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Abstract.  
When legacy COBOL applications are converted into modern Java applications, 

the number of converted Java classes tends to become bloated due to the con-

siderable differences in the ways data structures are defined in the source and 

target languages. To address this problem, we developed a refactoring tool that 

reduces the number of data structure definitions in a COBOL copybook by uni-

fying redundant definitions so as to generate more compact Java classes.  Our 

tool detects similar data structure definitions based on their memory layouts and 

the names of their member data fields. The similarity of two field names is cal-

culated as the length of a common substring between the two field names. We 

tested our tool with three different COBOL applications, and showed that our 

tool eliminated up to 90% of the converted Java classes.  We also confirmed 

that our refactoring tool rarely unifies unrelated data definitions. 

Keywords. Legacy Systems Migration, COBOL Copybooks, Java, Data model, 

Refactoring 

1 Introduction 

To lower the costs of application development and maintenance, many enterprises 

are migrating legacy applications written in old programming languages such as 

COBOL into new applications written in modern languages such Java. The data 

model conversions in these migrations tend to be difficult. The record-oriented nota-

tion to define data structures in COBOL is quite different from the type-oriented nota-

tion in Java, so naive conversions from COBOL data structure definitions to Java 

leads to inefficient code, producing converted code with poor maintainability and 

poor runtime performance. 

The main difference in how to define data structures in the two languages is 

whether there is a distinction between a data structure and a named composite type. In 

COBOL, named composite types are not supported to define data structures, and 

memory layout of each data structure must be directly specified. In other words, there 

is no distinction between instances and classes, which are different concepts in Java. 

Due to the lack of named data structures in COBOL, COBOL programs tend to 

have a large number of duplicated data structure definitions that have identical mem-

ory layout even where the COBOL source code used a single nested data structure. 

Converting each data structure into Java classes tends to result in a lot of redundant 

classes that represent the same composite type. Similar but different Java classes ap-



pear multiple times in converted source code, so developers cannot easily select ap-

propriate one from such redundant classes. 

The bloated number of Java classes also impacts runtime performance of converted 

applications. For example, applications that transfer objects via I/O are significantly 

incurred due to the high overheads in object serialization. Object serialization is usu-

ally very slow operation in Java, so it is a common practice that a specialized serial-

izer is prepared for each Java class.  When redundant Java classes that represent the 

same memory layout are generated from COBOL data definitions, redundant Java 

methods that serialize the same memory layout are also generated.  Java JIT compiler 

wastes compilation time and memory area to compile such redundant Java methods 

that actually do the same operations. 

To solve these problems caused by the bloated number of Java classes, we devel-

oped a refactoring tool that unifies redundant data definitions, which represent an 

identical memory layout. To avoid wrong unification of data definitions that are not 

intended to represent the same type of information, our tool also compares the names 

of their member data fields. The similarity of two field names is calculated by the 

length of a common substring between the two field names. Our tool does not unify 

the data definitions whose data field names are not similar. 

We tested our tool with three different COBOL applications, and showed that our 

refactoring tool can eliminate more than 90% of the Java classes naively converted 

from one of our COBOL applications.  We also empirically confirmed that our refac-

toring tool rarely unifies unrelated data definitions. 

The rest of the paper is organized as follows. Section  2 describes the related works. 

Section  3 describes the difference between COBOL and Java data definitions. Section 

 4 describes the algorithm to unify redundant data definitions. Section  6 describes the 

experimental results using three COBOL applications.  Section  7 shows the perform-

ance improvements of COBOL-Java data conversions. Section  8 describes conclusion 

and future works. 

2 Related work 

In the context of language translations, many methodologies for automatic, semi-

automatic, and manual conversions have been proposed [ 1,  2,  4,  5,  7,  10,  11]. 

Terekhov et al. [ 4] discuss the difficulties in conversions between two languages 

such as COBOL and Java. The difficulties come from semantic language differences 

such as supported native types and supported language constructs. Features not sup-

ported in the target language must be emulated to keep the semantics equivalence.  

Translated program code with emulated features is usually less readable, and hard to 

maintain for programmers that are not familiar with code of the original applications. 

