
 
September 2, 2014 

RT0963 

Computer Science   11 pages 
 

Research Report 

 
Clonable and space-efficient images of running VMs for fast  

  provisioning on IaaS cloud platforms 

 

Yohei Ueda, Toshio Nakatani 

 
IBM Research - Tokyo 

IBM Japan, Ltd. 

NBF Toyosu Canal Front Building 

6-52, Toyosu 5-chome, Koto-ku 

Tokyo 135-8511, Japan 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Research Division

Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich  



Improving the Time for Provisioning using Snapshots and
Hibernation

Yohei Ueda
IBM Research - Tokyo
yohei@jp.ibm.com

Toshio Nakatani
IBM Research - Tokyo

nakatani@jp.ibm.com

ABSTRACT
It is critical to minimize the time for provisioning the vir-
tual machines (VMs) in the cloud environment, particularly
because more dynamic deployment of cloud workloads, such
as Hadoop jobs and auto scaling of Web servers, is becoming
popular. Provisioning consists of transferring a disk image
of the operating system and the target application from the
image repository to a disk of the host machine and boot-
ing the VM from the disk to the memory of the host ma-
chine. If we can preload (cache) the disk images of popular
(frequently-used) operating systems and applications as the
base images at each host machine in advance and maintain
the delta (only the updated part of the selected base image)
as we go, we can greatly reduce the time for transferring
and the disk space. To that end, we propose to use the
copy-on-write snapshot mechanism of logical volume man-
ager of Linux. Furthermore, if we can save the memory
image of the VM from the host machine to the image repos-
itory when we shutdown the VM, we can greatly reduce its
booting time when we resume it on a different host machine
for the next time. To that end, we propose to use the hi-
bernation mechanism of Xen hypervisor. With these two
proposed techniques, we have successfully achieved 28X and
8X speedup in provisioning a single VM and 64 VMs in our
experiment, respectively.

1. INTRODUCTION
The success of the Amazon Elastic Compute Cloud (EC2)
shows the growing demand for cloud computing. There are
also various open-source cloud platforms such as OpenNeb-
ula [11], Eucalyptus [8], and Nimbus [6], which are available
for creating one’s own cloud environment. It is critical to
reduce the time for provisioning the virtual machines (VMs)
in these cloud environments, particularly because more dy-
namic deployment of cloud workloads, such as Hadoop jobs
and auto scaling of Web servers, is becoming popular.

For example, Hadoop is commonly used in cloud environ-
ments to speed up various computations by parallelizing

them on many compute nodes. Even though using hun-
dreds of virtual machines cut the execution time to several
minutes, this would be pointless if provisioning the virtual
machines takes several hours.

Another example is auto-scaling of Web servers. Cloud
providers such as Amazon EC2 offer a mechanism to increase
or decrease the number of virtual machines automatically
depending on certain metrics such as CPU utilization. Using
this mechanism, a cloud user can build a website that scales
to the volume of its incoming Web requests. However, if
provisioning virtual machines takes a long time, auto-scaling
cannot react quickly enough to handle sudden increases in
the traffic.

Provisioning a VM generally consists of (1) selecting a host
machine, (2) transferring a VM disk image from an image
repository to a host machine, (3) customizing the VM disk
image, and (4) booting a VM from the VM disk image. To
reduce overall VM provisioning time, we need to improve
the performance of these steps.

Step 2, which is the most time-consuming one of the four
steps, can be skipped by preloading the VM disk image at
the host machine before user’s provisioning request. Thus,
image preloading greatly reduces time to provision VMs,
but it is usually impossible to preload all of the VM disk
images in advance due to a limited storage space at each
host machine. Only a subset of the images can be preloaded,
so when preloaded images do not match user’s request, the
cloud system cannot skip Step 2, and needs to fetch a large
VM disk image from the image repository. Therefore, the
key to reduce the time of Step 2 is to increase the hit ratio
of preloaded images.

To increase the hit ratio, we eliminate redundancy among
VM disk images. Cloud users usually create their own cus-
tom VM images based on some popular basic VM images
such as Red Hat Enterprise Linux 5.5 or Windows XP. This
means that there are similarities among VM images whose
origin is the same base image. We only preload such base
VM disk images, and do not preload individual custom VM
images. The delta of a custom image to its base image is
stored as a diff disk image at the image repository. When
there are many custom images based on a single base image,
we only need to preload the single base image, so we can
reduce disk space for image preloading. Better disk utiliza-
tion increases the number of images that can be preloaded



at each host, and improves hit ratio of image preloading, so
redundancy elimination of images will improve provisioning
performance.

We implemented this redundancy elimination by extending
copy-on-write (COW) snapshots of the Linux logical volume
manager (LVM). In our system, a VM disk consists of a base
and diff disk images. The diff disk image is actually a COW
data of a LVM snapshot, and contains the delta to the base
disk image. Both base and diff images are stored on the
image repository, only the base images are preloaded at each
host machine. The diff images are usually small, so copying
a diff image from the repository to a host machine does not
take long time.

To provision a VM from a custom VM image, our system
fetches a diff disk image from the repository to a host ma-
chine where its base disk image is preloaded. Then, the
custom image needs to be reconstructed from the base and
diff disk images in Step 3. A naive implementation of im-
age reconstruction may cause heavy disk I/O and degrade
the performance of provisioning. In our system, an LVM
snapshot volume is set up using the base and diff images, so
explicit disk image reconstruction is not necessary. Setting
up a snapshot volume takes very small amount of time, and
does not degrade the performance of Step 3.

