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Abstract

A Markov decision process (MDP) is a popular model of sequential decision

making, but its standard objective of minimizing cumulative cost is often in-

adequate, for example, to avoid the possibility of large loss. Risk-sensitive

objective functions and constraints have thus been proposed for MDPs. Unlike

the standard MDP, however, the optimal policy for some of these MDPs can

depend on the initial states, so that the optimal policy can change over time.

We show that an agent can surely incur larger cumulative cost by following the

latest optimal policy at every state than by following other policies. We then

establish sufficient conditions on the objective function and on the constraints

for the optimal policies to be consistent between the initial states. We also show

when the sufficient conditions are necessary. We discuss implications of our re-

sults to the MDPs that have been studied in the literature, stating whether

their optimal policies depend on the initial states.
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1. Introduction

A Markov decision process (MDP) is a model of sequential decision making,

where the goal is to find a policy, which maps a state to an action, such that a

given objective function is minimized. When the objective function is the stan-

dard expected cumulative cost, the optimal policy is known to be independent5

of the initial state, or where an agent starts acting. It thus suffices to find the

optimal policy for an arbitrary initial state and let any agents act according to

that optimal policy.

For some of the non-standard objective functions or constraints, however,

it is known that the optimal policy depends on the initial state [19, 18, 25,10

27, 28, 42, 65]. Recently, there has been an increasing interest in the use of

non-standard objective functions [27, 33, 37, 39, 40, 41, 42, 47, 48, 49, 51, 65]

or constraints [1, 6, 9, 10, 19, 18, 25, 26, 27, 28, 30, 42, 65, 66] in MDPs. For

example, one of the objectives in [42] is to minimize the variance of cumulative

cost under the constraint that expected cumulative cost is below a threshold.15

These non-standard objective functions or constraints have been introduced,

because expected cumulative cost is often inadequate for example to avoid large

loss or to take into account the limitations of available resources.

The dependency of the optimal policy on the initial state is rather contro-

versial. Consider two agents who make decisions based on a common MDP.20

The first agent finds the optimal policy from an initial state, takes the first

action, and transitions to the next state. This next state is the initial state

for the second agent who starts acting when the first agent takes the second

action. The state is Markovian, and the two agents are indistinguishable when

the first agent takes the second action (and the second agent takes the first25

action). However, these two agents behave differently when they act according

to respectively optimal policies.

In this paper, we study which objective function and constraints can guaran-

tee that the optimal policy is independent of the initial state. Our results imply

that the objective function should be represented by either expectation, entropic30
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risk measure [23], or another dynamic risk measure [48] having the property that

we refer to as optimality-consistency. The constraints should have the property

that, if the constraints are satisfied with a policy at one moment, they will also

be satisfied in the future with the same policy. For example, we can require that

the maximum possible value of a random quantity to be below (or minimum to35

be above) a threshold. These conditions constitute our primary contributions.

The optimality-consistency of a dynamic risk measure is related to but differ-

ent from time-consistency that has been studied in [5, 11, 23, 31, 53, 54, 57, 59].

Time-consistency requires that “[a]t every state of the system, optimality of

our decisions should not depend on scenarios which we already know cannot40

happen in the future” (page 321 from [59]). This notion of time-consistency is

important primarily because it guarantees that the optimal policy is the one

that satisfies the Bellman equation (Equations 3.3 from [44]). However, time-

consistency does not necessarily preclude the dependency of the optimal policy

on the initial state. See Appendix A for further discussion on the difference45

between optimality-consistency and time-consistency.

The rest of the paper is organized as follows. In Section 2, we give examples

of objective functions and constraints that cause the optimal policy to depend

on the initial state. We will see undesirable outcomes when the agent at a state

changes the policy to the one that is optimal from that state. In Section 3,50

we formally define the settings of our study. In Section 4, we prove sufficient

conditions for the independence of the optimal policy from the initial state and

discuss their necessity. In Section 5, we discuss the objective functions and

constraints studied in the prior work, showing whether they cause the optimal

policy to depend on the initial state. Related work is summarized in Section 6.55

2. Dependency of the optimal policy on the initial state

Consider a traveler who goes from an origin, A, to a destination, C, where

the travel time depends on whether the traffic is normal or busy (see Figure 1).

