 429.mcf.
Even though the sTLB miss rate is low, as much as 61.2%
of the total execution time spent in sTLB refills. As seen
on Figure 2, over all benchmarks measured, sTLB refills
account for 24.9% of total execution time. These results
demonstrate that improving sTLB refill performance has
the potential to improve overall emulation performance
considerably.

2.5 Dissecting sTLB Lookups

Traditionally implemented in specialized hardware, TLB
lookups are done in software in FSEs. While possible
to utilize the host’s hardware TLB to assist the transla-

4

0

1

2

3

4

5

6

7

8

9

ke
rn

el
b

u
ild

av
ro

ra

b
at

ik

ec
lip

se fo
p

h
2

jy
th

o
n

lu
in

d
ex

lu
se

ar
ch

p
m

d

su
n

fl
o

w

to
m

ca
t

xa
la

n

4
0

0.
p

er
lb

en
ch

4
0

1.
b

zi
p

2

4
0

3.
gc

c

4
2

9.
m

cf

4
4

5.
go

b
m

k

4
5

6.
h

m
m

er

4
5

8.
sj

en
g

4
6

2.
lib

q
u

an
tu

m

4
6

4.
h

2
6

4
re

f

4
7

1.
o

m
n

et
p

p

4
7

3.
as

ta
r

4
8

3.
xa

la
n

cb
m

k

ke
rn

el
b

o
o

t

4
0

1.
b

zi
p

2
+4

2
9.

m
cf

h
2

+p
m

d

4
0

3.
gc

c+
4

5
6

.h
m

m
er

4
0

3.
gc

c+
4

2
9

.m
cf

p
m

d
+

45
6

.h
m

m
er

av
er

ag
e

SP

av
er

ag
e

M
P

av
er

ag
e

Em
u

la
te

d
 T

LB
 M

is
s

Pe
rc

en
ta

ge
TLB Conflict MissRate TLB Cold MissRate

Single-Program (SP) Multi-Program (MP) Average

Figure 3: sTLB Miss Rate

tion process as what is done in shadow paging [14], its
application is limited as it is not always straightforward
or possible to use the existing hardware. Furthermore,
sometimes, as for example in architectural simulations
[15], it is desirable to be able to track every memory ac-
cess and the physical addresses it translates to.

As Listing 2 shows, the sTLB lookup takes nine X86
instructions. Since an sTLB lookup is needed for every
emulated memory reference, this process poses a signifi-
cant performance penalty. As Figure 2 has shown, sTLB
lookups account for 13.2% of the total emulation time on
average. Accordingly, improving sTLB lookups has the
potential to improve overall emulation time considerably.

/* rbx contains the guest virtual address */

mov %rbx,%rdi

/* find the appropriate TLB entry */

shr $0x7,%rdi

and $0x1ffe0,%edi

/* rbx contains the guest virtual address */

mov %rbx,%rsi

/* check for page crossing */

/* if not aligned, then it can potentially cross page */

and $0xfffffffffffff003,%rsi

/* get the address of the the guest address in the tlb */

lea 0x688(%r14,%rdi,1),%rdi

/* compare with the translated guest address */

cmp (%rdi),%rsi

/* tlb miss */

jne tlb_miss;

/* tlb hit, compute the translated host virtual address */

add 0x10(%rdi), %rbx

Listing 2: sTLB Lookup: Emulated TLB Walk

3 Improving sTLB Refills

Since sTLB refills accounts for about 24.9% of the total
emulation time on average, this section considers several
techniques for reducing sTLB refill time. Some of the
techniques are motivated by commonly used hardware
TLB optimizations, whereas others are specific to soft-
ware TLB implementations.

3.1 Using a Larger sTLB

Hardware TLB sizes have remained relatively small due
to low access time constraints and hardware space and
power limitations [16]. An sTLB is implemented as a
hash table in memory. A larger hash table would still
require the same number of instructions to access. This
raises the question whether increasing the sTLB size is a
straightforward, and yet ultimate solution that can reduce
the number of page table walks.

Unfortunately, there is a trade off at play. QEMU’s
sTLB needs to be flushed on every context switch due
to the lack of ASIDs. The larger the sTLB the longer
it takes to flush. The relative overhead of sTLB flushes
is further exacerbated by emulation speed which results
in much fewer instructions executed per context switch
compared to real hardware. Specifically, since QEMU’s
full system emulation mode is usually one magnitude
slower than real hardware, QEMU executes fewer in-
structions per time quantum as determined by the guest
operating system. As Figure 4 shows, most workloads
manage to execute a few millions of instructions per
context switch, while kernel boot and the multi-program
mixes execute a lot less. The lowest progress per time
quantum is observed for the kernel boot workload that
manages to execute only 98K instructions per context
switch. This is a result of the guest operating system giv-
ing equal amount of time to multiple processes running
in different address spaces. At the end, there is a trade
off between sTLB size and performance. The smaller
the sTLB the lower overhead of sTLB flushes. However,
the smaller the sTLB the higher the sTLB miss rate and
hence the more frequent the sTLB refills.

