

September 2, 2014

RT0962

Computer Science 15 pages

Research Report

Refactoring of COBOL data models based on

similarities of data field name

Yohei Ueda, Moriyoshi Ohara

IBM Research - Tokyo
IBM Japan, Ltd.
NBF Toyosu Canal Front Building
6-52, Toyosu 5-chome, Koto-ku
Tokyo 135-8511, Japan

Research Division

Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Refactoring of COBOL data models based on similarities of data field names

Yohei Ueda, Moriyoshi Ohara

IBM Research – Tokyo

yohei@jp.ibm.com, ohara@jp.ibm.com

Abstract.
When legacy COBOL applications are converted into modern Java applications,

the number of converted Java classes tends to become bloated due to the con-

siderable differences in the ways data structures are defined in the source and

target languages. To address this problem, we developed a refactoring tool that

reduces the number of data structure definitions in a COBOL copybook by uni-

fying redundant definitions so as to generate more compact Java classes. Our

tool detects similar data structure definitions based on their memory layouts and

the names of their member data fields. The similarity of two field names is cal-

culated as the length of a common substring between the two field names. We

tested our tool with three different COBOL applications, and showed that our

tool eliminated up to 90% of the converted Java classes. We also confirmed

that our refactoring tool rarely unifies unrelated data definitions.

Keywords. Legacy Systems Migration, COBOL Copybooks, Java, Data model,

Refactoring

1 Introduction

To lower the costs of application development and maintenance, many enterprises

are migrating legacy applications written in old programming languages such as

COBOL into new applications written in modern languages such Java. The data

model conversions in these migrations tend to be difficult. The record-oriented nota-

tion to define data structures in COBOL is quite different from the type-oriented nota-

tion in Java, so naive conversions from COBOL data structure definitions to Java

leads to inefficient code, producing converted code with poor maintainability and

poor runtime performance.

The main difference in how to define data structures in the two languages is

whether there is a distinction between a data structure and a named composite type. In

COBOL, named composite types are not supported to define data structures, and

memory layout of each data structure must be directly specified. In other words, there

is no distinction between instances and classes, which are different concepts in Java.

Due to the lack of named data structures in COBOL, COBOL programs tend to

have a large number of duplicated data structure definitions that have identical mem-

ory layout even where the COBOL source code used a single nested data structure.

Converting each data structure into Java classes tends to result in a lot of redundant

classes that represent the same composite type. Similar but different Java classes ap-

pear multiple times in converted source code, so developers cannot easily select ap-

propriate one from such redundant classes.

The bloated number of Java classes also impacts runtime performance of converted

applications. For example, applications that transfer objects via I/O are significantly

incurred due to the high overheads in object serialization. Object serialization is usu-

ally very slow operation in Java, so it is a common practice that a specialized serial-

izer is prepared for each Java class. When redundant Java classes that represent the

same memory layout are generated from COBOL data definitions, redundant Java

methods that serialize the same memory layout are also generated. Java JIT compiler

wastes compilation time and memory area to compile such redundant Java methods

that actually do the same operations.

To solve these problems caused by the bloated number of Java classes, we devel-

oped a refactoring tool that unifies redundant data definitions, which represent an

identical memory layout. To avoid wrong unification of data definitions that are not

intended to represent the same type of information, our tool also compares the names

of their member data fields. The similarity of two field names is calculated by the

length of a common substring between the two field names. Our tool does not unify

the data definitions whose data field names are not similar.

We tested our tool with three different COBOL applications, and showed that our

refactoring tool can eliminate more than 90% of the Java classes naively converted

from one of our COBOL applications. We also empirically confirmed that our refac-

toring tool rarely unifies unrelated data definitions.

The rest of the paper is organized as follows. Section 2 describes the related works.

Section 3 describes the difference between COBOL and Java data definitions. Section

 4 describes the algorithm to unify redundant data definitions. Section 6 describes the

experimental results using three COBOL applications. Section 7 shows the perform-

ance improvements of COBOL-Java data conversions. Section 8 describes conclusion

and future works.