To improve the readability of generated code, we may use features available in the 

target language that are relatively close to the features in the source language. For 

example, we may use a 32-bit integer in the target language for an 8-digit decimal in 

the source language.  This substitution will keep the equivalent semantics unless over-

flows occur, so we need additional tests to guarantee that such overflows never occur.  



In this paper, we employ the second approach in order to focus on model refactoring 

between the source and target languages. We can extend our work to use the first 

approach to keep the semantics equivalence, but this enhancement is out of our scope, 

so we used the second approach to simply our discussion. 

Ceccato et al. [ 5,  9] proposed a precise emulation of legacy language data types in 

Java.  Their techniques can handle union types similar to redefines in COBOL. We 

can enhance our work to support precise COBOL type semantics including redefines 

in Java using their techniques. 

Type inference for COBOL source code is proposed in the context of program 

comprehension [ 3,  8].  In contrast to our work in which we use data definition infor-

mation in copybooks, they only use the information of the usage of each variable in 

the program to detect identical data types. This approach provides useful advisory 

information to infer types of copybook items. The type-based approach and our ap-

proach exploit complementing information available in source code, so we can im-

prove preciseness of our approach by utilizing type-based information. 

3 Differences between COBOL and Java data definitions 

In COBOL, a copybook is a code fragment that can be included into a different 

source code using the COPY statement, which is similar to “#include” in C. Copy-

books are mainly used to define data structures, and in this paper we used the word 

01  MEMBERINFO 

  03  NAME 

    05  LASTNAME    PIC X(20). 

    05  FIRSTNAME   PIC X(20). 

  03  BIRTHDAY 

    05  YEAR        PIC 9(4). 

    05  MONTH       PIC 9(2). 

    05  DATE        PIC 9(2). 

  03 ENROLLDATE 

    05  YEAR        PIC 9(4). 

    05  MONTH       PIC 9(2). 

    05  DATE        PIC 9(2). 

  03 CONTACT 

    05  ADDRESS     PIC X(20). 

    05  PHONE       PIC X(20). 

  03 EMERGENCY 

    05  NAME 

      07  LASTNAME  PIC X(20). 

      07  FIRSTNAME PIC X(20). 

    05  ADDRESS     PIC X(20). 

    05  PHONE       PIC X(20). 

 

Fig. 1. An Example COBOL copybook 



“copybook” for a COBOL data definition. In this section, we describe how COBOL 

copybooks are mapped into Java classes.  

Fig. 1 shows a COBOL copybook example. This copybook defines a nested data 

structure MEMBERINFO. This contains data fields NAME, BIRTHDAY, 

ENROLLDATE, CONTACT, and EMERGENCY.  Each of these data fields is also a 

data structure. NAME contains two data fields LASTNAME and FIRSTNAME, each 

of which is a 20-byte string. BIRTHDAY contains three data fields YEAR, MONTH, 

and DATE.  YEAR is a 4-digit decimal while MONTH and DATE are 2-digit deci-

mals.  

A copybook defines a layout of a contiguous memory area. MEMBERINFO de-

fines a 176-byte memory block, and the memory region between offsets 0 and 19 is a 

20-byte string, and can be assessed using “LASTNAME OF NAME OF 

MEMBERINFO.”  “YEAR OF BIRTHDAY OF MEMBERINFO” references 4-digit 

decimals at the region between offsets 40 and 43. 

Note that copybooks define memory layouts and data field names, but do not de-

class Memberinfo { 

  Name name; 

  Birthday birthday; 

  Enrolldate enrolldate; 

  Contact     contact; 

  Emergency emergency; 

} 

class Name { 

  String lastname, firstname; 

} 

class Name2 { 

  String lastname, firstname; 

} 

class Birthday { 

  int year, month, date; 

} 

class Enrolldate { 

  int year, month, date; 

} 

class Contact { 

  String address, phone; 

} 

class Emergency { 

  Name2 name; 

  String address, phone 

} 

 

Fig. 3. Java classes generated without refactor-

ing 

class Memberinfo { 

  Name name; 

  Date     birthday; 

  Date     enrolldate; 

  Contact  contact; 

  Emergency emergency; 

} 

class Name { 

  String lastname, firstname; 

} 

class Date { 

  int year, month, date; 

} 

class Contact { 

  String address, phone 

} 

class Emergency { 

  Name name; 

  String address, phone; 

} 

 

Fig. 2. Java classes generated with refactor-

ing 



fine named composite data types.  For example, NAME OF MEMBERINFO and 

NAME OF EMERGENCY OF MEMBERINFO contains the same sub data fields 

FIRSTNAME and FAMILYNAME. There is, however, no explicit notation to specify 

that these two data structures use the same memory layout. This means that COBOL 

does not have name composite types. 