After optimizing Steps 2 and 3 by image preloading and re-
dundancy elimination, Step 4 becomes a bottleneck in pro-
visioning. Booting a VM usually takes several minutes, and
requires extensive disk I/Os, straining the I/O capacity of
the host machines and affecting the performance of other
VMs on the same host machines.

Most modern hypervisor systems such as Xen[1] provide a
mechanism to hibernate a running VM into a VM state file
and to resume from the file, so a natural approach is to uti-
lize this mechanism to skip the time-consuming boot pro-
cess. Our method to clone VM state files eliminates the
time needed for booting VMs.

Note that cloning VM disk images and cloning VM state
files are different concepts. Cloning VM disk images only
require copying of disk images of VMs. Cloning VM state
files requires copying of VM states such as memory contents
and processor states of running VMs. To clone a booted
VM, we need cloning of the VM state file.

It is difficult to create clonable VM state files since the VM
includes stateful data such as IP address, which means we
cannot resume many distinct VM from a single VM state
file. We developed a mechanism to eliminate such state-
ful data from the VM state file, and this allow us to skip
the boot process in VM provisioning. This provides faster
provisioning and decreases the interference with other VMs
running on the same host machine.

In usual cloud system, a VM image consists of a VM disk
image and some metadata about the VM. In our proposed
system, a VM image contains a VM state file in addition to
a VM disk and metadata. This VM state file is used to skip
booting from the VM disk image.

Table 1: Comparison of VM provisioning systems

Preloading Diff Cloning
Eucalyptus Yes (caching) No No
OpenNebula No No No

Nimbus No No No
Ours Yes Yes Yes

Preloading: VM image preloading, Diff: Image
deduplication using diffs, Cloning: VM state cloning

In summary, our contributions for fast VM provisioning are
(1) fast transfer of VM disk images utilizing COW data of
LVM snapshots, and (2) fast booting of VMs by cloning
VM state files. With these techniques, we achieved 28 times
faster provisioning of a VM, and 8 times faster provisioning
of 64 VMs than the base implementation.

2. RELATED WORK
Table 1 shows the comparison of OpenNebula [11], Eucalyp-
tus [8], Nimbus [6], and our system in terms of fast provi-
sioning. Eucalyptus has caching mechanism of VM disk im-
ages, and uses cached VM disk images without fetching them
from the image repository when provisioning VMs. This re-
duces provisioning time when cached images are available,
but Eucalyptus does not care about redundancy of disk im-
ages. When a user requests a new VM of an image that are
a little different from another image that is already cached,
the entire image must be fetched from the image repository
even thought most of the contents of the cached and newly
fetched images are common. So the image store may con-
tain redundant data, and such redundant data degrade the
cache hit ratio. None of Eucalyptus, OpenNebula and Nim-
bus have a mechanism for boot time reduction using VM
state cloning. Thus, every time a user request a new VM,
the VM must be booted from its virtual boot disk.

Mirage[9] provides a space efficient image repository where
redundant data among images are stored only once. Mirage
examines every file of each disk image, and checks whether
the content of each file is already stored in the image repos-
itory. If a file is already stored, the file is not stored again
in order to save storage space. When a user requests a new
VM, a VM disk image is constructed by gathering all nec-
essary files in the repository. This mechanism reduces nec-
essary storage space for virtual disk images, but this image
construction consumes disk I/O capacity of the repository
server, and takes non-negligible time.

In our system, such construction time is not necessary since
diff disk images are COW data that can directly work with
the LVM system, and the resulting logical volumes already
contain usable file systems. Mirage achieves more space ef-
ficiency than our system, but we did not employ Mirage’s
approaches since we place more importance on provisioning
speed than space efficiency. Space efficiency of the same
level to Mirage is our future work.

Hypervisors such as Xen, KVM, and VMware support var-
ious types of virtual disks including raw disk devices, regu-
lar files, QCOW2, and VMware disk images. QCOW2 and
VMware are virtual disks developed for virtual machines,
and have enhanced features such as lazy allocation and copy-



on-write snapshots.

Even with raw disk devices, we can use copy-on-write and
lazy-allocation through the Linux Logical Volume Manager
(LVM). LVM provides copy-on-write snapshots of logical vol-
umes. Therefore, we can achieve the same level of function-
ality among LVM, QCOW2, and VMware disk images.

We used raw disk devices with LVM, because there are no
large difference among the three formats, and LVM is avail-
able for all Linux host machines. Since we used block-based
VM images, the contents of the LVM volume is stored into
a VM image as it is.

SnowFlock[7] provides a VM fork mechanism, which clones
a virtual machine into multiple replicas running on differ-
ent host machines. Like the fork() system call in UNIX,
all replicas share the same initial state, and then run in-
dependently. VM fork enables parallel programming in a
cloud environment in a way similar to UNIX mulitprocess
programming through the SnowFlock VM API. The imple-
mentation of SnowFlock is efficient, so it would beneficial to
integrate some of their techniques into our system, but this
would not be trivial since they resolve the problem of con-
flicts in the duplicated unique data of VMs (such as IP ad-
dresses) by using network isolation. Forked virtual machines
on SnowFlock can communicate with one another only via
the SnowFlock API. This restriction is not compatible with
our purposes.

Sun et al[12] devised fast live cloning of virtual machines
using copy-on-write techniques for memory and disks. They
resolved the problems of the I/O interfaces of the cloned
virtual machines by relying on the OS-level recovery process
for broken devices. The operating system of a cloned vir-
tual machine is notified of the loss of its interface devices
when the VM is ready to restart. The recovery process is
expected to reinitialize the interface devices of the cloned
VM so as to avoid conflicts with its parent VM. However,
this reinitialization sometimes leads to inconsistent states.
For example, if an application stores an IP address informa-
tion and internally opens files on the data disk , then it may
become inconsistent after reinitialization. Our approach is
cleaner, since there is no network interface and no data disk
when the VM is cloned, so which avoids inconsistent states
among such devices.