Upon the departure, the traveler does not know the exact traffic condition but
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Figure 1: Travel time (a) at normal traffic and (b) (b) at busy traffic.

knows that the traffic is normal with probability 0.8 and busy otherwise. The60

traveler also knows the conditional probability distribution of the travel time

given each traffic condition. For example, given that the traffic is busy, travel

time from B′ to C is 70 minutes with probability 0.8 and 150 minutes otherwise.

The path from B to C is busy if and only if the path from B′ to C is busy. The

exact traffic condition becomes known when the traveler arrives at B or B′.65

Using the settings of Figure 1, we discuss an MDP with constraints or a

non-standard objective function, where the constraints and the objectives are

with respect to the total travel time, X. The state of the MDP is the pair of

the location (A, B, B′, or C) and the traffic condition (normal, busy, or yet

unknown). The action of the MDP selects the next location to visit.70

We first consider minimizing the expected value of total travel time, E[X],

under the constraint that its variance, Var[X], is below a threshold, δ:

minimize E[X]

subject to Var[X] ≤ δ.
(1)

Specifically, let δ = 360 squared minutes in (1). This mean-variance tradeoff

has been a popular criterion of optimization in the literature [42, 43].

There are five policies in our example. For each of these policies, E[X] and75

Var[X] are shown in Table 1 (a). Note that the indirect path from A to B′ to

B (the third policy) surely takes longer than the direct path from A to B (the

first policy). The optimal policy, π?, is the fourth policy, which suggests to first

visit B′, and take B′-B-C if the traffic is normal and take B′-C otherwise.

Now, consider another traveler, who starts at B′ after the traffic condition80
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Policy E Var CTE0.8

ABC 72.0 576.0 120.0

AB′C 75.2 312.9 96.0

AB′BC 77.0 576.0 125.0

π?: AB′BC if normal; AB′C if busy 71.2 358.5 96.0

AB′C if normal; AB′BC if busy 81.0 484.0 125.0

Table 1: The expectation (E), the variance (Var), and the conditional tail expectation (CTE0.8)

of travel time from A.

Policy E Var CTE0.8

B′C 60.0 0.0 60.0

B′BC 55.0 0.0 55.0

(a) Normal

Policy E Var CTE0.8

B′C 86.0 1,124.0 150.0

B′BC 115.0 0.0 115.0

(b) Busy

Table 2: The expectation (E), the variance (Var), and the conditional tail expectation (CTE0.8)

of the travel time from B′ when the traffic is (a) normal or (b) busy.

becomes known. Let Y be the total travel time of the second traveler. While

the first traveler has already spent c = 10 minutes, the two travelers appear to

be indistinguishable when they are at B′. In particular, the two travelers have

common objective and constraint, because E[Y ] = E[X]−c and Var[Y ] = Var[X]

if the they follow the same policy from B′.85

The second traveler plans the travel after the traffic condition is known (see

Table 2). When the traffic is normal, B′-B-C is optimal. When the traffic is

busy, B′-B-C is optimal, because B′-C violates the constraint.

Observe that the two travelers behave differently when they respectively

behave optimally. When the traffic is found busy, the first traveler takes B′-90

C, and the second takes B′-B-C. Given the decision of the second traveler, it

might appear that the constraint is violated for the first traveler after the traffic

condition is known. This can motivate the first traveler to follow the optimal

policy for the second traveler from B′. However, doing so will result in taking

A-B′-B-C regardless of the traffic condition. Taking A-B′-B-C is by no means95
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desirable, because it takes surely longer than taking A-B-C.