In order to find the best sTLB size for the workloads
studied, this work experimented with sTLBs with 256,
4096 and 64k entries, referred to as sTLBx where x is

5

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

ke
rn

el
b

u
ild

av
ro

ra

b
at

ik

ec
lip

se fo
p

h
2

jy
th

o
n

lu
in

d
ex

lu
se

ar
ch

p
m

d

su
n

fl
o

w

to
m

ca
t

xa
la

n

4
0

0.
p

er
lb

en
ch

4
0

1.
b

zi
p

2

4
0

3.
gc

c

4
2

9.
m

cf

4
4

5.
go

b
m

k

4
5

6.
h

m
m

er

4
5

8.
sj

en
g

4
6

2.
lib

q
u

an
tu

m

4
6

4.
h

2
6

4
re

f

4
7

1.
o

m
n

et
p

p

4
7

3.
as

ta
r

4
8

3.
xa

la
n

cb
m

k

ke
rn

el
b

o
o

t

4
0

1.
b

zi
p

2
+4

2
9.

m
cf

h
2

+p
m

d

4
0

3.
gc

c+
4

5
6

.h
m

m
er

4
0

3.
gc

c+
4

2
9

.m
cf

p
m

d
+

45
6

.h
m

m
er

av
er

ag
e

SP

av
er

ag
e

M
P

av
er

ag
e

A
ll

In
st

ru
ct

io
n

s
Pe

r
C

o
n

te
xt

 S
w

it
ch

Single-Program (SP) Multi-Program (MP) Average

Figure 4: QEMU Emulator Instructions Per Context Switch

0.50X

0.60X

0.70X

0.80X

0.90X

1.00X

1.10X

1.20X

1.30X

1.40X

1.50X

ke
rn

el
b

u
ild

av
ro

ra

b
at

ik

ec
lip

se fo
p

h
2

jy
th

o
n

lu
in

d
ex

lu
se

ar
ch

p
m

d

su
n

fl
o

w

to
m

ca
t

xa
la

n

4
0

0.
p

er
lb

en
ch

4
0

1.
b

zi
p

2

4
0

3.
gc

c

4
2

9.
m

cf

4
4

5.
go

b
m

k

4
5

6.
h

m
m

er

4
5

8.
sj

en
g

4
6

2.
lib

q
u

an
tu

m

4
6

4.
h

2
6

4
re

f

4
7

1.
o

m
n

et
p

p

4
7

3.
as

ta
r

4
8

3.
xa

la
n

cb
m

k

ke
rn

el
b

o
o

t

4
0

1.
b

zi
p

2
+4

2
9.

m
cf

h
2

+p
m

d

4
0

3.
gc

c+
4

5
6

.h
m

m
er

4
0

3.
gc

c+
4

2
9

.m
cf

p
m

d
+

45
6

.h
m

m
er

av
er

ag
e

SP

av
er

ag
e

M
P

av
er

ag
e

A
ll

Pe
rf

o
rm

an
ce

 Im
p

ro
ve

m
en

t

sTLB²⁵⁶ sTLB⁴ᵏ sTLB⁶⁴ᵏ sTLBᵈˢ

Single-Program (SP) Multi-Program (MP) Average

Figure 5: Performance Improvement with sTLBs of Different Size.

the sTLB entry count. As Figure 5 shows (Section 3.3
describes the sTLBds technique), there is no single size
that performs the best for all workloads. This is a re-
sult of different working-set sizes. Overall, increasing
sTLB size to 4k entries from 256 entries, improves per-
formance by 15.9% on average, with 429.mcf benefit-
ing the most by 46.1%. However, further increasing the
sTLB size to 64k entries, on average results in an perfor-
mance degradation relative to sTLB4k. sTLB64k spends
considerably more time in flushing. For example, per-
formance for kernel boot is only 0.54X of the baseline
with sTLB64k since it context switches much more often.
Similarly, all the multiple-program benchmarks suffer as
the size of the sTLB increases, this is because context
switches happen much more often compared to the sin-
gle program workloads.

3.2 Bump-the-sTLB Allocation

While using a larger sTLB reduces refill overhead it in-
creases the flushing overhead on context switches. The
Bump-the-sTLB technique aims at reducing this flush-
ing overhead by taking the flushing process off the crit-
ical path. It does so by using a new sTLB on a context
switch. This is similar to the bump-the-pointer allocation
used in memory allocation systems. Initially, the system
allocates a few sTLBs that are empty and places them in a
pool. When a process starts, it gets an empty sTLB from
this pool. On a context switch, another sTLB is taken
from this pool. At the same time, a separate thread is
used to flush the just released sTLB and to return it, even-
tually, back to the pool. As a result, the main emulation
thread does not have to wait to flush the sTLB and the
pool is eventually replenished. As an added benefit, this
approach can potentially improve the micro-architectural
behavior for the emulation thread, e.g., it can result in