There have been various proposals for optimal VM place-
ment on cloud computing environments [3, 4, 2, 5]. These
systems manage VM placement so that some resources are
optimally utilized such as hardware resources or power con-
sumption. Our system only uses a simple round-robbin al-
gorithm for VM placement, and lacks a smart placement
mechanism. We could refine our system along with a smarter
placement mechanisms.

3. SYSTEM OVERVIEW
There are various trade-offs among provisioning performance
and application performance. As can naturally be antici-
pated, disk and network I/O are the most important factors
that affect provisioning time, so we can obviously reduce the
time to provision virtual machines by hiding I/O latencies
or by reducing the amount of I/O. However, some of the

Repository server

Image repository

Base image 1

Diff 1a Diff 1b

Base image 2

Diff 2a

Host machine 1

N
e
tw
o
rk

Hypervisor

VM 1

Host machine 2

Hypervisor

VM 2

Host machine 3

Hypervisor

VM 6

VM 3 VM 4

VM 7

VMstate

1a

VMstate

1b

VMstate

2a

Metadata

1a

Metadata

1b

Metadata

2a

Figure 1: System overview

techniques for fast provisioning degrade the performance of
the applications running on the provisioned VMs. We will
focus primarily on this aspect for our system design.

For example, if we share VM disks on a central image repos-
itory server via NFS, we can eliminate image transfer be-
tween the image repository and host machines. This NFS
configuration degrades the disk I/O performance of provi-
sioned VMs, so we did not use this approach.

Provisioning activities also interfere with applications in the
other virtual machines running on the same host machine
due to I/O and CPU contention, so minimizing the interfer-
ence is a secondary focus of our system design.

Figure 1 depicts an overview of our system. There is a cen-
tral VM image repository, and multiple host machine that
run hypervisors to host VMs. In our system, a VM image
consists of a VM state file, a diff image of the root disk,
the name of base disk image, and metadata. When a user
requests a new VM from a VM image, the VM image is
transferred from the repository to a host machine, and then
a new VM is created from the image at the host machine.

3.1 Virtual machines
Figure 2 shows the logical view of a VM in our system. From
cloud users’ perspective, each VM in our system has one or
more virtual processor cores (VCPU), main memory, one
virtual network interface, and two virtual disk interfaces.
The network interface is connected to an external Ethernet
network via Ethernet bridge in the host machine. The first
disk interface is connected to a root disk, and the second one
is connected to a data disk.

A root disk is a virtual disk that contains the files for a
bootable operating system. For example, for the Windows
operating system, the entire C drive is a root disk. So a root
disk contains OS’s kernel, device drivers, default application
programs, optimal application programs, and user data.

A data disk is prepared for the user’s additional data and
software. Typical sizes of data disks are 100GB or larger



Root disk

Virtual Network

Data disk

Memory

Virtual Disks

Virtual NIC

eth0

Virtual disk interface

sda

Virtual disk interface

sdb

CPU

Virtual Machine

Figure 2: Logical view of a virtual machine

whereas a typical root disk can be around 10GB. Initially,
a data disk is formatted as a empty filesystem for use as
needed. Even though a data disk is formatted for one filesys-
tem, users may destroy for a database partition, swap parti-
tion, or any purpose that doesn’t require its original filesys-
tem.

3.2 Image repository
In the central image repository server, base disk images and
diff disk images are stored as normal files in the filesystem
on its local disk. These images can be fetched from host
machines via HTTP. An HTTP server runs on the reposi-
tory server, and a host machine can retrieve an image using
HTTP.

Each base image is stored as a single file, and its metadata is
stored in a separate file. Each diff disk image is also stored
as a single file, and its metadata file contains the name of
its base disk image. VM state files are also stored in the
repository server. The details of VM state files are described
later.

3.3 Host machines
Xen hypervisor runs on each host machine to host VMs. An
HTTP server also runs on each host machine to exchange
base disk images, diff disk images, and VM state files. Each
host machine has storage space for preloaded base disk im-
ages, provisioned diff disk images, and a data disk pool.

Each diff image is paired with its base disk image, and a
LVM snapshot volume is set up for each diff image. The
snapshot volume is attached to a VM as a root disk. Since a
root disk mainly contains operating system files and option-
ally user applications, the root disk is primarily read-only
and rarely updated. Thus, we can use lazy-allocation of
LVM snapshots for root disks without sacrificing VM per-
formance.

Each data disk is a regular LVM volume. It is empty at first
and is formatted as a normal filesystem. It is not a part of
any VM disk image, so we do not need to transfer the data
disk content from the image repository to the host machines.

Host machine 1

Preloaded images

Base image 1

Diff images Data disk pool

Hypervisor

VM 1

eth0 sdb

Network 

interface

Disk 

interfaces

Network 

bridge

N
e
tw
o
rk

Diff 1a

sda

Data disk 1

Data disk 2

Data disk 3Diff 1b

Figure 3: Host machine

Splitting virtual disks as root and data disks has another
benefit. Cloud providers typically offer several types of VMs
with difference disk sizes. If we use block-based VM disk
images with single virtual disk, then we need to resize a
filesystem in the VM disk image to support multiple disk
sizes. Resizing a filesystem is time-consuming and should
be avoided.