We now consider an MDP with a non-standard objective function (and no

constraint). Specifically, our objective function is conditional tail expectation

(CTE), which is also known as conditional value at risk. CTE has a parameter,

α, and is defined for a random variable, Y , as follows:100

CTEα[Y ] ≡ (1− β)E[Y |Y > Vα] + (β − α)Vα
1− α

, (2)

where Vα ≡ min{y | FY (y) ≥ α}, FY is the cumulative distribution function of

Y , and β ≡ FY (Vα). For a continuous Y , or unless Y has a mass probability

at Vα, CTE is simplified to CTEα[Y ] = E[Y |Y > Vα], because β = α. This

simplification applies to the example in this section.

The last column of Table 1 shows the values of CTE0.8[X] for each policy.105

There are two equally optimal policies, which result in CTE0.8[X] = 96.0. Fol-

lowing any of these optimal policies, the traveler first visits B′. Consider the

second traveler who starts from B′ after observing the traffic condition (see Ta-

ble 2). Regardless of the traffic condition, the policy of taking B′-B-C is optimal

with respect to CTE0.8[Y ] for the second traveler. The optimal policies of the110

two travelers are thus mutually inconsistent. This inconsistency is analogous to

the situation of the two travelers who make decisions based on (1).

3. Markov decision processes

We consider the Markov decision process (MDP) having a finite number of

states and a finite horizon. Let N be the number of the time steps to consider.115

For ` ∈ [0, N ], let S` be the finite set of possible states at time `. We assume that

the state is augmented with accumulated reward and the history of previously

visited states. Then S` and Sm are mutually exclusive for ` 6= m, because

the history of visited states is a part of the state. Let Sn:N ≡ ∪`∈[n,N ]S` and

S ≡ S0:N . A policy, π, specifies an action to take, depending on the state.120

We allow the action space to be continuous or have infinite number of possible

actions. The transition probability function, pπ(s′|s), specifies the probability

6



of transitioning from s ∈ S` to s′ ∈ S`+1 given the action is selected according

to π for ` ∈ [0, N). Let R` be the reward that the agent gains immediately after

taking an action at time ` for ` ∈ [0, N). Because the accumulated reward is a125

part of the state, R` can be specified by S` and S`+1 for ` ∈ [0, N). Because

the state space is finite and the state is augmented with accumulated reward,

the distribution of the immediate reward must have a finite support.

An agent can start acting at any n ∈ [0, N). With the knowledge of the

state at n, the agent finds a policy to follow from a candidate set, Πn. Let130

Π ≡ Π0. Then Πn is defined from Π by limiting the domain of π ∈ Πn to

Sn:N−1. We only consider Markovian and deterministic policies (as opposed to

history-dependent or stochastic policies). Namely, the action to take from a

given state is selected non-probabilistically and independently of how the agent

reached that state. Recall, however, that our state includes the information135

about the history of visited states and accumulated reward. The assumption

of deterministic policy does not lose generality, because our action space can

be continuous and the immediate reward, R`, can be random given S` and A`.

Specifically, for any probabilistic action, we can construct a deterministic action

having the same effect as that probabilistic action.140

The agent follows the policy that is optimal with respect to an optimization

problem of the following form:

maximizeπ∈Πn fn(Xπ(sn))

subject to hn(Xπ(sn)) = 1,
(3)

where Xπ(sn) is the cumulative reward for the agent who starts acting from

state sn by following a policy, π. The objective function, fn(·), maps Xπ(sn)

to a real number; hn(·) is an indicator function that represents whether the145

constraints are satisfied (hn(·) = 1) or not (hn(·) = 0). For example, hn(·) ≡

1 {gn(·) ∈ Bn}, where gn is a multidimensional function that maps Xπ(sn) to

real numbers, Bn specifies the feasible region in the codomain of gn, and 1 {C}

denotes the indicator random variable whose value is 1 if the random condition,

C, is satisfied and 0 otherwise.150
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Examples of objective functions are fn(·) = E[· | Sn] and fn(·) = CTEα[· |

Sn], which we have discussed in Section 2. A constraint that we have seen in

Section 2 is hn(·) = 1 {Var[· | Sn] ≤ δ}. Notice that our objective function, fn,

and our constraints, hn, can depend on n.