2 Related work

In the context of language translations, many methodologies for automatic, semi-

automatic, and manual conversions have been proposed [1, 2, 4, 5, 7, 10, 11].

Terekhov et al. [4] discuss the difficulties in conversions between two languages

such as COBOL and Java. The difficulties come from semantic language differences

such as supported native types and supported language constructs. Features not sup-

ported in the target language must be emulated to keep the semantics equivalence.

Translated program code with emulated features is usually less readable, and hard to

maintain for programmers that are not familiar with code of the original applications.

To improve the readability of generated code, we may use features available in the

target language that are relatively close to the features in the source language. For

example, we may use a 32-bit integer in the target language for an 8-digit decimal in

the source language. This substitution will keep the equivalent semantics unless over-

flows occur, so we need additional tests to guarantee that such overflows never occur.

In this paper, we employ the second approach in order to focus on model refactoring

between the source and target languages. We can extend our work to use the first

approach to keep the semantics equivalence, but this enhancement is out of our scope,

so we used the second approach to simply our discussion.

Ceccato et al. [5, 9] proposed a precise emulation of legacy language data types in

Java. Their techniques can handle union types similar to redefines in COBOL. We

can enhance our work to support precise COBOL type semantics including redefines

in Java using their techniques.

Type inference for COBOL source code is proposed in the context of program

comprehension [3, 8]. In contrast to our work in which we use data definition infor-

mation in copybooks, they only use the information of the usage of each variable in

the program to detect identical data types. This approach provides useful advisory

information to infer types of copybook items. The type-based approach and our ap-

proach exploit complementing information available in source code, so we can im-

prove preciseness of our approach by utilizing type-based information.

3 Differences between COBOL and Java data definitions

In COBOL, a copybook is a code fragment that can be included into a different

source code using the COPY statement, which is similar to “#include” in C. Copy-

books are mainly used to define data structures, and in this paper we used the word

01 MEMBERINFO

 03 NAME

 05 LASTNAME PIC X(20).

 05 FIRSTNAME PIC X(20).

 03 BIRTHDAY

 05 YEAR PIC 9(4).

 05 MONTH PIC 9(2).

 05 DATE PIC 9(2).

 03 ENROLLDATE

 05 YEAR PIC 9(4).

 05 MONTH PIC 9(2).

 05 DATE PIC 9(2).

 03 CONTACT

 05 ADDRESS PIC X(20).

 05 PHONE PIC X(20).

 03 EMERGENCY

 05 NAME

 07 LASTNAME PIC X(20).

 07 FIRSTNAME PIC X(20).

 05 ADDRESS PIC X(20).

 05 PHONE PIC X(20).

Fig. 1. An Example COBOL copybook

“copybook” for a COBOL data definition. In this section, we describe how COBOL

copybooks are mapped into Java classes.

Fig. 1 shows a COBOL copybook example. This copybook defines a nested data

structure MEMBERINFO. This contains data fields NAME, BIRTHDAY,

ENROLLDATE, CONTACT, and EMERGENCY. Each of these data fields is also a

data structure. NAME contains two data fields LASTNAME and FIRSTNAME, each

of which is a 20-byte string. BIRTHDAY contains three data fields YEAR, MONTH,

and DATE. YEAR is a 4-digit decimal while MONTH and DATE are 2-digit deci-

mals.

A copybook defines a layout of a contiguous memory area. MEMBERINFO de-

fines a 176-byte memory block, and the memory region between offsets 0 and 19 is a

20-byte string, and can be assessed using “LASTNAME OF NAME OF

MEMBERINFO.” “YEAR OF BIRTHDAY OF MEMBERINFO” references 4-digit

decimals at the region between offsets 40 and 43.