The data disks are empty at first, so we can create and pool
the data disks before provisioning, and attach one from the
pool to each new VM. Pooling data disks hides the time to
format data disks from the VM provisioning. To support
multiple data disk sizes, we can prepare a data disk pool
per disk size.

4. IMAGE TRANSFER TIME REDUCTION
Since we do not use shared storage such as NFS, we use im-
age preloading to accelerate the provisioning without shared
storage. One problem with image preloading is the disk con-
sumption. There may be many VM images of various kinds,
and it is difficult to preload all of the VM disk images on a
host machine at one time. The solution to this problem is
deduplication of the similar images. We can reduce the size
of the image store if we can eliminate the duplicates of the
same content in multiple images in the image store.

4.1 Image redundancy elimination
In most cases, cloud users create their own custom images
based om some VM images such as Red Hat or Windows, so
if we provide these basic VM disk images, the difference of a
base image and a customized image based on it is generally
relatively small compared to a full base image.

If we preload base disk images, and transfer only the dif-
ference between the base and customized images, we can
reduce the disk space necessary for custom disk images, and
also reduce the time for copying images from the central
repository to a target host machine as long as the base disk
images are already preloaded on the target host machine.
We call the difference of base and custom disk images diff,
and we use diff images for VM disk images. We use copy-
on-write (COW) data of LVM snapshot volumes for creating



diff images.

When the system receives a capture request, it creates a new
root disk from the root disk of the base image. The new root
disk is an LVM snapshot volume, so there are an original
volume and COW data. Figure 4 shows the structure of a
Linux LVM snapshot.

4.2 LVM snapshots
LVM provides abstraction of logical volumes over physical
disks. LVM groups multiple physical disks, and provide a
logical volume with an arbitrary size from a portion of the
grouped disks logical volumes. LVM reduces burden of com-
plicated disk management.

LVM also provides a mechanism for volume snapshots, which
can be used for consistent backups. When a user plans to
back up a large logical volume on line, the consistency of the
backup is usually required. Backing up a large volume takes
long time, and the files on the volume may be altered during
the backup. To avoid this inconsistency, LVM provides a
snapshot of a logical volume using copy-on-write (COW)
mechanism.

In each host machine, LVM is installed with free space in
a volume group that is sufficient to hold the root and data
disk images necessary for the incoming requests for VMs.

4.3 Root disks
Each root disk is an LVM snapshot volume, which consists of
an original volume and a COW volume. First, a new original
volume, which is a empty logical volume, is created with the
same size as the a base disk image, and then the content of
the base disk image is copied into that volume. Second, if a
diff disk image is being used, then another logical volume is
created as a COW volume and the content of the diff disk
image is copied into it. If no diff disk image is needed, the
COW is created but left empty. Finally the system uses
the dm setup command (of the Linux Device Mapper) to
tell Linux that the original and COW volumes are used as
an LVM snapshot volume. The structure of each diff disk
image is the same as a COW volume of LVM, so we can
simply copy the content of a diff disk image into a COW
volume without any conversion.

The structure of a COW volume is shown in Figure 4. The
original volume is split into fixed-sized chunks, each of which
is typically 4,096 bytes. When a user tries to write data
on a chunk, the operating system copies the content of the
chunk to the COW volume, and the data is written into
the copied chunk on the COW volume. The chunk of the
original volume remains intact. The COW volume has data
structures that manage the relationships between a chunks
on the original volume and the corresponding chunks in the
COW volume. The amount of COW data grows as users
write data to the snapshot, and the total COW volume size
will be the original volume size plus the sizes of chunks that
are needed to manage new COW chunks.

We use COW data for diff images. This is called block-
based management of contents of VM disk images. Another
approach is file-based management. In block-based man-
agement, the contents of VM disk images are partitioned in

“SnAp” 1 version
chunk 

size
old:1 new:2 old:3 new:3

Chunk 0

header
Chunk 1

Exception area 0

New data of chunk 1

Chunk 2

COW storage chunk 

Original data of chunk 0 Original data of chunk 1 Original data of chunk 2

Chunk 0 Chunk 1 Chunk 2 Chunk 3

Original data of chunk 3

New data of chunk 3

Original volume

COW data (diff)
Chunk 3

COW storage chunk 

Figure 4: LVM snapshot volume

fixed-sized chunks, and the management of copy-on-write is
done at the level of these chunk units. Thus, no knowledge
of filesystem is required to create diff images.

In file-based management, all files in file systems of virtual
disk images are recognized, and the files that are identical
between multiple VM disk images are stored only once in the
image repository. Even thought this approach dramatically
reduces necessary storage space for virtual disk images, it
has a drawback in terms of fast provisioning. Files are stored
as independently in image repository of file-based manage-
ment, and a VM disk image is constructed by gathering all
necessary files in the repository. This image construction
consumes disk I/O capacity of the repository server, takes
non-negligible time.

In block-based management, such construction time is not
necessary since diff disk images are COW data that can di-
rectly works with LVM systems, and the resulting logical
volumes already contain usable file systems. We give more
importance to fast provisioning than storage space efficiency
of the image repository, so we chose the block-based ap-
proach.

4.4 Image preloading
Image preloading is done at installation of a new host ma-
chine, and image eviction of preloaded images is done when
storage of a host machine becomes full.

During the initialization of image store on a new host ma-
chine, the base images are selected for preloading so that the
expected time to transfer an image is minimized. We can
calculate the expected transfer time from the storage size
of the host machine, image sizes, number of running VMs,
and other factors. Images to be evicted are also selected in
a similar way. We describe these algorithms in Appendix A.