Throughout, we consider the case where155

Xπ(sn) = r(sn) +

N−1∑
`=n

R`, (4)

where the state, sn, is augmented with the accumulated reward, r(sn). The

agent who starts acting from sn can be considered to have the initial wealth of

r(sn). That is, the agent at time n seeks to maximize fn(
∑N−1
`=0 R`) instead of

fn(
∑N−1
`=n R`). Maximizing one of these quantities is equivalent to maximizing

another when fn satisfies the following separability:160

fn

(
N−1∑
`=0

R`

)
=

n−1∑
`=0

R` + fn

(
N−1∑
`=n

R`

)
(5)

The separability is, for example, satisfied when fn(·) = E[· | Sn] or fn(·) =

CTEα[· | Sn]. The separability does not hold, for example, when fn(
∑N−1
`=0 R`) =

E
[
1
{∑N−1

`=0 R` > c
}]

, where the agent seeks to maximize the probability that

the cumulative reward exceeds a target value, c. When the separability does

not hold, the state, sn ∈ Sn for n ∈ [1, N ], generally needs to include additional165

information about r(sn) to adequately maximize fn(
∑N−1
`=0 R`). Intuitively, if

we seek to maximize the probability that our final wealth exceeds a target, the

optimal action should depend on what has already been earned. In this paper,

the objective function is not necessarily separable.

In summary, the MDP studied in this paper can be specified with a tuple,170

〈S,Π, p, f, h〉, where f ≡ {fn | n ∈ [0, N)} and h ≡ {hn | n ∈ [0, N)}. We

use MDPf,h(S,Π, p) to denote the MDP with these specifications. Recall that

the reward is implicitly defined via the state, which is augmented with the

accumulated reward.
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4. Conditions for the independence from the initial state175

We study the conditions on the objective functions and the constraints of

the MDP so that the optimal policy is independent of the initial state (or when

the agent starts acting). We say that an MDP is consistent when the optimal

policy is independent of the initial state:

Definition 4.1. We say that MDPf,h(S,Π, p) is consistent if the following is180

satisfied. For any n ∈ [1, N), if π? is optimal with respect to the objective

function fn−1 and constraints hn−1 for the agent who start acting from s ∈

Sn−1, then π? is optimal (and hence feasible), with respect to fn and hn, for the

agent who starts acting from any s′ ∈ Sn such that pπ
?

(s′ | s) > 0. We say that

MDPf,h is consistent if MDPf,h(S,Π, p) is consistent for any S, Π, and p.185

We now revisit the objective and constraints in (1). In Figure 1, the optimal

policy, which we find by solving the MDP upon departure, becomes infeasible for

the MDP solved at intersection B if the traffic is busy. The transition probability

to the busy state is strictly positive. Hence, the corresponding MDPf,h(S,Π, p)

is indeed inconsistent in the sense of Definition 4.1.190

4.1. Preliminaries

To formally study consistency, it is important to understand the objective

function, f , as a dynamic risk measure (dynamic RM). In the context of the

MDP, an RM, ρn(·), maps a random variable, Y , that generally depends on

the states after time n to a real number given Sn. The value of ρn(Y ) is195

random before time n and becomes deterministic given Sn, because the value

of ρn(Y ) depends on Sn, which is random before time n. When a random

variable becomes deterministic at time n, we say that the random variable is

Fn-measurable. In the context of the MDP, a dynamic RM is defined as follows:

Definition 4.2. Consider a generic Markov chain having a finite state space200

and a finite horizon, N , where the state at time n includes the information about

the history of the states before time n (i.e., the state is augmented with prior
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states). Let Y be a generic FN -measurable random variable that can depend on

the state of the Markov chain at time N . We say that ρ ≡ {ρn | n ∈ [0, N)}

is a dynamic RM if ρn maps Y to an Fn-measurable random variable for each205

n ∈ [0, N).