6

0.50X

0.70X

0.90X

1.10X

1.30X

1.50X

ke
rn

el
b

u
ild

av
ro

ra

b
at

ik

ec
lip

se fo
p

h
2

jy
th

o
n

lu
in

d
ex

lu
se

ar
ch

p
m

d

su
n

fl
o

w

to
m

ca
t

xa
la

n

4
0

0.
p

er
lb

en
ch

4
0

1.
b

zi
p

2

4
0

3.
gc

c

4
2

9.
m

cf

4
4

5.
go

b
m

k

4
5

6.
h

m
m

er

4
5

8.
sj

en
g

4
6

2.
lib

q
u

an
tu

m

4
6

4.
h

2
6

4
re

f

4
7

1.
o

m
n

et
p

p

4
7

3.
as

ta
r

4
8

3.
xa

la
n

cb
m

k

ke
rn

el
b

o
o

t

4
0

1.
b

zi
p

2
+4

2
9.

m
cf

h
2

+p
m

d

4
0

3.
gc

c+
4

5
6

.h
m

m
er

4
0

3.
gc

c+
4

2
9

.m
cf

p
m

d
+

45
6

.h
m

m
er

av
er

ag
e

SP

av
er

ag
e

M
P

av
er

ag
e

A
ll

Pe
rf

o
rm

an
ce

 Im
p

ro
ve

m
en

t
sTLB²⁵⁶ sTLB²⁵⁶⁺ᵇᵗˢ sTLB⁶⁴ᴷ sTLB⁶⁴ᴷ⁺ᵇᵗˢ

Single-Program (SP) Multi-Program (MP) Average

Figure 6: Bump-the-sTLB Allocation Performance Improvement

better interaction with the data cache and the hardware
TLB, since the current thread does not have to run the
flushing code and to partially thrash its data cache as a
result.

With bump-the-sTLB allocation the sTLB structure is
no longer allocated at a fixed memory address. There-
fore, one additional instruction is required for every
sTLB lookup. Figure 6 reports performance with the
proposed sTLB allocation technique and for sTLBs of
various sizes. There is a small performance degradation
with 256-entry sTLB and bump-the-sTLB allocation de-
noted by sTLB256+bts. This is the result of increasing the
sTLB lookup path by one additional instruction while not
getting enough benefit from offloading the less frequent
and relatively inexpensive for this size sTLB flushes. On
the other hand, bump-the-sTLB allocation unlocks the
potenital of the sTLB64k denoted by sTLB64k+bts which
now improves performance by 20.0% over the baseline
sTLB256 on average. This result is in stark contrast
with the results of the previous section, where flushing
overhead overwhelmed performance with the sTLB64k.
There are two reasons why performance is drastrically
better now: flush overhead is reduced and the micro-
architectural benefits are gained by flushing the sTLBs
on a separate thread.

While bump-the-sTLB allocation greatly reduces the
cost of increasing the size the sTLB, it does require one
additional thread to flush the used TLB and thus may
increase pressure on execution resources.

3.3 Dynamically-Sized sTLB

Section 3.1 has shown that there is not a single sTLB
size that works best for all workloads. Moreover, while
not explicitly shown, it is reasonable to expect that appli-
cations go through phases each with different sTLB de-

mands. To better fit application demands the sTLB can
be dynamically resized.

There can be numerous policies for adjusting the sTLB
size. This work investigates a utilization-based approach:
When the sTLB is getting close to full, the emulator dou-
bles its size and when the sTLB is under-utilized, the em-
ulator halves its size. To estimate the current load of the
sTLB the emulator uses the a load counter. Whenever
an sTLB translation is installed into an empty sTLB en-
try, the load counter is incremented and this counter is
cleared just after context switches. This adds minimal
performance overhead to the sTLB refill path. This work
doubles the size of the TLB when its load, expressed as
used T LB entries
total T LB entries , is higher than 70% and halves the sTLB
when its load is lower than 40%. The percentage thresh-
olds uses to adjust the sTLB size could be potentially
dynamically adjusted as well, but this work chooses two
reasonable values for simplicity.

For indexing the sTLB, its size is kept in a hash table
structure indexed by the CR3 of the process. This opti-
mization enables the emulated sTLB to be sized dynam-
ically to the working-set of the running process and has
the potential to increase the sTLB hit rate and to reduce
the sTLB flush time. However, it increases the sTLB
lookup path as the indexing hash value is not constant.
The current hash value is recorded in the CPU structure
at every context switch and is loaded from the CPU struc-
ture at the time a memory operation needs to be trans-
lated as Listing 3 shows.

As Figure 5 shows, the dynamically sized sTLB
(sTLBds) improves performance by 17.3% on average.
Moreover, sTLBds out performs the fixed sized sTLB4k

and sTLB64k. Additionally, with the sTLBds flushing on
context switches is not as expensive even with frequent
context switches, as in for example the kernel boot and
the multiprogrammed workloads.