Naïve conversion of this copybook to Java classes is shown in Fig. 3. The class 

Memberinfo has data fields birthday, enrolldate, contact, and emergency, whose types 

are defined in separated classes.  This example shows three noticeable redundant no-

tations. 

The first one is that every data field has the same name to its type. The name of the 

data field name is Name, and that of enrolldate is Enrolldate, and so on. This result 

comes from the fact that there is no distinction between classes and instances in 

COBOL. 

The second one is that the two separated classes are generated for Name.  One of 

the generated classes is renamed to Name2 to avoid name collision. Both Name and 

Name2 has the same fields with the same types, so these two classes can be consid-

ered as identical types. 

The third one is that the classes Birthday and Enrolldate have different names, but 

have the data fields with the same names and types. Thus, both the two classes repre-

sent an identical memory layout with identical field names, and can be considered as 

synonym types. 

We call a data structure that converted to identical and synonym types a redundant 

data definition. By definition, a redundant data definition represents the same memory 

layout to another redundant data definition.  

Copybooks in real workloads commonly have redundant data definitions. For ex-

ample, one of our benchmark workloads has a copybook that represents a 500KB data 

structure, and contains tens of thousands of data fields. The copybook represents a 

nested data structure, and thus can be converted into a set of Java classes. Naively 

converted Java classes are about 8,000 classes, but 90% of them are redundant ones. 

Redundant classes degrade both maintainability and runtime performance of appli-

cations. 

In the maintainability perspective, redundant Java classes spoil the readability of 

source code. When a programmer updates a class, he/she must check whether another 

class represents the same data structure, and care about consistency among redundant 

classes. When a programmer needs to write a new code using a class, he/she cannot 

easily select appropriate one from many similar classes. 

In the performance perspective, loading redundant Java classes consumes a certain 

amount of internal memory in Java VM to hold metadata of the classes. The Just-in-

time compiler also consumes time and memory area to compile the methods of the 

redundant classes.  JIT compiler tries to compile frequently executed methods, but if 

too many methods are compiled, compilation takes too much time to complete, and 

degrades runtime performance.  Compiling too many methods also wastes memory 

areas for JIT-compiled execution code. When memory areas for JIT-compiled code 

runs out, remaining methods cannot be compiled, and are executed in interpreter 



mode. Interpreter mode is much slower then JIT mode, so the runtime performance is 

significantly degraded. 

4 Unification of redundant data definitions 

To avoid the degradation of maintainability and performance due to redundant data 

definitions, we reduce the number of generated classes by unifying redundant data 

definitions. Fig. 2 shows a generated Java classes with redundant classes unified. First, 

the identical classes Name and Name2 are unified into a single class Name, and the 

declarations of the data fields in types Name and Name2 are changed to use the same 

type Name. The synonym classes Birthday and Enrolldate are unified into a new class 

Date, and the data fields of types Birthday and Enrolldate are changed to use the new 

unified type Date. Note that only the types of data fields are changed and the names of 

data fields are not changed. 

Unification of redundant classes does not change the behaviors of converted appli-

cation programs since the memory layout is kept unchanged. That is, unification only 

changes the classes, and does not change instantiated data. In COBOL, copybooks 

define memory layout of data, and does not define types, so COBOL programs do not 

contain type operations that may change program behavior when types are unified. 

Therefore, the program behaviors of converted application programs are unchanged 

during type unifications. 

This unification process reduces the number of generated classes, from 7 to 5 in 

this example, and reduces necessary resources for class loading and JIT compilation.  

Moreover, the result class definitions become clearer for programmers than before. 

Before unification, both the data fields birthday and enrolldate hold date information, 

but they use different types Birthday and Enrolldate. There is no explicit notation for 

the fact that both the data fields represent date information.  After unification, both 

data fields use the same type Date, so programmers can easily understand that both 

the fields contain the same type of information. 