Note that copybooks define memory layouts and data field names, but do not de-

class Memberinfo {

 Name name;

 Birthday birthday;

 Enrolldate enrolldate;

 Contact contact;

 Emergency emergency;

}

class Name {

 String lastname, firstname;

}

class Name2 {

 String lastname, firstname;

}

class Birthday {

 int year, month, date;

}

class Enrolldate {

 int year, month, date;

}

class Contact {

 String address, phone;

}

class Emergency {

 Name2 name;

 String address, phone

}

Fig. 3. Java classes generated without refactor-

ing

class Memberinfo {

 Name name;

 Date birthday;

 Date enrolldate;

 Contact contact;

 Emergency emergency;

}

class Name {

 String lastname, firstname;

}

class Date {

 int year, month, date;

}

class Contact {

 String address, phone

}

class Emergency {

 Name name;

 String address, phone;

}

Fig. 2. Java classes generated with refactor-

ing

fine named composite data types. For example, NAME OF MEMBERINFO and

NAME OF EMERGENCY OF MEMBERINFO contains the same sub data fields

FIRSTNAME and FAMILYNAME. There is, however, no explicit notation to specify

that these two data structures use the same memory layout. This means that COBOL

does not have name composite types.

Naïve conversion of this copybook to Java classes is shown in Fig. 3. The class

Memberinfo has data fields birthday, enrolldate, contact, and emergency, whose types

are defined in separated classes. This example shows three noticeable redundant no-

tations.

The first one is that every data field has the same name to its type. The name of the

data field name is Name, and that of enrolldate is Enrolldate, and so on. This result

comes from the fact that there is no distinction between classes and instances in

COBOL.

The second one is that the two separated classes are generated for Name. One of

the generated classes is renamed to Name2 to avoid name collision. Both Name and

Name2 has the same fields with the same types, so these two classes can be consid-

ered as identical types.

The third one is that the classes Birthday and Enrolldate have different names, but

have the data fields with the same names and types. Thus, both the two classes repre-

sent an identical memory layout with identical field names, and can be considered as

synonym types.

We call a data structure that converted to identical and synonym types a redundant

data definition. By definition, a redundant data definition represents the same memory

layout to another redundant data definition.

Copybooks in real workloads commonly have redundant data definitions. For ex-

ample, one of our benchmark workloads has a copybook that represents a 500KB data

structure, and contains tens of thousands of data fields. The copybook represents a

nested data structure, and thus can be converted into a set of Java classes. Naively

converted Java classes are about 8,000 classes, but 90% of them are redundant ones.

Redundant classes degrade both maintainability and runtime performance of appli-

cations.

In the maintainability perspective, redundant Java classes spoil the readability of

source code. When a programmer updates a class, he/she must check whether another

class represents the same data structure, and care about consistency among redundant

classes. When a programmer needs to write a new code using a class, he/she cannot

easily select appropriate one from many similar classes.

In the performance perspective, loading redundant Java classes consumes a certain

amount of internal memory in Java VM to hold metadata of the classes. The Just-in-

time compiler also consumes time and memory area to compile the methods of the

redundant classes. JIT compiler tries to compile frequently executed methods, but if

too many methods are compiled, compilation takes too much time to complete, and

degrades runtime performance. Compiling too many methods also wastes memory

areas for JIT-compiled execution code. When memory areas for JIT-compiled code

runs out, remaining methods cannot be compiled, and are executed in interpreter

mode. Interpreter mode is much slower then JIT mode, so the runtime performance is

significantly degraded.

4 Unification of redundant data definitions

To avoid the degradation of maintainability and performance due to redundant data

definitions, we reduce the number of generated classes by unifying redundant data

definitions. Fig. 2 shows a generated Java classes with redundant classes unified. First,

the identical classes Name and Name2 are unified into a single class Name, and the

declarations of the data fields in types Name and Name2 are changed to use the same

type Name. The synonym classes Birthday and Enrolldate are unified into a new class

Date, and the data fields of types Birthday and Enrolldate are changed to use the new

unified type Date. Note that only the types of data fields are changed and the names of

data fields are not changed.

Unification of redundant classes does not change the behaviors of converted appli-

cation programs since the memory layout is kept unchanged. That is, unification only

changes the classes, and does not change instantiated data. In COBOL, copybooks

define memory layout of data, and does not define types, so COBOL programs do not

contain type operations that may change program behavior when types are unified.