7

0.80X

0.90X

1.00X

1.10X

1.20X

1.30X

1.40X

1.50X

ke
rn

el
b

u
ild

av
ro

ra

b
at

ik

ec
lip

se fo
p

h
2

jy
th

o
n

lu
in

d
ex

lu
se

ar
ch

p
m

d

su
n

fl
o

w

to
m

ca
t

xa
la

n

4
0

0.
p

er
lb

en
ch

4
0

1.
b

zi
p

2

4
0

3.
gc

c

4
2

9.
m

cf

4
4

5.
go

b
m

k

4
5

6.
h

m
m

er

4
5

8.
sj

en
g

4
6

2.
lib

q
u

an
tu

m

4
6

4.
h

2
6

4
re

f

4
7

1.
o

m
n

et
p

p

4
7

3.
as

ta
r

4
8

3.
xa

la
n

cb
m

k

ke
rn

el
b

o
o

t

4
0

1.
b

zi
p

2
+4

2
9.

m
cf

h
2

+p
m

d

4
0

3.
gc

c+
4

5
6

.h
m

m
er

4
0

3.
gc

c+
4

2
9

.m
cf

p
m

d
+

45
6

.h
m

m
er

av
er

ag
e

SP

av
er

ag
e

M
P

av
er

ag
e

A
ll

Pe
ro

fo
rm

an
ce

 Im
p

ro
ve

m
en

t
sTLB²⁵⁶ sTLBᵈˢ sTLB²⁵⁶⁺ᵛ sTLBᵈˢ⁺ᵛ

Single-Program (SP) Multi-Program (MP) Average

Figure 7: Performance Improvement with a Victim sTLB

/* rbx contains the guest virtual address */

mov %rbx,%rdi

/* find the appropriate TLB entry */

shr $0x7,%rdi

/* hash using pre-computed hash value in the CPU */

/* structure */

mov 0xf00870(%r14),%rsi

and %rsi,%rdi

/* rbx contains the guest virtual address */

mov %rbx,%rsi

/* check for page crossing */

/* if not aligned, then it can potentially cross page */

and $0xfffffffffffff003,%rsi

/* get the address of the the guest address in the tlb */

lea 0x688(%r14,%rdi,1),%rdi

/* compare with the translated guest address */

cmp (%rdi),%rsi

/* tlb miss */

tlb_miss;

/* tlb hit, compute the translated host virtual address */

add 0x10(%rdi), %rbx

Listing 3: Emulated Dynamically-Sized sTLB Walk

3.4 Victim sTLB

Implemented as a directly-mapped hash table, the sTLB
suffers from conflict misses. Even when its size is dy-
namically adjusted, the sTLB can suffer from conflict
misses when the measured load is not high enough to
trigger a doubling in size. Therefore, this work finds that
introducing a victim sTLB [17] for fixed and dynami-
cally sized sTLBs provides significant benefits. A victim
sTLB holds translations evicted from the primary sTLB
upon replacement. The victim sTLB lies between the
primary sTLB and its refill path and is probed only on
primary sTLB misses. The victim sTLB is generally of
greater associativity and for this reason it takes longer to
lookup the victim sTLB than the primary sTLB. How-
ever, probing the victim sTLB is considerably faster than
a full page walk. The performance trade off with a vic-
tim TLB is as follows. The victim sTLB, with its higher
associativity, can improve the overall sTLB hit rate by
reducing conflict misses and thus resulting in fewer page
table walks. Moreover, given its relatively small size,
it does not adversely increase the sTLB flush overhead.

However, the victim sTLB increases refill latency.
As Figure 7 shows, adding an 8-entry victim sTLB to

the baseline sTLB256 denoted by sTLB256+v , improves
performance by 11.1% on average, and by as much as
21.22% for 429.mcf. Adding an 8-entry victim TLB to
sTLBds denoted by sTLBds+v proves more beneficial im-
proving performance by 22.9% on average, and as much
as 47.4% for 429.mcf.

3.5 Set-Associative sTLB

Set-Associativity has long been the solution to conflict
misses employed by modern hardware caches and TLBs
[18]. As Figure 3 shows, most misses in a directly-
mapped sTLB are conflict misses. Therefore, this work
investigates the possibility of using a set-associative
sTLB. Modern hardware TLBs usually have high asso-
ciativity and sometimes are fully-associative [18]. This
is feasible in hardware which can simultaneously search
through all ways in parallel. However, in software this
search has to be done serially. Therefore, it is not clear
whether increasing the associativity of the sTLB would
be beneficial. On one side, it will reduce conflict misses,
but on the other, it will increase the lookup latency for
all accesses. This work considers 2-way and 4-way set-
associative sTLB implementations. As Listing 4 shows,
the assembly code to walk a 4-way set-associative sTLB
is similar to that of a directly-mapped sTLB. That is, the
sTLB lookup first hashes into a set and then checks the
ways for a match one by one. Since, all the ways in a
set are stored contiguously in memory, only one hash is
needed and a constant can be added to find the second,
third or fourth way in the set.