The outline of our algorithm to decide whether given two types A and B can be uni-

fied is as follow: 

1. If the total size of A equals to that of B, then go to Step 2. Otherwise A and B can-

not be unified. 

2.  If the number of data fields of A equals to that of B, then go to Step 3. Otherwise A 

and B cannot be unified. 

3. For A’s i-th data field ai and B’s i-th data field bi, if the following four conditions 

are met, then A and B can be unified. Otherwise A and B cannot be unified. 

(a) The size of ai equals to that of bi  

(b) The offset of ai from the beginning of A equals to the offset of bi from the be-

ginning of B 

(c) Both ai and bi represent the same primitive type, or both ai and bi represent the 

same composite type 

(d) The data field name of ai equals or is similar to the data field name of bi 

 



Steps 3 (a), (b), and (c) check whether the two data definitions represent the same 

memory layout or not. In Step  3  (c), we need to compare two composite types when 

the two data fields are not primitive types. This means that we need to check data 

definitions ai and bi recursively. 

In Step  3  (d), we compare data field name of ai and bi after we confirmed that the ai 

and bi represents the same memory layout. This comparison checks whether the two 

data structures that represent the same memory layout actually represent the same 

type of information. For example, if A only has a data field of an 8-digit decimal inte-

ger that represents a birthday of a customer, and B only has a data field of an 8-digit 

decimal integer for serial number for a customer, then A and B represents the same 

memory layout, which is 8-digit decimal integer, but represents different types of 

information. We can distinguish this difference by examining the data filed names. 

When the names of the two data fields are exactly matched, we can confidently con-

sider the two fields represent the same type of information. 

In the cases when the two names are not exactly matched, we still have opportuni-

ties of unification. We found that typical COBOL applications have many unifiable 

data definitions whose data fields are not matched exactly but are similar. We meas-

ure this similarity by detecting the longest common substring [ 16] of two data field 

names. 

We determine the similarity between the two strings based on a calculated value 

similarity ratio. A similarity ratio is the length of the longest common substring be-

tween the two strings divided by the length of the shorter string. If the similarity ratio 

of the two data field names is more than a given threshold, then we consider that the 

two data fields represent the same category of information. 

5 Implementation of the refactoring tool 

Our refactoring tool analyzes given COBOL copybook files, and generates refac-

tored Java classes that represent the same data model defined in the original copy-

books. The algorithm of data model refactoring is described in Section  4.  

In our implementation of our refactoring tool, we used IBM COBOL compiler to 

extract information of data definitions in COBOL copybooks.  The compiler can gen-

erate metadata of COBOL source code in the format of XML Metadata Interchange 

(XMI) [ 12]. 

A generated XMI file contains name and data field definitions of every data defini-

tion in a copybook.  A data field definition contains its size and offset as well as type 

information.  If the data field is a primitive type, then the details of the primitive type 

is described. Examples of supported primitive types are binary integers, decimal inte-

gers, strings, and empty fillers. If the data field is a composite type, then a reference 

ID for the composite type is provided. The actual definition of the referenced compos-

ite type is available elsewhere in the XMI file. 

Our tool reads a generated XMI file from copybooks by using a usual XML parser 

(StAX [ 13]), and analyzes the data definitions and applies our unification algorithm to 

every pair of data definitions in the XMI file. 



After unification of data definitions, our tool generates final Java files, each of 

which contains a Java class of a unified data definition. 

Each generated Java class has access methods (getters and setters) for its data 

fields. Users can add new methods to the generated classes for their own purposes. 

Automatic generation of method code for generated classes (except for access meth-

ods) is out of our scope at the moment. Generating method code requires analysis of 

COBOL logic code in addition to data definitions. Such automatic generation of Java 

methods from COBOL source code is discussed in the literatures [ 2], and integration 

and enhancement to our refactoring tool is our future work. 

6 Experimental results 

We conducted experiments to evaluate our unification algorithm by applying our 

refactoring tool to the copybooks of our COBOL benchmarks. Our benchmark con-

sists of three applications RULE, AUTO, and BANK. RULE is a business rule appli-

cation that checks validity of items filled in an application form input by a customer. 

AUTO is an application of an automobile manufacturer. BANK is an application of 

core banking system. These benchmarks are internal benchmarks developed in our 

company based on real production applications. 