Therefore, the program behaviors of converted application programs are unchanged

during type unifications.

This unification process reduces the number of generated classes, from 7 to 5 in

this example, and reduces necessary resources for class loading and JIT compilation.

Moreover, the result class definitions become clearer for programmers than before.

Before unification, both the data fields birthday and enrolldate hold date information,

but they use different types Birthday and Enrolldate. There is no explicit notation for

the fact that both the data fields represent date information. After unification, both

data fields use the same type Date, so programmers can easily understand that both

the fields contain the same type of information.

The outline of our algorithm to decide whether given two types A and B can be uni-

fied is as follow:

1. If the total size of A equals to that of B, then go to Step 2. Otherwise A and B can-

not be unified.

2. If the number of data fields of A equals to that of B, then go to Step 3. Otherwise A

and B cannot be unified.

3. For A’s i-th data field ai and B’s i-th data field bi, if the following four conditions

are met, then A and B can be unified. Otherwise A and B cannot be unified.

(a) The size of ai equals to that of bi

(b) The offset of ai from the beginning of A equals to the offset of bi from the be-

ginning of B

(c) Both ai and bi represent the same primitive type, or both ai and bi represent the

same composite type

(d) The data field name of ai equals or is similar to the data field name of bi

Steps 3 (a), (b), and (c) check whether the two data definitions represent the same

memory layout or not. In Step 3 (c), we need to compare two composite types when

the two data fields are not primitive types. This means that we need to check data

definitions ai and bi recursively.

In Step 3 (d), we compare data field name of ai and bi after we confirmed that the ai

and bi represents the same memory layout. This comparison checks whether the two

data structures that represent the same memory layout actually represent the same

type of information. For example, if A only has a data field of an 8-digit decimal inte-

ger that represents a birthday of a customer, and B only has a data field of an 8-digit

decimal integer for serial number for a customer, then A and B represents the same

memory layout, which is 8-digit decimal integer, but represents different types of

information. We can distinguish this difference by examining the data filed names.

When the names of the two data fields are exactly matched, we can confidently con-

sider the two fields represent the same type of information.

In the cases when the two names are not exactly matched, we still have opportuni-

ties of unification. We found that typical COBOL applications have many unifiable

data definitions whose data fields are not matched exactly but are similar. We meas-

ure this similarity by detecting the longest common substring [16] of two data field

names.

We determine the similarity between the two strings based on a calculated value

similarity ratio. A similarity ratio is the length of the longest common substring be-

tween the two strings divided by the length of the shorter string. If the similarity ratio

of the two data field names is more than a given threshold, then we consider that the

two data fields represent the same category of information.

5 Implementation of the refactoring tool

Our refactoring tool analyzes given COBOL copybook files, and generates refac-

tored Java classes that represent the same data model defined in the original copy-

books. The algorithm of data model refactoring is described in Section 4.

In our implementation of our refactoring tool, we used IBM COBOL compiler to

extract information of data definitions in COBOL copybooks. The compiler can gen-

erate metadata of COBOL source code in the format of XML Metadata Interchange

(XMI) [12].

A generated XMI file contains name and data field definitions of every data defini-

tion in a copybook. A data field definition contains its size and offset as well as type

information. If the data field is a primitive type, then the details of the primitive type

is described. Examples of supported primitive types are binary integers, decimal inte-

gers, strings, and empty fillers. If the data field is a composite type, then a reference

ID for the composite type is provided. The actual definition of the referenced compos-

ite type is available elsewhere in the XMI file.

Our tool reads a generated XMI file from copybooks by using a usual XML parser

(StAX [13]), and analyzes the data definitions and applies our unification algorithm to

every pair of data definitions in the XMI file.

After unification of data definitions, our tool generates final Java files, each of

which contains a Java class of a unified data definition.

Each generated Java class has access methods (getters and setters) for its data

fields. Users can add new methods to the generated classes for their own purposes.