In the literature of Finance, it is standard to assume that ρn satisfies the

property of convexity or coherency [57, 31, 13, 54, 53, 5]. We do not assume

these properties, because they can be undesirable for other applications. In

particular, the convex or coherent RM satisfies the separability (5). Then the210

actions optimal with respect to these RMs are insensitive to the accumulated

cost, which is undesirable for avoiding certain types of risks. Indeed, non-convex

or non-coherent RMs have been considered with MDPs in the literature [41, 65].

In our MDP,Xπ is an FN -measurable random. Because Sn is Fn-measurable,

so is fn(Xπ(Sn)). Hence, f is a dynamic RM. Analogously, h is a dynamic RM215

but has an additional property that its value is 0 or 1. We refer to such a

dynamic RM as an indicator dynamic RM. In the following, we use Pr(·) to

denote the probability with respect to the probability space defined by an FN -

measurable random variable depending on the context.

We use the following definitions to provide the conditions for consistency:220

Definition 4.3. For n ∈ [1, N) with N < ∞, a dynamic RM, ρ ≡ {ρn | n ∈

[0, N)}, is called optimality-consistent for the n if the following is satisfied: for

any FN -measurable random variables, Y and Z, defined on an arbitrary Markov

chain on a finite state space that is augmented with prior states, if Pr(ρn(Y ) ≤

ρn(Z)) = 1 and Pr(ρn(Y ) < ρn(Z)) > 0, then Pr(ρn−1(Y ) < ρn−1(Z)) > 0.225

Also, we say that ρ is optimality-consistent if ρ is optimality-consistent for any

n ∈ [1, N).

Definition 4.4. For n ∈ [1, N) with N < ∞, a dynamic RM, ρ ≡ {ρn | n ∈

[0, N)}, is called non-decreasing for the n if we have Pr(ρn−1(Y ) ≤ ρn(Y )) = 1

for any FN -measurable random variable Y defined on an arbitrary Markov chain230

on a finite state space that is augmented with prior states. Also, we say that ρ

is non-decreasing if ρ is non-decreasing for any n ∈ [1, N).
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To get a sense of Definition 4.3, suppose that ρ is not optimality-consistent

for an n. Then one can prefer Y to Z at time n − 1 (i.e., Pr(ρn−1(Y ) ≥

ρn−1(Z)) = 1) despite the fact that, at time n, Z becomes surely at least as235

preferable as Y (i.e., Pr(ρn(Y ) ≤ ρn(Z)) = 1) and sometimes better than Z (i.e.,

Pr(ρn(Y ) < ρn(Z)) > 0). This will be formalized in Section 4.2. The following

corollary follows from the contrapositive of the condition of Definition 4.3:

Corollary 1. Let ρ be an optimality-consistent dynamic RM. Let Y and Z

be FN -measurable random variables. If Pr(ρn−1(Y ) ≥ ρn−1(Z)) = 1, then240

Pr(ρn(Y ) > ρn(Z)) > 0 or Pr(ρn(Y ) ≥ ρn(Z)) = 1.

4.2. Sufficient conditions

We are now ready to state a sufficient condition for MDPf,h to be consistent:

Theorem 4.1. If f is an optimality-consistent dynamic RM and h is a non-

decreasing indicator dynamic RM, then MDPf,h is consistent as defined in Defi-245

nition 4.1.

Proof. We will prove that MDPf,h(S,Π, p) is consistent for any S, Π, and p if f is

an optimality-consistent dynamic RM and h is a non-decreasing dynamic RM.

Recall from Definition 4.1 that, for consistent MDPf,h(S,Π, p), if π is optimal at

sn−1 ∈ Sn−1 and pπ(sn | sn−1) > 0, then π is optimal at sn. We will prove the250

contrapositive of this statement. Namely, if π is not optimal at sn ∈ Sn, then π

is not optimal at sn−1 or pπ(sn | sn−1) = 0. In other words, if π is not optimal

from sn ∈ Sn, then π is not optimal from any sn−1 such that pπ(sn|sn−1) > 0.