Fig. 4 shows the percentage of the number of redundant Java classes eliminated by 

our refactoring tool with the similarity ratio changing from 0% to 100%. The similar-

ity ratio 100% is the case that exact matching was used for comparison of data field 

names. 0% is the case that no comparison of data field names was done. 

 

Fig. 4. Percentage of reduced Java classes   

0%

20%

40%

60%

80%

100%

0% 25% 50% 75% 100%

Percentage of matched string length (similarity ratio)

P
er

c
en

ta
g
e
 o

f 
re

d
u

ce
d

 J
a
v

a
 c

la
ss

es

RULE

AUTO

BANK

 



In the case of RULE with the similarity ratio 100%, we observed 90% Java classes 

were determined to be redundant, so the total number of classes was reduced to one-

tenth of the number of Java classes generated without our refactoring tool. This result 

indicates that redundant data types frequently appear in the copybook of RULE. 

The copybooks in RULE are nested, and some copybooks are imported into multi-

ple copybooks. The data definitions in the imported copybook are expanded into the 

importing copybook multiple times. This is the main reason why identical data struc-

tures frequently appear multiple times in RULE. Other than these cases with nested 

copybooks, we also found the cases that an identical data structure is explicitly de-

fined multiple times in a single copybook. 

As the similarity ratio decreases from 100% to 0%, the percentage of reduced Java 

classes in RULE gradually increased from 90% to 96% as shown in Fig. 4. This is 

because not identical but similar data definitions exist in the copybooks. 

An example of such similar data definitions is as follows: 

01 STORE-INFO 

  03 MAIN-CONTACT 

    05 MAIN-NAME  PIC X(20). 

    05 MAIN-PHONE PIC 9(10). 

  03 SUB-CONTACT 

    05 SUB-NAME  PIC X(20). 

    05 SUB-PHONE PIC 9(10). 

In this example, both MAIN_CONTACT and SUB_CONTACT contain data fields 

for a person name of 20-byte string. However, the data field names are different even 

though they have the common suffix “NAME.” The same applies to the data field for 

a phone number. Exact matching does not recognize these similarities between the 

data fields. When the similarity ratio is less than 100%, partial marching is used to 

compare the data field names, and can capture the situation of this example. 

The longest common substring between “MAIN-NAME” and “SUB-NAME” is “-

NAME”, and its length is 5.  The shorter field name is “SUB-NAME”, and its length 

is 8. Then the similarity between “MAIN-NAME” and “SUB-NAME” is 5/8 = 62.5%. 

The similarity between “MAIN-PHONE” and “SUB-PHONE” is 6/9 = 66.7%. In the 

case that the threshold of the similarity ratio is 50%, the ratios of both fields (62.5% 

and 66.7%) are above the threshold, so the refactoring tool determines that MAIN-

CONTACT and SUB-CONTACT are data definitions that represent the same type. 

Another example of such similar data definitions is as follows: 

01 STORE-INFO 

  03 CONTACT-1 

    05 NAME-1  PIC X(20). 

    05 PHONE-1 PIC 9(10). 

  03 CONTACT-1 

    05 NAME-2  PIC X(20). 

    05 PHONE-2 PIC 9(10). 

  03 CONTACT-3 



    05 NAME-3  PIC X(20). 

    05 PHONE-3 PIC 9(10). 

This example shows the data definition of store information that contains three 

contact points. The data fields of these three contact information have common pre-

fixes and can be unified by our refactoring tool since the similarity ratio of every pair 

of the data definitions is above a certain threshold.  

This kind of repeated appearance of the same data definitions should be repre-

sented as an array, but is a common practice in the real world. Our refactoring tool 

has a functionality that detects this kind of repetition, and replaces it with a Java ar-

ray. 

The 50% similarity ratio achieves 95% reduction percentage. Increasing the simi-

larity ratio more than 50% did not significantly improve the reduction percentage. 

This means that the 50% similarity ratio is enough to refactor the copybooks of 

RULE. 

In the cases of AUTO and BANK, the reduction percentages were 11% and 7 % 

respectively at the 100% similarity ratio. Our refactoring tool is also effective for thee 

two applications, but we observed smaller percentages of AUTO and BANK than that 

of RULE, mainly because AUTO and BANK do not have nesting copybooks. 