Automatic generation of method code for generated classes (except for access meth-

ods) is out of our scope at the moment. Generating method code requires analysis of

COBOL logic code in addition to data definitions. Such automatic generation of Java

methods from COBOL source code is discussed in the literatures [2], and integration

and enhancement to our refactoring tool is our future work.

6 Experimental results

We conducted experiments to evaluate our unification algorithm by applying our

refactoring tool to the copybooks of our COBOL benchmarks. Our benchmark con-

sists of three applications RULE, AUTO, and BANK. RULE is a business rule appli-

cation that checks validity of items filled in an application form input by a customer.

AUTO is an application of an automobile manufacturer. BANK is an application of

core banking system. These benchmarks are internal benchmarks developed in our

company based on real production applications.

Fig. 4 shows the percentage of the number of redundant Java classes eliminated by

our refactoring tool with the similarity ratio changing from 0% to 100%. The similar-

ity ratio 100% is the case that exact matching was used for comparison of data field

names. 0% is the case that no comparison of data field names was done.

Fig. 4. Percentage of reduced Java classes

0%

20%

40%

60%

80%

100%

0% 25% 50% 75% 100%

Percentage of matched string length (similarity ratio)

P
er

c
en

ta
g
e
 o

f
re

d
u

ce
d

 J
a
v

a
 c

la
ss

es

RULE

AUTO

BANK

In the case of RULE with the similarity ratio 100%, we observed 90% Java classes

were determined to be redundant, so the total number of classes was reduced to one-

tenth of the number of Java classes generated without our refactoring tool. This result

indicates that redundant data types frequently appear in the copybook of RULE.

The copybooks in RULE are nested, and some copybooks are imported into multi-

ple copybooks. The data definitions in the imported copybook are expanded into the

importing copybook multiple times. This is the main reason why identical data struc-

tures frequently appear multiple times in RULE. Other than these cases with nested

copybooks, we also found the cases that an identical data structure is explicitly de-

fined multiple times in a single copybook.

As the similarity ratio decreases from 100% to 0%, the percentage of reduced Java

classes in RULE gradually increased from 90% to 96% as shown in Fig. 4. This is

because not identical but similar data definitions exist in the copybooks.

An example of such similar data definitions is as follows:

01 STORE-INFO

 03 MAIN-CONTACT

 05 MAIN-NAME PIC X(20).

 05 MAIN-PHONE PIC 9(10).

 03 SUB-CONTACT

 05 SUB-NAME PIC X(20).

 05 SUB-PHONE PIC 9(10).

In this example, both MAIN_CONTACT and SUB_CONTACT contain data fields

for a person name of 20-byte string. However, the data field names are different even

though they have the common suffix “NAME.” The same applies to the data field for

a phone number. Exact matching does not recognize these similarities between the

data fields. When the similarity ratio is less than 100%, partial marching is used to

compare the data field names, and can capture the situation of this example.

The longest common substring between “MAIN-NAME” and “SUB-NAME” is “-

NAME”, and its length is 5. The shorter field name is “SUB-NAME”, and its length

is 8. Then the similarity between “MAIN-NAME” and “SUB-NAME” is 5/8 = 62.5%.

The similarity between “MAIN-PHONE” and “SUB-PHONE” is 6/9 = 66.7%. In the

case that the threshold of the similarity ratio is 50%, the ratios of both fields (62.5%

and 66.7%) are above the threshold, so the refactoring tool determines that MAIN-

CONTACT and SUB-CONTACT are data definitions that represent the same type.

Another example of such similar data definitions is as follows:

01 STORE-INFO

 03 CONTACT-1

 05 NAME-1 PIC X(20).

 05 PHONE-1 PIC 9(10).

 03 CONTACT-1

 05 NAME-2 PIC X(20).

 05 PHONE-2 PIC 9(10).

 03 CONTACT-3

 05 NAME-3 PIC X(20).

 05 PHONE-3 PIC 9(10).

This example shows the data definition of store information that contains three

contact points. The data fields of these three contact information have common pre-

fixes and can be unified by our refactoring tool since the similarity ratio of every pair

of the data definitions is above a certain threshold.