/* hash into appropriate way */

mov %rbx,%rdi ;

shr $0x7,%rdi;

and $0x1fe0,%edi;

mov %rbx,%rsi

8

0.80X

1.00X

1.20X

1.40X

1.60X

1.80X

2.00X

ke
rn

el
b

u
ild

av
ro

ra

b
at

ik

ec
lip

se fo
p

h
2

jy
th

o
n

lu
in

d
ex

lu
se

ar
ch

p
m

d

su
n

fl
o

w

to
m

ca
t

xa
la

n

4
0

0.
p

er
lb

en
ch

4
0

1.
b

zi
p

2

4
0

3.
gc

c

4
2

9.
m

cf

4
4

5.
go

b
m

k

4
5

6.
h

m
m

er

4
5

8.
sj

en
g

4
6

2.
lib

q
u

an
tu

m

4
6

4.
h

2
6

4
re

f

4
7

1.
o

m
n

et
p

p

4
7

3.
as

ta
r

4
8

3.
xa

la
n

cb
m

k

ke
rn

el
b

o
o

t

4
0

1.
b

zi
p

2
+4

2
9.

m
cf

h
2

+p
m

d

4
0

3.
gc

c+
4

5
6

.h
m

m
er

4
0

3.
gc

c+
4

2
9

.m
cf

p
m

d
+

45
6

.h
m

m
er

av
er

ag
e

SP

av
er

ag
e

M
P

av
er

ag
e

A
ll

TL
B

 T
ra

n
sl

at
io

n
 L

o
o

ku
p

 T
im

e
sTLB²⁵⁶ sTLB¹²⁸ˣ² sTLB⁶⁴ˣ⁴ sTLB⁶⁴ˣ⁴⁺ʳᵒ sTLB⁶⁴ˣ⁴⁺ˢⁱᵐᵈ

Single-Program (SP) Multi-Program (MP) Average

Figure 8: Set Associative sTLB Translation Lookup Time

0.80X

0.85X

0.90X

0.95X

1.00X

1.05X

1.10X

ke
rn

el
b

u
ild

av
ro

ra

b
at

ik

ec
lip

se fo
p

h
2

jy
th

o
n

lu
in

d
ex

lu
se

ar
ch

p
m

d

su
n

fl
o

w

to
m

ca
t

xa
la

n

4
0

0.
p

er
lb

en
ch

4
0

1.
b

zi
p

2

4
0

3.
gc

c

4
2

9.
m

cf

4
4

5.
go

b
m

k

4
5

6.
h

m
m

er

4
5

8.
sj

en
g

4
6

2.
lib

q
u

an
tu

m

4
6

4.
h

2
6

4
re

f

4
7

1.
o

m
n

et
p

p

4
7

3.
as

ta
r

4
8

3.
xa

la
n

cb
m

k

ke
rn

el
b

o
o

t

4
0

1.
b

zi
p

2
+4

2
9.

m
cf

h
2

+p
m

d

4
0

3.
gc

c+
4

5
6

.h
m

m
er

4
0

3.
gc

c+
4

2
9

.m
cf

p
m

d
+

45
6

.h
m

m
er

av
er

ag
e

SP

av
er

ag
e

M
P

av
er

ag
e

A
ll

Pe
rf

o
rm

an
ce

 Im
p

ro
ve

m
en

t

sTLB²⁵⁶ sTLB¹²⁸ˣ² sTLB⁶⁴ˣ⁴ sTLB⁶⁴ˣ⁴⁺ʳᵒ sTLB⁶⁴ˣ⁴⁺ˢⁱᵐᵈ

Single-Program (SP) Multi-Program (MP) Average

Figure 9: Set Associative sTLB Performance Improvement

and $0xfffffffffffff003,%rsi

lea 0x688(%r14,%rdi,1),%rdi;

cmp (%rdi),%rsi

/* miss way 1 */

jne set2;

retq

set2:

cmp 0x20(%rdi),%rsi

/* miss way 2 */

jne set3;

add 0x20, %rdi

retq

set3:

cmp 0x40(%rdi),%rsi

/* miss way 3 */

jne set4;

add 0x40, %rdi;

retq

set4:

cmp 0x60(%rdi),%rsi

/* miss way 4 */

jne tlb_miss;

add 0x60, %rdi

retq

Listing 4: Emulated 4-way Set-Associative sTLB Walk

While set-associativity decreases TLB miss rate,
significantly more time is spent in sTLB lookups as
Figure 8 shows. sTLB128x2, sTLB64x4, sTLB64x4+ro and
sTLB64x4+simd denotes 128-set 2-way set-associative,

64-set 4-way set-associative, 64-set 4-way set-
associative with sTLB entry reorder (explained later in
this section) and 64-set 4-way set-associative SIMDized
sTLB lookup (see Section 4 respectively). This is a
result of hot sTLB translation entries being installed into
higher ways, i.e., way 2, 3 and 4. Therefore, to lookup
those entries, additional comparisons need to be done.
For this reason, it is desirable to order the translations
with respect to their access frequency so that the more
frequently accessed entry is placed in the lower way of
the set. Accordingly, a lightweight profiling technique
is implemented to track the access count of the sTLB
and to reorder the sTLB entries according to their access
count. A counter is kept per sTLB entry, and the counter
is increased on every sTLB hit to the corresponding
entry. This process increases the sTLB lookup path by
one instruction. Whenever an sTLB miss happens, the
set entries are reordered according to their access counts.