Suppose that π is not optimal from sn ∈ Sn, so that π is either infeasible or

feasible but not optimal.255

We first consider the case where π is infeasible from sn. If pπ(sn|sn−1) > 0 for

an sn−1 ∈ Sn−1, then π must be infeasible (hence, not optimal) from the sn−1;

this is because h is a non-decreasing indicator dynamic RM and hn(Xπ(sn)) = 0,

so that hn−1(Xπ(sn−1)) = 0. Hence, the contrapositive of the property of the

consistency holds.260
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The rest of the proof considers the case where π is feasible but not optimal

from sn. Then there exists an optimal policy, π? 6= π, from sn, and we have

fn(Xπ(sn)) < fn(Xπ?

(sn)).

Now, consider a policy π′. Before time n, π′ is equivalent to π. At time n and

after time n, π′ assigns the same actions as those assigned by π? if Sn = sn

(namely, for all states reachable from sn) and assigns the same actions as those265

assigned by π otherwise. Notice that a state s′ ∈ S` for ` ∈ [n + 1, N) is

reachable only from a single s ∈ Sn, because a state includes the information

about the history of visited states.

We will show that π is not optimal from sn−1 if pπ(sn|sn−1) > 0. If π is

infeasible from sn−1, then π is not optimal from sn−1. We thus consider the270

case where π is feasible from sn−1 and establish that

fn−1(Xπ(sn−1)) < fn−1(Xπ′(sn−1))

for the sn−1 such that pπ(sn|sn−1) > 0. Observe that

fn(Xπ(sn)) < fn(Xπ′(sn)), (6)

and

fn(Xπ(s′n)) = fn(Xπ′(s′n)) (7)

for all s′n ∈ Sn such that s′n 6= sn because of the way π′ is constructed. Now, if

pπ(sn|sn−1) > 0, then, by the optimality-consistency of the objective function,275

we must have

fn−1(Xπ(sn−1)) < fn−1(Xπ′(sn−1)), (8)

which can be formally proved as follows. Let Y ≡ Xπ(sn−1) and Z ≡ Xπ′(sn−1).

Notice that fn(Y ) is a random variable that takes value fn(Xπ(sn)) with prob-

ability pπ(sn|sn−1) for all sn ∈ Sn, and fn(Z) is a random variable having

analogous properties. From the observations made with (6) and (7), we find280
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Pr(fn(Y ) ≤ fn(Z)) = 1 and Pr(fn(Y ) < fn(Z)) > 0. Hence, the optimality-

consistency of the objective function implies Pr(fn−1(Y ) < fn−1(Z)) > 0. How-

ever, Pr(fn−1(Y ) < fn−1(Z)) is 0 or 1, because fn−1(Xπ(sn−1)) and fn−1(Xπ′(sn−1))

are deterministic. Therefore, (8) is established.

We elaborate on the sufficient conditions in Section 4.3 and Section 4.4.285

4.3. Remarks on optimality-consistent objective functions

First, we remark that expectation and entropic risk measure (ERM) can

be shown to be optimality-consistent. Here, the ERM of a random variable,

X, is defined with the parameter of risk-sensitivity, γ, such that ERMγ [X] ≡
1
γ lnE[exp(γ X)] [23]. In fact, optimality-consistency can be shown for a class290

of iterated RMs:

Definition 4.5. Consider a generic FN -measurable random variable, Y . We

say that a dynamic RM, ρ ≡ {ρn | n ∈ [0, N)}, is an iterated RM if ρn[Y ] =

ρ̄n[ρn+1[Y ]] for each n ∈ [0, N), where ρ̄n is a conditional RM that maps an

Fn+1-measurable random variable to an Fn-measurable random variable.295

Notice that E[·|Sn] = E[E[·|Sn+1]|Sn], so that expectation is an iterated

RM, where ρ̄n[·] = E[·|Sn]. Likewise, ERM is an iterated RM with ρ̄n[·] =

ERMγ [·|Sn]. Iterated conditional tail expectation (ICTE) studied in [13, 31, 48]

is an iterated RM with ρ̄n[·] = CTEα[·|Sn]. The following corollary can be

proved formally:300

Corollary 2. An iterated RM, as defined in Definition 4.5, is optimality-

consistent for a particular n ∈ [1, N) if Pr(ρ̄n−1[V ] < ρ̄n−1[W ]) > 0 for any

Fn-measurable random variable, V and W , such that Pr(V ≤ W ) = 1 and

Pr(V < W ) > 0.