This kind of repeated appearance of the same data definitions should be repre-

sented as an array, but is a common practice in the real world. Our refactoring tool

has a functionality that detects this kind of repetition, and replaces it with a Java ar-

ray.

The 50% similarity ratio achieves 95% reduction percentage. Increasing the simi-

larity ratio more than 50% did not significantly improve the reduction percentage.

This means that the 50% similarity ratio is enough to refactor the copybooks of

RULE.

In the cases of AUTO and BANK, the reduction percentages were 11% and 7 %

respectively at the 100% similarity ratio. Our refactoring tool is also effective for thee

two applications, but we observed smaller percentages of AUTO and BANK than that

of RULE, mainly because AUTO and BANK do not have nesting copybooks.

As the similarity ratio decreased, the reduction percentages of AUTO and BANK

significantly increased, and reached to 33% and 25% respectively at the similarity

ratio 50%.

The reduction percentage of BANK did not significantly increase when the similar-

ity ratio decreased from 50% to 0%. This means that the similarity ratio 50% is

enough for refactoring the copybooks of BANK.

In contrast to BANK, the reduction percentage of AUTO still increased when the

similarity ratio decreased from 50% to 0%. The similarity ratio 0% means that the

refactoring tool did not compare the field names at all, and only compared the offset,

size, type of each data field. A small similarity ratio achieves a high reduction per-

centage, but may lead to a wrong decision. The following example shows such a

wrong decision in unification:

 01 BIRTHDAY

 03 YEAR 9(4).

 03 MONTH 9(2).

 03 DAY 9(2).

 01 STATUS

 03 CODE PIC 9(4).

 03 MAJOR PIC 9(2).

 03 MINOR PIC 9(2).

BIRTHDAY and STATUS are intended to represent completely different types of

information, but both data definitions have the same memory layout by coincidence.

BIRTHDAY contains one 4-digit decimal integer and two 2-digit decimal integers,

and STATUS contains the same data fields in the same order. Only the difference is

the names of the data fields.

When the similarity ratio is 0%, BIRTHDAY and STATUS are considered the

same type, and are merged as a single Java class. Using a single Java class for vari-

ables that represent completely different types of information degrades readability of

source code. Note that this wrong unification degrades code readability, but does not

lead to an unintentional misbehavior of converted code.

7 Performance of object serialization

As an application of our refactoring tool, we implemented a generator of data con-

version code for data communication between COBOL and Java applications. Mis-

sion critical COBOL applications are still indispensable in many companies, and it is

common practice that newly developed applications written in Java need to communi-

cate with such mission critical COBOL applications. The performance of data conver-

sion between COBOL and Java is very important in such environment.

The Java language provides a default object serialization mechanism [14] that is

applicable for objects of any serializable classes. We may use this mechanism for

COBOL-Java communication, but we avoid using it since this mechanism is known to

be slow in most cases at the cost of its versatility [15]. The default serializer looks up

type information of each data fields of the class of a given object since the serializer

need to handle objects of arbitrary classes. This runtime type checking is slow. Even

when the class of input objects is already known, the runtime type checks cannot be

skipped in the default serializer.

To overcome the slow Java’s default serialization mechanism, it is common prac-

tice to prepare a specialized serializer for each class that requires serialization. Our

generator of data conversion code generates serializer and deserializer code in Java

for Java classes that generated by our refactoring tool. The generated serializer con-

verts a Java object into a byte stream that represents corresponding data in COBOL.

The generated deserializer code converts a byte stream that represents data in COBOL

into a corresponding Java object.

Specialized serializers usually provide better serialization performance than the de-

fault serializer when the number of classes is small. However, when the number of

classes is large, specialized serializers as many as the classes are also generated. As

described earlier, loading too many Java classes wastes internal resources of JVM,

and are not well handled by the JIT compiler. This leads to performance degradation

of COBOL-Java data conversions. Reducing the number of Java classes with our

refactoring tool also reduces the number of generated serializer, and improves the

performance of COBOL-Java data conversions.