5. BOOT TIME REDUCTION
Booting a VM from a disk image takes a certain amount
of time and consumes disk I/O bandwidth. We avoid the
booting process by cloning the VM state of a running VM.
Every VM image in our system contains a VM state file as
well as a disk image, and provisioning a VM is resuming a
VM from the VM state file.

5.1 VM state files



State file metadata

•VM UUID

•Virtual disk path

•Device configuration

•etc

Memory page contents

•Kernel pages

•User pages

•etc

CPU states

•Register values

•etc

Figure 5: A VM state file

In cloud services such as Amazon EC2, VMs are provisioned
from VM disk images. VM disk images are virutal disks
including bootable OS files, and does not contain memory
and processor state, which can be captured as VM state files
with hibernation mechanism of hypervisors.

Figure 5 shows the contents of a VM state file. There are
state file metadata, CPU states, and memory page contents.
The state file metadata contain an identity information such
as VM ID and VM name. The metadata also contains con-
figuration information such as virtual disk path and device
configuration. The contents of the virtual disk are not in the
VM state file, and stored in a external file, so the metadata
only contains the path of the external VM disk file on the
host machine.

To clone a VM state file, we need to care about these iden-
tity information. In our system, the identity information is
regenerated and updated to avoid conflicts with the original
VM.

A VM state file contains CPU states and memory page con-
tents. These areas also contain unique data of the original
VM, and we need to care about such unique data to avoid
conflicts, but it is almost impossible to directly update these
areas in the same way for the metadata. CPU states and
memory contents look like a black box from outside of the
VM, and it is impossible to manipulate them without inter-
nal knowledge of the OS and applications running on the
VM, so there are no general way to update the CPU and
memory contents while keeping the consistency of the be-
haviors of the OS and applications.

We employed a different approach to eliminate unique in-
formation in the CPU state and memory contents of a VM
state file.

5.2 Elimination of unique data
To clone a VM using a VM state file, we need to handle the
unique data inside and outside of the VM state file such as
assigned IP addresses, VM names and VM ID. We also need
to handle the internal state of applications running on the

VM, but handling such data is difficult since the application
states are stored in the memory dump of the VM state file.
It is usually very hard to automatically alter the state of an
application in the memory dump.

Our proposed approach is to capture VM state just after the
VM is booted. The initial state of a VM is identical when
the VM is booted multiple times. The VM state should be
captured at the end of boot process to make it reusable for
cloning.

In our approach, the network interfaces are not attached to
the VM while booting, so the captured VM state file does
not contain any IP address information. This means it is
possible to reuse the VM state file without conflicting IP
addresses among the cloned VMs. We can also copy the
VM state files for multiple distributed host machines via
a network to reduce the time to provision many VMs in
parallel.

The disk interface of the data disk is also detached while
booting. Even though the data disk is initially empty, it
should not be attached at first. If the data disk is attached
to a suspended VM, the resulting VM state file contains
filesystem data and the file cache of the data disk. To avoid
dealing with that data, the data disk is attached only after
resuming from the initialized VM state file.

One important point in capturing a VM state is how to
determine when the booting process is done. There is no
obvious point for the end of a boot process observable from
outside of the VM. Our approach is to monitor the console
output until a login prompt appears. The login prompt usu-
ally appears when the boot process finishes, so we can use
this as the effective end of boot process.

Some network daemons will be started during the boot pro-
cess. They are invoked without any network interfaces, but
they can usually initialize their network services without
problems. They do this by initializing their network sock-
ets not for specific network interfaces or IP addresses, but
for a wildcard interface, which is not related to any specific
network interfaces or IP addresses. Some network daemons
may try to obtain an IP address from the machine they are
running on, but there is no standard way to do this, so such
daemons are considered noncompliant.

Other network daemons may accept fixed IP addresses spec-
ification in their configurations. But using fixed IP addresses
in their configuration files will not work in general, because
IP addresses are normally assigned dynamically (via DHCP)
in cloud environments unless static IP addresses are reserved
in advance. Thus, configurations that do not rely on fixed
IP addresses are preferred for reusable VM images in cloud
environments. Linux’s udev automatically detects newly at-
tached devices, and configures them. If the DHCP setting is
enabled, then a new IP address will be assigned to a newly
attached network interface.

We confirmed that our method to clone VM state files works
for various applications including Hadoop, Apache, MySQL,
Samba, IBM WebSphere Application Server, and IBM DB2
database. Some of them did not work with their default



configuration, but we only needed to apply some small con-
figuration changes. This kind of configuration techniques
are also common for other cloud computing environments
such as Amazon EC2.

The details of how to clone VM state files are described in
the next section.

6. VM PROVISIONING AND CAPTURING
In this section, we describe our VM image management pro-
cesses in detail.

6.1 Provisioning process
Figure 7 shows four possible scenarios for provisioning a VM.
The case 1 is the most simple case where a VM is provisioned
as a base image without preloading. In this case, the entire
base image is fetch from the repository server to the host
machine.

In case 2, a VM is provisioned from a custom image and its
base image is preloaded at the host machine. In this case,
only the diff image is fetched from the repository server to
the host machine.

In case 3, a VM is provisioned from a base image and the
image itself is preloaded at the host machine. Additionally,
a VM state file of the image is available. In this case, only
the VM state file is fetched from the repository server to the
host machine.

In case 4, a VM is provisioned from a custom image and is
base image is preloaded at the host machine. Additionally,
a VM state file of the image is available. In this case, both
the diff image and the VM state file are fetched from the
repository server to the host machine.

In our proposed system, the case 4 is the most common case,
and we describe the provisioning process of this scenario
below.