Proof. By Definition 4.3, it suffices to show that, for an iterated RM that satis-305

fies the conditions of the corollary, we have Pr(ρn−1[Y ] < ρn−1[Z]) > 0 for any

FN -measurable random variables, Y and Z, that satisfy

Pr(ρn[Y ] ≤ ρn[Z]) = 1 and Pr(ρn[Y ] < ρn[Z]) > 0. (9)
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By the definition of ρ, we have

ρn−1[Z]− ρn−1[Y ] = ρ̄n−1[ρn[Z]]− ρ̄n−1[ρn[Y ]]. (10)

Observe that V = ρn[Y ] and W = ρn[Z] satisfy the conditions of the corollary

by (9). Therefore, Pr(ρn−1[Y ] < ρn−1[Z]) > 0, which completes the proof.310

Corollary 2 allows us to check whether a given iterated RM, ρ, is optimality-

consistent by studying the properties of ρ̄n for n ∈ [0, N). For example, an

iterated RM defined for a random variable, V , with

ρ̄n(V ) ≡ η E[V |Sn] + (1− η)CTEα[V |Sn] (11)

is optimality-consistent for α, η ∈ (0, 1). One can expect that minimizing this

iterated RM of cumulative cost, X, leads to balancing between minimizing ex-315

pected cumulative cost and minimizing the riskiness of large loss. The MDP of

minimizing the iterated RM defined with (11) can also be shown to be equiv-

alent to a robust MDP of minimizing the expectation when the parameters of

the MDP have uncertainties (see [49]).

An easy way to verify the conditions of Corollary 2 is to demonstrate that

ρ̄n−1(V ) can be expressed as

ρ̄n−1(V ) =

∫
x∈�

u(x, FV (x)) dFV (x), (12)

where u(·, ·) is monotonically increasing with respect to its first argument, and320

FV is the cumulative distribution function of an Fn-measurable random variable,

V . Let F−1
V (q) = min{x | FV (x) = q}. For the V and W defined in Corollary 2,

we have

ρ̄n−1(W ) =

∫ 1

0

u(F−1
W (q), q) dq >

∫ 1

0

u(F−1
V (q), q) dq = ρ̄n−1(Y ),

where the inequality holds, because u is monotonically increasing with respect

to its first argument, and Pr(V ≤ W ) = 1 and Pr(V < W ) > 0 (i.e., F−1
W (q) ≥325

F−1
V (q) for 0 ≤ q ≤ 1, and there exists q0 < q1 such that F−1

W (q) > F−1
V (q) for

q0 ≤ q ≤ q1).
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For example, E[V | Sn] =
∫
x∈� x dFV (x), so that u(x, FV (x)) = x is mono-

tonically increasing with x. For brevity, here, we do not explicitly denote that

FV is conditional on Sn, which is clear from the context. Also, the ρ̄n(V ) defined330

with (11) can be expressed as ρ̄n(V ) =
∫
x∈� u(x, FV (x)) dFV (x) by defining

u(x, FV (x)) ≡


η x if FV (x) < β

η x+ (1−η)(β−α)
(1−α)(β−α−) if FV (x) = β

η x+ 1−η
1−α x if FV (x) > β,

(13)

where α and β are as defined for (2) but now with respect to FV ; also, α− ≡

supFV (x)<β FV (x). Observe that u(x, FV (x)) of (13) is monotonically increasing

with respect to x for 0 < η ≤ 1. By letting η = 0 in (11), we have ρ̄n(V ) =

CTEα[V | Sn]. Also, u(x, FV (x)) stays constant for F (x) < β when η = 0, which335

agrees with the fact that ICTE is not optimality-consistent.