As the similarity ratio decreased, the reduction percentages of AUTO and BANK 

significantly increased, and reached to 33% and 25% respectively at the similarity 

ratio 50%. 

The reduction percentage of BANK did not significantly increase when the similar-

ity ratio decreased from 50% to 0%.  This means that the similarity ratio 50% is 

enough for refactoring the copybooks of BANK. 

In contrast to BANK, the reduction percentage of AUTO still increased when the 

similarity ratio decreased from 50% to 0%. The similarity ratio 0% means that the 

refactoring tool did not compare the field names at all, and only compared the offset, 

size, type of each data field. A small similarity ratio achieves a high reduction per-

centage, but may lead to a wrong decision. The following example shows such a 

wrong decision in unification: 

  01 BIRTHDAY 

    03 YEAR  9(4). 

    03 MONTH 9(2). 

    03 DAY   9(2). 

  01 STATUS 

    03 CODE   PIC 9(4). 

    03 MAJOR  PIC 9(2). 

    03 MINOR  PIC 9(2). 

BIRTHDAY and STATUS are intended to represent completely different types of 

information, but both data definitions have the same memory layout by coincidence. 

BIRTHDAY contains one 4-digit decimal integer and two 2-digit decimal integers, 

and STATUS contains the same data fields in the same order. Only the difference is 

the names of the data fields. 



When the similarity ratio is 0%, BIRTHDAY and STATUS are considered the 

same type, and are merged as a single Java class. Using a single Java class for vari-

ables that represent completely different types of information degrades readability of 

source code. Note that this wrong unification degrades code readability, but does not 

lead to an unintentional misbehavior of converted code. 

7 Performance of object serialization  

As an application of our refactoring tool, we implemented a generator of data con-

version code for data communication between COBOL and Java applications. Mis-

sion critical COBOL applications are still indispensable in many companies, and it is 

common practice that newly developed applications written in Java need to communi-

cate with such mission critical COBOL applications. The performance of data conver-

sion between COBOL and Java is very important in such environment. 

The Java language provides a default object serialization mechanism [ 14] that is 

applicable for objects of any serializable classes. We may use this mechanism for 

COBOL-Java communication, but we avoid using it since this mechanism is known to 

be slow in most cases at the cost of its versatility [ 15]. The default serializer looks up 

type information of each data fields of the class of a given object since the serializer 

need to handle objects of arbitrary classes. This runtime type checking is slow. Even 

when the class of input objects is already known, the runtime type checks cannot be 

skipped in the default serializer. 

To overcome the slow Java’s default serialization mechanism, it is common prac-

tice to prepare a specialized serializer for each class that requires serialization. Our 

generator of data conversion code generates serializer and deserializer code in Java 

for Java classes that generated by our refactoring tool. The generated serializer con-

verts a Java object into a byte stream that represents corresponding data in COBOL. 

The generated deserializer code converts a byte stream that represents data in COBOL 

into a corresponding Java object. 

Specialized serializers usually provide better serialization performance than the de-

fault serializer when the number of classes is small. However, when the number of 

classes is large, specialized serializers as many as the classes are also generated. As 

described earlier, loading too many Java classes wastes internal resources of JVM, 

and are not well handled by the JIT compiler. This leads to performance degradation 

of COBOL-Java data conversions. Reducing the number of Java classes with our 

refactoring tool also reduces the number of generated serializer, and improves the 

performance of COBOL-Java data conversions. 

The example code of a deserializer is as follows: 

// Data structure definition of MyData 

class MyData { 

  private SubData data1; 

  private SubData data2; 

 



  SubData getData1() { return this.data1; } 

  void setData1(SubData data1) { this.data1 = data1; } 

  SubData getData2() { return this.data2; } 

  void setData2(SubData data2) { this.data2 = data2; } 

 

  // Unmarshaller for MyData 

  static MyData unmarshal(byte[] buf, int offset, int 

len) { 

    MyData myData = new MyData(); 

    myData.setData1(SubData.unmarshal(buf, offset+0, 20); 

    myData.setData2(SubData.unmarshal(buf, offset+20, 20) 

 

    return myData; 