The example code of a deserializer is as follows:

// Data structure definition of MyData

class MyData {

 private SubData data1;

 private SubData data2;

 SubData getData1() { return this.data1; }

 void setData1(SubData data1) { this.data1 = data1; }

 SubData getData2() { return this.data2; }

 void setData2(SubData data2) { this.data2 = data2; }

 // Unmarshaller for MyData

 static MyData unmarshal(byte[] buf, int offset, int

len) {

 MyData myData = new MyData();

 myData.setData1(SubData.unmarshal(buf, offset+0, 20);

 myData.setData2(SubData.unmarshal(buf, offset+20, 20)

 return myData;

}

class SubData {

 private int num; // 10-digit integer

 private String str; // 10-byte string

 int getNum() { return this.value; }

 void setNum(int num) { this.num = num; }

 int getStr() { return this.str; }

 void setStr(int str) { this.str = str; }

 // Unmarshaller for SubData

 static SubData unmarshal(byte[] buf, int offset, int

len) {

 SubData subData = new SubData();

 subData.setNum(Utils.unmarshalInt(buf, offset+0,

10));

 subData.setStr(Utils.unmarshallStringFromBuffer(buf,

offset+10, 10));

 return subData;

 }

}

The class MyData contains two data fields of the class SubData defined subse-

quently. The class SubData contains data fields of one integer and one string. These

two fields are a 10-digit decimal integer and 10-byte string in COBOL respectively.

The methods called unmarshal are deserializers of the classes, and generated by our

serializer generator. SubData.unmarshal deserializes a 20-byte byte block into a pair

of an integer and a string. The utility method unmarshalInt converts a 10-digit deci-

mal integer into 32-bit binary integer. Another utility method unmarshalStringFrom-

Buffer converts a 10-byte EBCDIC string into a Java’s Unicode string.

MainData.unmarshal calls SubData.unmarshall twice to converts a 40-byte byte

block in COBOL data representation into a Java object contains that holds references

to two SubData objects.

The above example only contains deserializers, but serializers that convert data in

reverse order are also generated.

Fig. 5 shows the performance of serialization between COBOL and Java data repre-

sentations when we applied our serializer generator into the copybooks of RULE.

The graph shows the average elapsed time of round-trip data conversions from

COBOL to Java, and back to COBOL. The converted data is a nested copybook in

RULE and its size is about 500KB. The experiments were conducted in IBM zEnter-

prise EC12 with z/OS V1.13. The used Java VM is IBM SDK V8 Beta3.

As the bars in the graph show, our refactoring tool decreased the elapsed time from

54 to 12 milliseconds, and achieved 4.4 times performance improvements in serializa-

tion. The bars contain CPU cycle breakdowns collected by a performance profiler.

Without our refactoring, CPU time spent in JVM code was dominant, and the portion

of JIT-compiled code is small. This indicates that most of method execution is in the

interpreter mode. We analyzed this problem, and found out that the memory areas for

JIT-compiled code was full, and the JIT compiler failed to compile the methods of

generated serializers. We increased the size of the memory areas for JIT compiled

code up to 512 MB, but it did not help to resolve the problem.

With our refactoring, the portion of JVM code significantly reduced, and most of

the code was executed in the JIT mode. This is the main reason why our refactoring

tool improved the performance of data conversions between COBOL and Java.

Fig. 5. Serialization performance of RULE

0

10

20

30

40

50

60

70

Without

refactoring

With refactoring

m
il
li
s
e
c
o

n
d

Other

OS code

JVM code

JIT-compiled
code

8 Conclusions and future works

We proposed a refactoring method that reduces the number of data structure defini-

tions in a COBOL copybook by unifying redundant definitions. Our refactoring

method is effective for the code bloat problem that typically occurs when data models

of legacy COBOL applications are converted into Java data models.