1. The system selects a host machine.

2. The system generates a new VM ID.

3. The system generates a new VM name.

4. The system creates a new directory for the new VM to
store the virtual disks and other data.

5. The system fetches the base disk image from the repos-
itory (if it is not already available on the host ma-
chine).

6. The system fetches the diff disk image (COW data and
VM state file) from the repository

7. The system modifies the VM state file with the VM
ID, VM name, and root disk path.

8. The system resumes the VM from the modified VM
state file.

9. The system attaches a network interface (NIC) to the
running VM, and the operating system in the running
VM automatically recognizes the newly attached NIC
and configures it.

Repository server

Image repository

Base

Host machineBase

Repository server

Image repository

Base

Diff

Host machine

Base

Diff

(1) Provisioning a base image that is not preloaded

(2) Provisioning a custom image whose base image is preloaded

Repository server

Image repository

Base

Diff

Host machine

Base

Diff

VMstate

VMstate

(4) Provisioning a custom image whose VM state file is available

Repository server

Image repository

Base

Host machine

Base

VMstate

VMstate

(3) Provisioning a base image whose VM state file is available

Figure 6: Provisioning scenarios



10. The system attaches a data disk to the running VM,
and then the operating system in the running VM au-
tomatically recognizes the newly attached data disk,
and configures it.

11. The system allocates the defined amount of memory
to the running VM, and then the operating system
automatically recognizes the new memory.

Note that the step 5 is not necessary if the base disk image
is already preloaded at the host machine. In step 7, only the
metadata of the VM state file is modified, and its memory
content is not modified.

Steps 9, 10, and 11 are usually OS-independent since every
modern OS has a mechanism to detect dynamically attached
devices.

6.2 Capture process
Figure 7 shows four possible scenarios for capturing a VM.
Case 1 is the most simple case where a VM is captured
as a base image without preloading. In this case, the entire
base image is stored from the host machine to the repository
server.

In Case 2, a VM is captured as a custom image. In this case,
only the diff image is stored from the host machine to the
repository server.

In Case 3, a VM is captured as a base image with its VM
state file. In this case, only the VM state file is stored from
the host machine to the repository server.

In Case 4, a VM is captured as a custom image with its
VM state file. In this case, both the diff image and the VM
state file are stored from the host machine to the repository
server.

In our proposed system, the case 4 is the most common
case, and we describe this capturing process of this scenario
below.

1. The system copies the VM definition file, and modi-
fies the copied file so that there the VM has no net-
work interfaces or data disk, and only have a minimum
memory size.

2. The system boots a new VM using the modified VM
definition file.

3. After the booting process is finished. the system hi-
bernates the VM to create its VM state file.

4. The system copies the VM state file and the COW
data to the central repository.

This capture process contains the key technology of our sys-
tem. In usual cloud systems, capturing VM only stores the
contents of VM disk images. In our system, the memory
content is also captured to reduce boot time.

Capturing VM memory content requires fixing of the unique
data of each VM instance. A long-running VM tents to have

Repository server

Image repository Host machineBase

Repository server

Image repository

Base

Host machine

Base

Diff

(1) Capturing a VM as a base image

(2) Capturing a VM as a custom image

Base

Diff

Repository server

Image repository

Base

Host machine

VMstate

(3) Capturing a VM as a base VM with the VM state file

Base

VMstate

Repository server

Image repository

Base

Host machine

Diff VMstate

(4) Capturing a VM as a custom with the VM state file

Base

Diff VMstate

Figure 7: Capturing scenarios



various unique data, which make it difficult to capture the
VM as a reusable VM image. Instead of capturing long-
running VMs, we capture VMs just after booting finishes.
We also detach network interfaces before booting to remove
unique data such as IP addresses.

7. EXPERIMENTS
We implemented our provisioning mechanism with base and
diff images, and evaluated its performance.

7.1 Experimental setup
We used 5 identical physical servers. One was for the repos-
itory server, and the other four were used as host machines.
Our servers were IBM BladeCenter HS22, with dual sockets
and Intel Xeon E5570 2.93GHz processors. A single Xeon
processor has 4 cores, and each core has 2 hardware threads.
Therefore, a total of 16 hardware threads are available in a
single HS22. Each server had 24 GB of memory and a 10-Gb
Ethernet card. For storage, each server had a 32-GB SATA
SDD and a 500-GB SATA HDD. Red Hat Enterprise Linux
5.4 was installed on the SDD on each server. Cloud plat-
form software was also installed on the SDD, but the image
data for the VMs were stored in HDD. These blade servers
were installed in a single IBM BladeCenter H chassis and
connected via a 10-Gb Ethernet Switch.

We installed Xen 3.4.2 as the hypervisor on the host ma-
chines. Our software is mainly as Python scripts, and uses
standard Linux software including httpd, ssh, wget, and the
LVM tools. The program that updates the VM state files is
written in C since it manipulates the binary data structures
of the VM state metadata.

A single image was provisioned among the 4 host machines in
a round-robbin. The base image was a standard installation
of CentOS 5.4. The size of the base image was 10 GB. The
diff image was created by installing an Apache HTTP Server
and a PHP runtime. The diff image was 20 MB. Each VM
had 1 VCPU, 2GB memory, a 10GB root disk, and a 2GB
data disk. A VM state file was 512MB.

7.2 Experimental results
Figure 8 shows elapsed times for VM provisioning with the
base implementation and with the improved implementation
using our techniques. The number of provisioned VMs was
1, 2, 4, 8, 16, 32, and 64.