9

As shown in Figure 9, reordering based on access
counts (sTLB64x4+ro) results in small improvements on
occasion. While, conflict misses are reduced, the lookup
path is increased by one or a few instructions depending
on the way of hit. Overall, performance with the 2-way
and the 4-way set-associative sTLBs is lower compared
to the directly mapped sTLB. Accordingly, this work
concludes that higher than one associativity coupled
with serial lookup code is not appropriate for the sTLB
studied.

4 Optimizing sTLB Lookups

sTLB translation takes 13.2% of total emulation time for
the workloads studied. Accordingly, this section presents
two sTLB lookup optimizations. The first attempts to
speed up associative sTLB lookups and the second re-
duces sTLB lookups.

4.1 SIMD set-associative TLB Walk

The major drawback of the set-associative sTLB is that
the different ways in the same set are searched serially.
This can significantly increase the latency of every sTLB
lookup. Using AVX2.0 instructions [19] on the x86
Haswell architecture [10], the different ways of the TLB
can be searched in parallel. The instruction sequence to
do a 4-way set associative sTLB lookup is shown in List-
ing 5. The sTLB is reorganized so that the translated
addresses and the translation offsets of the same set are
laid out contiguously in memory in two separate groups.
This way, a single load instruction can be used to fetch
the translated addresses of four entries of the same set.
As shown in Figure 8 walking the 4-way set associative
sTLB with SIMD instructions increases the time spent
in the code cache by 37.7% on average. Figure 9 shows
that this translates to a 4.5% performance degradation
over the directly-mapped 256-entry baseline TLB. Ac-
cordingly, the conclusion is that presently SIMD accel-
eration of set-associative sTLBs while conceptually ap-
pealing is not beneficial in practice.

/* hash into the set that potentially */

/* contains the matching translation */

/* rbx contains the guest virtual address */

mov %rbx,%rdi

/* find the appropriate TLB entry */

shr $0x7,%rdi

and $0x1ffe0,%edi

/* rbx contains the guest virtual address */

mov %rbx,%rsi

/* check for page crossing */

/* if not aligned, then it can potentially cross page */

and $0xfffffffffffff003,%rsi

/* get the address of the the guest address in the tlb */

lea 0x688(%r14,%rdi,1),%rdi

/* load the guest address to compare */

vmovapd (%rdi),%ymm0

/* broadcast the guest virtual address to %ymm1 */

/* need to store rbx into memory and broadcast */

/* from memory on intel AVX2.0 instruction extension */

mov %rsi, 0x128(%r14);

vbroadcastsd 0x128(%r14), %ymm1;

/* comparison ! */

vcmpeqpd %ymm1,%ymm0,%ymm0;

/* find the matching entry index */

/* by counting up trailing zeros */

vpmovmskb %ymm0, %eax

tzcnt %eax,%eax

/* check whether there is a match, 0x130(%r14) */

/* holds the value 0x20 which indicates that * /

/* there is no match */

cmp %eax, 0x130(%r14)

/* tlb miss */

je tlb_miss;

/* tlb hit, compute the translated host virtual address */

add %eax, %rdi

/* get the addend */

add 0x60(%rdi), %rbx

Listing 5: Emulated TLB Walk

4.2 Translation Coalescing

Translation coalescing (XC) exploits a common scenario
where two accesses happen to fall into the same page.
Specifically, given a pair of effective addresses p and
q off the same base register, i.e., p = Mem(OffsetA,
BaseRegX) and q = Mem(OffsetB, BaseRegX), there is
a good chance that both references will be on the same
page if the difference abs(OffsetA - OffsetB) is small. In
such a scenario, XC does only one translation with a
modified operand length representing the region that en-
compasses both accesses, and computes the second ad-
dress by adding an appropriate offset to the first trans-
lated address. For example, given two 64-bit accesses
at 0x20(%rsp) followed by 0x30(%rsp), the first trans-
lation is done for 0x20(%rsp) and a length of 24 bytes.
The translated address for the 0x30(%rsp) access is cal-
culated by adding an offset of 16. While the discussion
so far assumed coalescing for a pair of addresses, the
technique can be applied to longer access sequences.

To ensure that XC maintains correctness, a check must
be made that the base register is not modified in the sec-
tion of code between the two accesses. To implement
XC, the emulator tracks all the memory accesses as well
as their base registers and offsets in a translation block.
When multiple instructions using the same base register
are identified, XC generates appropriate code when the
first memory access is emulated. If the translation hap-
pens to fall on a single page, the guest-to-host address
translation offset is stored into the CPU structure. Subse-
quent instructions can perform address translation using
a single add instruction as long as a valid offset is found
in the CPU structure.

XC is particularly effective for stack accesses as well
as for function prologues and epilogues where sequences
of pushes and pops are used to save and restore registers.
However, the effectiveness of XC is constrained by trans-
lation unit length since coalescing is not possible across
different translation units. Moreover, since QEMU trans-
lates guest instructions a basic block at a time coalescing
is restricted to within a basic block. As Figure 10 shows,
XC eliminates 7.9% sTLB lookups and this translates to
a 1.2% performance improvement on average.