} 

 

class SubData { 

   private int num;    // 10-digit integer 

   private String str; // 10-byte string 

 

   int getNum() { return this.value; } 

   void setNum(int num) { this.num = num; } 

 

   int getStr() { return this.str; } 

   void setStr(int str) { this.str = str; } 

 

   // Unmarshaller for SubData 

   static SubData unmarshal(byte[] buf, int offset, int 

len) { 

     SubData subData = new SubData(); 

     subData.setNum(Utils.unmarshalInt(buf, offset+0, 

10)); 

     subData.setStr(Utils.unmarshallStringFromBuffer(buf, 

offset+10, 10)); 

     return subData; 

   } 

} 

The class MyData contains two data fields of the class SubData defined subse-

quently. The class SubData contains data fields of one integer and one string. These 

two fields are a 10-digit decimal integer and 10-byte string in COBOL respectively. 

The methods called unmarshal are deserializers of the classes, and generated by our 

serializer generator. SubData.unmarshal deserializes a 20-byte byte block into a pair 

of an integer and a string. The utility method unmarshalInt converts a 10-digit deci-

mal integer into 32-bit binary integer. Another utility method unmarshalStringFrom-

Buffer converts a 10-byte EBCDIC string into a Java’s Unicode string. 



MainData.unmarshal calls SubData.unmarshall twice to converts a 40-byte byte 

block in COBOL data representation into a Java object contains that holds references 

to two SubData objects. 

The above example only contains deserializers, but serializers that convert data in 

reverse order are also generated.  

Fig. 5 shows the performance of serialization between COBOL and Java data repre-

sentations when we applied our serializer generator into the copybooks of RULE.  

The graph shows the average elapsed time of round-trip data conversions from 

COBOL to Java, and back to COBOL. The converted data is a nested copybook in 

RULE and its size is about 500KB. The experiments were conducted in IBM zEnter-

prise EC12 with z/OS V1.13.  The used Java VM is IBM SDK V8 Beta3. 

As the bars in the graph show, our refactoring tool decreased the elapsed time from 

54 to 12 milliseconds, and achieved 4.4 times performance improvements in serializa-

tion. The bars contain CPU cycle breakdowns collected by a performance profiler. 

Without our refactoring, CPU time spent in JVM code was dominant, and the portion 

of JIT-compiled code is small. This indicates that most of method execution is in the 

interpreter mode.  We analyzed this problem, and found out that the memory areas for 

JIT-compiled code was full, and the JIT compiler failed to compile the methods of 

generated serializers.  We increased the size of the memory areas for JIT compiled 

code up to 512 MB, but it did not help to resolve the problem. 

With our refactoring, the portion of JVM code significantly reduced, and most of 

the code was executed in the JIT mode. This is the main reason why our refactoring 

tool improved the performance of data conversions between COBOL and Java. 

 

Fig. 5. Serialization performance of RULE   
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8 Conclusions and future works 

We proposed a refactoring method that reduces the number of data structure defini-

tions in a COBOL copybook by unifying redundant definitions. Our refactoring 

method is effective for the code bloat problem that typically occurs when data models 

of legacy COBOL applications are converted into Java data models. 

Our refactoring tool detects similar data structure definitions based on their mem-

ory layouts as well as the names of their member data fields. The similarity of two 

field names is calculated by the length of a common substring between the two field 

names. We tested our tool with three different COBOL applications, and showed that 

out tool eliminated up to 90% of naively converted Java classes. 

Reduction of the Java classes improves readability of source code. We also showed 

that our refactoring tool improves the performance of data conversions between 

COBOL and Java. 

We introduced a threshold value called similarity ratio to adjust how aggressively 

the tool unifies similar data definitions. Currently, the tool users have to carefully 

select an appropriate threshold value by examining the results of our refactoring tool. 

In our future work, we will develop an automatic mechanism to unify redundant data 

definitions for a given copybook without tuning a parameter value. 

To improve the preciseness of our unification mechanism, we need more informa-

tion about data items of copybooks. Currently we only use the information available 

in copybooks, and the information that can be extracted from logic code is not used 

for refactoring. We will enhance our work so that the refactoring tool analyzes how 

copybook items are used in source code by using various code analysis methodologies 

[ 3,  6,  7]. 
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