”Baseline” is the results without image preloading and VM
cloning. That is, both the entire base and diff disk images
were transferred from the central repository to each host
machine, and the complete boot process was executed for
each VM invocation. In this case, a data disk was also cre-
ated for each VM invocation. This required 6 minutes for
a single VM, and 11 minutes for 64 VMs. We had a single
repository server and only 4 host machines, disk contention
occurred in both the repository and host machines.

”Preloading” is the results with image preloading, but with-
out VM cloning. That is, the base images were cached, so
only the diff images was copied from the repository to each
host machine. The data disks were pooled in advance. The
complete boot process was executed for each VM invocation.

0

2

4

6

8

10

12

0 16 32 48 64

Number of VMs

E
la
p
s
e
d
 t
im
e
 (
m
in
u
te
s
)

Baseline

Preloading

Preloading + cloning

Figure 8: Provisioning time

0 2 4 6 8

Preloading

+Cloning

Preloading

Preloading 

w/o COW

Base

Elapsed time (minutes)

Step 1 Step 2 Step 3 Step 4

Figure 9: Breakdown of single-VM provisioning time

In this case, provisioning 1 VM took 38 seconds, since the
time-consuming image copying was avoided by preloading
the base image. However, the elapsed time became worse
as the number of VMs increased. This was because we only
had 4 host machines and boot process is disk-intensive, and
thus disk contention occurred at each host machine.

”Preloading + cloning”is the results with both image preload-
ing and VM cloning. In other words, the base disk images
were preloaded, so the diff disk image and the VM state file
were copied from the repository to each host machine. Boot
processing was skipped by using the VM state file for each
VM invocation. The data disks were pooled in advance. In
this case, provisioning 1 VM took only 5.5 seconds. Most
of the disk contention was eliminated by the image caching
and VM cloning. However, we still saw performance degra-
dation due to CPU limits as as we increased the number of
VMs.

Figure 9 shows elapsed times for provisioning a single VM
on the base implementation and on the improved implemen-
tations using our techniques. Step 1 selects a target host



machine, and do some initialization works. Step 2 is the
time to copy the image from the central repository to the
target host machine. Step 3 is the time to customize the
VM image. Step 4 is the time to boot each VM.

In the ”Base” case, which was the result without our opti-
mization techniques, the most time-consuming step was Step
2, which copies data from the repository server to the host
machine. This means that the image preloading will be the
most effective optimization among our techniques. Steps 3
and 4 also used siginificant amounts of times.

In the ”Preloading w/o COW” case, an image diff is used,
but not used as LVM COW data. This means we need to
create a disk image by merging base and diff images. In
this case, the most time-consuming step was Step 3, which
merges the two images to a single usable VM disk image.

In the ”Preloading” case, an image diff is used, and used
as LVM COW data. This result shows that creating a disk
image becomes very quick with COW. In this case, the most
time-consuming step is now Step 4, which boots the VM
from the VM disk.

In the ”Preloading + Cloning” case, which was the result
with our optimization techniques, Steps 2, 3, and 4 became
very small, and the total elapsed time was 5.5 seconds.

8. CONCLUSION AND FUTURE WORK
In this paper, we proposed a new strategy for rapid pro-
visioning of VMs in a cloud computing environment, and
implemented a provisioning system based on it, and evalu-
ated the system.

The key to fast provisioning is space-efficient and clonable
images of running VMs. Space-efficient VM images using
image diffs reduce the amount of data transferred from a
VM image repository to the host machine to minimize the
disk and network I/O bottlenecks. Clonable VM images skip
the time for booting. Clonable VM images are implemented
by eliminating stateful data on running VMs. With these
techniques, we achieved 28 times faster provisioning of one
VM, and 8 times faster provisioning of 64 VMs than the base
implementation.

For future work, we will extend the level of our deduplica-
tion of images into that of file-based image repository such
as Mirage[9]. Another future work item is evaluation with
large-scale deployment. Our experimental setup was rela-
tively small, so we will prepare larger environment to evalu-
ate effectiveness of our image preloading mechanism under
the situation where various VM images exist.

9. REFERENCES
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand,

T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, pages
164–177, New York, NY, USA, 2003. ACM.

[2] M. Cardosa, M. R. Korupolu, and A. Singh. Shares
and utilities based power consolidation in virtualized
server environments. In IM’09: Proceedings of the 11th

IFIP/IEEE international conference on Symposium on
Integrated Network Management, pages 327–334,
Piscataway, NJ, USA, 2009. IEEE Press.

[3] B. Chen, N. Xiao, Z. Cai, Z. Wang, and J. Wang.
Fast, on-demand software deployment with
lightweight, independent virtual disk images. In GCC
’09: Proceedings of the 2009 Eighth International
Conference on Grid and Cooperative Computing,
pages 16–23, Washington, DC, USA, 2009. IEEE
Computer Society.

[4] L. Grit, D. Irwin, A. Yumerefendi, and J. Chase.
Virtual machine hosting for networked clusters:
Building the foundations for ”autonomic”
orchestration. In VTDC ’06: Proceedings of the 2nd
International Workshop on Virtualization Technology
in Distributed Computing, page 7, Washington, DC,
USA, 2006. IEEE Computer Society.

[5] F. Hermenier, X. Lorca, J.-M. Menaud, G. Muller,
and J. Lawall. Entropy: a consolidation manager for
clusters. In VEE ’09: Proceedings of the 2009 ACM
SIGPLAN/SIGOPS international conference on
Virtual execution environments, pages 41–50, New
York, NY, USA, 2009. ACM.

[6] K. Keahey, M. Tsugawa, A. Matsunaga, and J. Fortes.
Sky computing. IEEE Internet Computing,
13(5):43–51, 2009.