10

0.80X

0.85X

0.90X

0.95X

1.00X

1.05X

ke
rn

el
b

u
ild

av
ro

ra

b
at

ik

ec
lip

se fo
p

h
2

jy
th

o
n

lu
in

d
ex

lu
se

ar
ch

p
m

d

su
n

fl
o

w

to
m

ca
t

xa
la

n

4
0

0.
p

er
lb

en
ch

4
0

1.
b

zi
p

2

4
0

3.
gc

c

4
2

9.
m

cf

4
4

5.
go

b
m

k

4
5

6.
h

m
m

er

4
5

8.
sj

en
g

4
6

2.
lib

q
u

an
tu

m

4
6

4.
h

2
6

4
re

f

4
7

1.
o

m
n

et
p

p

4
7

3.
as

ta
r

4
8

3.
xa

la
n

cb
m

k

ke
rn

el
b

o
o

t

4
0

1.
b

zi
p

2
+4

2
9.

m
cf

h
2

+p
m

d

4
0

3.
gc

c+
4

5
6

.h
m

m
er

4
0

3.
gc

c+
4

2
9

.m
cf

p
m

d
+

45
6

.h
m

m
er

av
er

ag
e

SP

av
er

ag
e

M
P

av
er

ag
e

A
ll

TL
B

 T
ra

n
sl

at
io

n
 C

o
al

es
ci

n
g

X
la

ti
o

n
 C

o
u

n
t

R
ed

u
ct

io
n

/P
er

fo
rm

an
ce

 Im
p

ro
ve

m
en

t

sTLB²⁵⁶ XlationCount sTLB²⁵⁶⁺ˣᶜ sTLB²⁵⁶ Performance sTLB²⁵⁶⁺ˣᶜ

Single-Program (SP) Multi-Program (MP) Average

Figure 10: Translation Coalescing Performance Improvement

0.80X

0.90X

1.00X

1.10X

1.20X

1.30X

1.40X

1.50X

ke
rn

el
b

u
ild

av
ro

ra

b
at

ik

ec
lip

se fo
p

h
2

jy
th

o
n

lu
in

d
ex

lu
se

ar
ch

p
m

d

su
n

fl
o

w

to
m

ca
t

xa
la

n

4
0

0.
p

er
lb

en
ch

4
0

1.
b

zi
p

2

4
0

3.
gc

c

4
2

9.
m

cf

4
4

5.
go

b
m

k

4
5

6.
h

m
m

er

4
5

8.
sj

en
g

4
6

2.
lib

q
u

an
tu

m

4
6

4.
h

2
6

4
re

f

4
7

1.
o

m
n

et
p

p

4
7

3.
as

ta
r

4
8

3.
xa

la
n

cb
m

k

ke
rn

el
b

o
o

t

4
0

1.
b

zi
p

2
+4

2
9.

m
cf

h
2

+p
m

d

4
0

3.
gc

c+
4

5
6

.h
m

m
er

4
0

3.
gc

c+
4

2
9

.m
cf

p
m

d
+

45
6

.h
m

m
er

av
er

ag
e

SP

av
er

ag
e

M
P

av
er

ag
e

A
ll

Pe
rf

o
rm

an
ce

 Im
p

ro
ve

m
en

t

sTLB²⁵⁶ sTLBᵈˢ sTLB²⁵⁶⁺ᵛ sTLBᵈˢ⁺ᵛ sTLBᵈˢ⁺ᵛ⁺ˣᶜ

Single-Program (SP) Multi-Program (MP) Average

Figure 11: Overall Optimizations Performance Improvement

5 Putting Everything Together

Thus far the various optimizations were studied mostly
in isolation. This section considers combining the vari-
ous techniques and reports the resulting performance im-
provement. As Figure 11 shows, combining dynamic
resizing, victim and XC (sTLBds+v+xc) performs the
best, achieving an average performance improvement
of 24.1% over the baseline 256-entry sTLB. Addition-
ally, this combination proves robust as it performs better
than the baseline on all workloads. An 256-entry sTLB
with 8-entry victim sTLB performs 11.3% better than the
baseline.

6 Conclusions

This work quantitatively measured the time spent in
MMU/TLB emulation and demonstrated that a dynamic

address translation accounts for a significant portion of
overall emulation time. Motivated by this observation,
this work investigated several techniques for improv-
ing sTLB performance. Some of the techniques were
inspired by optimizations applied to existing hardware
TLBs. However, this work also observed that the design
space of software emulated TLBs is different from the
design space of hardware TLBs, thus enabling optimiza-
tions that are different.

Experiments found that some hardware inspired opti-
mizations are not suitable for software TLBs. For ex-
ample, set-associativity does not work well in an sTLB,
mainly due to the fact that an sTLB is searched seri-
ally. Others, such as a victim sTLB work very well.
Software specific techniques such as dynamically resiz-
ing the sTLB worked well as well. Overall, this work
proposed a series optimizations for software emulated
TLBs which collectively were shown to improve emu-

11

lation performance by an average of 24.1%.