Our refactoring tool detects similar data structure definitions based on their mem-

ory layouts as well as the names of their member data fields. The similarity of two

field names is calculated by the length of a common substring between the two field

names. We tested our tool with three different COBOL applications, and showed that

out tool eliminated up to 90% of naively converted Java classes.

Reduction of the Java classes improves readability of source code. We also showed

that our refactoring tool improves the performance of data conversions between

COBOL and Java.

We introduced a threshold value called similarity ratio to adjust how aggressively

the tool unifies similar data definitions. Currently, the tool users have to carefully

select an appropriate threshold value by examining the results of our refactoring tool.

In our future work, we will develop an automatic mechanism to unify redundant data

definitions for a given copybook without tuning a parameter value.

To improve the preciseness of our unification mechanism, we need more informa-

tion about data items of copybooks. Currently we only use the information available

in copybooks, and the information that can be extracted from logic code is not used

for refactoring. We will enhance our work so that the refactoring tool analyzes how

copybook items are used in source code by using various code analysis methodologies

[3, 6, 7].

References

1. Sneed, H.M.: Migrating from COBOL to Java, Software Maintenance (ICSM), 2010 IEEE

International Conference on , vol., no., pp.1,7, 12-18 Sept. 2010

2. Mossienko, M.: Automated Cobol to Java Recycling, Software Maintenance and Reengi-

neering, 2003. Proceedings. Seventh European Conference on , vol., no., pp.40,50, 26-28

March 2003

3. van Deursen, A.; Moonen, L.: Understanding COBOL systems using inferred types, Pro-

gram Comprehension, 1999. Proceedings. Seventh International Workshop on , vol., no.,

pp.74,81, 1999

4. Terekhov, A.A., Verhoef, C.: The Realities of Language Conversions, Software, IEEE ,

vol.17, no.6, pp.111,124, Nov/Dec 2000

5. Ceccato, M., Dean, T.R., Tonella, P.; Marchignoli, D.: Data Model Reverse Engineering in

Migrating a Legacy System to Java, Reverse Engineering, 2008. WCRE '08. 15th Working

Conference on , vol., no., pp.177,186, 15-18 Oct. 2008

6. Høst, E.W, Østvold, B.M: Debugging method names, In European Conference on Object-

Oriented Programming (ECOOP 2009)

7. Eierman, M.A., Dishaw, M.T.: The process of software maintenance: a comparison of ob-

ject-oriented and third-generation development languages, Journal of Software Mainte-

nance and Evolution: Research and Practice archive Volume 19 Issue 1, January 2007

8. van Deursen, A., Moonen, L.: Exploring legacy systems using types, Reverse Engineering,

2000. Proceedings. Seventh Working Conference on , vol., no., pp.32,41, 2000

9. Ceccato, M., Dean, T. R., Tonella, P., Marchignoli, D.: Migrating legacy data structures

based on variable overlay to Java, Journal of Software Maintenance, 2010, 22, 211-237

10. Wiggerts, T., Bosma, H., Fielt, E.: Scenarios for the identification of objects in legacy sys-

tems, Reverse Engineering, 1997. Proceedings of the Fourth Working Conference on ,

vol., no., pp.24,32, 6-8 Oct 1997

11. Bisbal, J., Lawless, D., Bing Wu, Grimson, J.: Legacy information systems: issues and di-

rections, Software, IEEE , vol.16, no.5, pp.103,111, Sep/Oct 1999

12. Cover, R: XML Metadata Interchange (XMI), 2001

13. The Streaming API for XML (StAX), http://stax.codehaus.org/

14. Java Object Serialization Specification,

http://docs.oracle.com/javase/7/docs/platform/serialization/

spec/serialTOC.html
15. Philippsen, M, and Haumacher, B: More efficient object serialization, Parallel and Distrib-

uted Processing. Springer Berlin Heidelberg, 1999. 718-732.

16. Cormen, T.H., Leiserson, C,E, Rivest, R.L., Stein, C: Introduction to Algorithms (3rd ed.),

MIT Press (2009)