[7] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell,
P. Patchin, S. M. Rumble, E. de Lara, M. Brudno,
and M. Satyanarayanan. Snowflock: rapid virtual
machine cloning for cloud computing. In EuroSys ’09:
Proceedings of the 4th ACM European conference on
Computer systems, pages 1–12, New York, NY, USA,
2009. ACM.

[8] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli,
S. Soman, L. Youseff, and D. Zagorodnov. The
eucalyptus open-source cloud-computing system. In
CCGRID ’09: Proceedings of the 2009 9th
IEEE/ACM International Symposium on Cluster
Computing and the Grid, pages 124–131, Washington,
DC, USA, 2009. IEEE Computer Society.

[9] D. Reimer, A. Thomas, G. Ammons, T. Mummert,
B. Alpern, and V. Bala. Opening black boxes: using
semantic information to combat virtual machine image
sprawl. In Proceedings of the fourth ACM
SIGPLAN/SIGOPS international conference on
Virtual execution environments, VEE ’08, pages
111–120, New York, NY, USA, 2008. ACM.

[10] T. J. Rolfe. An alternative dynamic programming
solution for the 0/1 knapsack. SIGCSE Bull.,
39(4):54–56, 2007.

[11] B. Sotomayor, R. S. Montero, I. M. Llorente, and
I. Foster. Virtual infrastructure management in
private and hybrid clouds. IEEE Internet Computing,
13(5):14–22, 2009.

[12] Y. Sun, Y. Luo, X. Wang, Z. Wang, B. Zhang,
H. Chen, and X. Li. Fast live cloning of virtual
machine based on xen. In HPCC ’09: Proceedings of
the 2009 11th IEEE International Conference on High
Performance Computing and Communications, pages
392–399, Washington, DC, USA, 2009. IEEE
Computer Society.



APPENDIX
A. IMAGE PRELOADING
To reduce the time to provision virtual machines, we need
to preload the base images on each host. Since we use base
and diff images, we need a preloading mechanism suitable
for both of them. In this section, we describe our proposed
preloading mechanism in detail.

When the image store of a host machine is initialized, pop-
ular base images are prefetched from the image repository.
Popular base images are selected based on popularity of each
base image. The popularity of a base image is the number of
running virtual machines that were created from one of the
diff images based on the base image. We assume the prob-
ability that a image will be used for future provisioning is
proportional to the popularity of that image, and an image
with a higher popularity is more likely to be preloaded

A.1 Selecting images to be preloaded
During the image store initialization, the base images are
selected for prefetching so that the expected time to copy
an image is minimized. We can calculate the expected copy
time from the image store size, image sizes, number of run-
ning VMs, and other factors. We can efficiently solve this
problem with an approximation algorithm for 0-1 knapsack
problem [10].

We assume that the average throughput of image transfer
is constant, so the average time of the transfer time of a
VM image is proportional to its size. Transfer time of a VM
image is different depending whether its base disk image is
cached or not. If the base disk image is cached, only its
diff disk image is transferred. Otherwise, both base and diff
disks images are transferred. If the information about which
images are cached is available, we can calculate the expected
transfer time of a VM image using its popularity described
above.

We assume the probability that a VM image will be used for
future provisioning is proportional to the popularity of that
image, so we calculate the expected transfer time of the VM
image using the probability for cached and uncached cases.

Since we can calculate the image transfer time of a VM
image for cached and uncached cases, we can examine all
of combination of cached and uncached cases of every VM
images in order to find which combination minimizes the
average expected transfer time of a VM image for a newly
created VM.

To find optimal solution by check all combination of cache
and uncached cases is not tractable. However, we can use
an approximation algorithm for 0-1 knapsack problem as
described in detail below.

Let N be the number of images, and T be the average
throughput for images. Then the expected time to trans-
fer an image is

E =
X

i

X
j∈Di

nj

N

(1− xi)Si + ∆j

T
, (1)

where Si is the size of image i, ∆j is the size of diff image j,

Di is the set of the diff images based on base image i, nj is
the number of running VMs created from diff image j, and
xi is a Boolean variable indicating whether or not the base
image i is cached. E can be transformed to

E =
1

NT
(
X

i

piSj +
X

i

X
j∈Di

∆j −
X

i

piSixi), (2)

where the popularity pi =
P

j∈Di
nj .

The first and second terms are constant because they do
not contain xi, so we need to minimize the last term. The
last term has a minus sign, so only we need to maximizeX

i

piSixi. The 0-1 knapsack problem to be solved is maxi-

mizing
X

i

piSixi subject to
X

i

Sixi ≤ W, xi ∈ {0, 1}, where

W is the size of the image store.

A.2 Selecting images to be evicted
When a VM is provisioned, any uncached images are fetched
from the image repository. If the image store is full, one or
more images are selected for eviction so that the expected
time to copy the image again is minimized. We cannot evict
cached images that are being used by VMs running on the
host machine, so victims are selected from the currently un-
used images.

We can also solve this problem by an approximation algo-
rithm for 0-1 knapsack problems.

The expected time to transfer image i is

E =
X

i∈C−R

X
j∈Di

nj

N

(1− xi)Si + ∆j

T
, (3)

where C is the set of images cached on the target host ma-
chine, and R is the set of images from which the running
VMs were created on the target host machine.

Therefore, the 0-1 knapsack problem to be solved maxi-

mizing is
X

i∈C−R

piSixi subject to
X

i∈C−R

Sixi ≤ W − Sk −X
i∈R

Si, xi ∈ {0, 1} where k is the image to be provisioned.