References

[1] Fabrice Bellard. Qemu, a fast and portable dy-
namic translator. In Proceedings of the Annual
Conference on USENIX Annual Technical Confer-
ence, ATEC ’05, pages 41–41, Berkeley, CA, USA,
2005. USENIX Association.

[2] Kevin P. Lawton. Bochs: A portable pc emulator
for unix/x. Linux J., 1996(29es), September 1996.

[3] Nathan Binkert, Bradford Beckmann, Gabriel
Black, Steven K. Reinhardt, Ali Saidi, Arkaprava
Basu, Joel Hestness, Derek R. Hower, Tushar Kr-
ishna, Somayeh Sardashti, Rathijit Sen, Korey
Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. The gem5 simulator.
SIGARCH Comput. Archit. News, 39(2):1–7, Au-
gust 2011.

[4] Peter S. Magnusson, Magnus Christensson, Jesper
Eskilson, Daniel Forsgren, Gustav Hållberg, Johan
Högberg, Fredrik Larsson, Andreas Moestedt, and
Bengt Werner. Simics: A full system simulation
platform. Computer, 35(2):50–58, February 2002.

[5] Avadh Patel, Furat Afram, Shunfei Chen, and
Kanad Ghose. Marss: A full system simulator for
multicore x86 cpus. In Proceedings of the 48th
Design Automation Conference, DAC ’11, pages
1050–1055, New York, NY, USA, 2011. ACM.

[6] E. K. Ardestani and J. Renau. ESESC: A Fast
Multicore Simulator Using Time-Based Sampling.
In International Symposium on High Performance
Computer Architecture, HPCA’19, 2013.

[7] Ravi Bhargava, Benjamin Serebrin, Francesco Spa-
dini, and Srilatha Manne. Accelerating two-
dimensional page walks for virtualized systems.
SIGPLAN Not., 43(3):26–35, March 2008.

[8] Stephen M. Blackburn, Robin Garner, Chris Hoff-
mann, Asjad M. Khang, Kathryn S. McKin-
ley, Rotem Bentzur, Amer Diwan, Daniel Fein-
berg, Daniel Frampton, Samuel Z. Guyer, Martin
Hirzel, Antony Hosking, Maria Jump, Han Lee,
J. Eliot B. Moss, Aashish Phansalkar, Darko Ste-
fanović, Thomas VanDrunen, Daniel von Dinck-
lage, and Ben Wiedermann. The dacapo bench-
marks: Java benchmarking development and anal-
ysis. In Proceedings of the 21st Annual ACM SIG-
PLAN Conference on Object-oriented Program-
ming Systems, Languages, and Applications, OOP-

SLA ’06, pages 169–190, New York, NY, USA,
2006. ACM.

[9] John L Henning. Spec cpu2006 benchmark de-
scriptions. ACM SIGARCH Computer Architecture
News, 34(4):1–17, 2006.

[10] Tarush Jain and Tanmay Agrawal. The haswell
microarchitecture–4th generation processor. Inter-
national Journal of Computer Science and Infor-
mation Technologies, 4(3):477–480, 2013.

[11] John Levon. Oprofile manual. Victoria University
of Manchester, 2004.

[12] JVM JVMTI. Tool interface, v1. 0, 2005.

[13] Chi-Keung Luk, Robert Cohn, Robert Muth, Har-
ish Patil, Artur Klauser, Geoff Lowney, Steven Wal-
lace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:
Building customized program analysis tools with
dynamic instrumentation. In Proceedings of the
2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’05,
pages 190–200, New York, NY, USA, 2005. ACM.

[14] Keith Adams and Ole Agesen. A comparison of
software and hardware techniques for x86 virtual-
ization. In ACM SIGOPS Operating Systems Re-
view, volume 40, pages 2–13. ACM, 2006.

[15] Xin Tong, Jack Luo, and Andreas Moshovos.
Qtrace: An interface for customizable full system
instrumentation. In Performance Analysis of Sys-
tems and Software (ISPASS), 2013 IEEE Interna-
tional Symposium on, pages 132–133. IEEE, 2013.

[16] John L. Hennessy and David A. Patterson. Com-
puter Architecture: A Quantitative Approach. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA,
USA, 3 edition, 2003.

[17] Raul A Garibay Jr, Marc A Quattromani, and Dou-
glas Beard. Address translation unit employing a
victim tlb, May 12 1998. US Patent 5,752,274.

[18] J. Bradley Chen, Anita Borg, and Norman P.
Jouppi. A simulation based study of tlb per-
formance. SIGARCH Comput. Archit. News,
20(2):114–123, April 1992.

[19] Nadeem Firasta, Mark Buxton, Paula Jinbo, Kaveh
Nasri, and Shihjong Kuo. Intel avx: New fron-
tiers in performance improvements and energy effi-
ciency. Intel white paper, 2008.

12