The iterated RM that satisfies the conditions of Corollary 2 is not only

optimality-consistent but also time-consistent. That is, the optimal policy sat-

isfies the Bellman equation. The Bellman equation can be verified by showing

that the optimal policy from an arbitrary sn ∈ Sn can be found by first finding340

optimal policies from each of sn+1 ∈ Sn+1 for n ∈ [0, N). Formally,

ρn

(
Xπ?

sn (sn)
)

= max
a

ρ̄n+1

(
ρn+1

(
X
π?
Sn+1 (Sn+1)

)
| Sn = sn, A(sn) = a

)
, (14)

where π?sn is the optimal policy from sn ∈ Sn, and A(sn) denotes the action

selected at sn. Here we use ρ̄n+1(· | Sn = sn, A(sn) = a) to denote that ρ̄n+1

is calculated given that Sn = sn and A(sn) = a. Now, suppose that we follow

a suboptimal policy, π′sn+1
, at sn+1 that we can reach with positive probability345

from sn by taking the action, a. Then, because we have

ρn+1

(
X
π?
sn+1 (sn+1)

)
> ρn+1

(
X
π′sn+1 (sn+1)

)
,

Corollary 2 implies that the value of ρ̄n+1 in (14) decreases by replacing π?sn+1

with π′sn+1
. Here, notice that the value of Pr(ρ̄n[V ] < ρ̄n[W ]) is 0 or 1 when

sn ∈ Sn is given, so that Pr(ρ̄n[V ] < ρ̄n[W ]) > 0 implies ρ̄n[V (sn)] < ρ̄n[W (sn)],

where V (sn) denotes the conditional V given Sn = sn, and W (sn) is defined350

analogously. The above argument is summarized in the following proposition:
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Proposition 1. The Bellman equation (14) holds for the iterated RM that

satisfies the conditions of Corollary 2.

We remark that an iterated RM, ρ, does not have the property, ρn(·) = ρ̄n(·),

except for special cases such as, for all n, ρ̄n[·] = E[·|Sn], ρ̄n[·] = ERMγ [·|Sn],355

ρ̄n[·] = min[·|Sn], or ρ̄n[·] = max[·|Sn], where max[X] (respectively, min[X])

denotes the maximum (respectively, minimum) value that X can take with

positive probability. If the objective function is an iterated RM, then ρn(·) is

maximized at each time n, where the number of conditional RMs (ρ̄n, . . . , ρ̄N−1)

used to define ρn depends on the remaining time, N − n, when N is finite. A360

key implication of Corollary 2 and (12) is that there is a large class of iterated

RMs having optimality-consistency.

4.4. Remarks on non-decreasing constraints

Examples of the constraints that make MDPf,h consistent include max[Xπ] ≤

δ and min[Xπ] ≥ δ. Notice that max(Xπ) is non-increasing over time for any365

sample path, because we obtain more information about (the maximum possible

value of) Xπ as time passes. Therefore, 1 {max(Xπ) ≤ δ} is non-decreasing.

Analogously, 1 {min(Xπ) ≥ δ} is non-decreasing.

We have seen with Figure 1 that the MDP with (1) is not consistent. We can

now understand that the inconsistency is due to the constraint in (1), because370

the objective function in (1) is optimality-consistent. Observe that Var[Xπ?

]

increases from 312.9 upon departure to 1124.0 at B′ if the traffic is found busy

at B′. Hence, 1 {Var[· | Sn] ≤ 360} is not non-decreasing.

A way to modify (1) into an consistent MDPf,h is to incorporate the con-

straints that might need to satisfy in the future:375

min. E[X]

s.t. Var[X | S` = s`] ≤ δ, ∀s` ∈ S`,∀` ∈ [0, N),
(15)

Then π? becomes infeasible for the optimization problem to be solved at the time

of the departure, which resolves the issue of the inconsistency. This construction

of non-decreasing constraints can be applied in the following general settings,

where recall that 1 {·} denotes an indicator random variable:
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Corollary 3. Let h be an indicator dynamic RM that is not necessarily non-380

decreasing. Let X be an FN -measurable random variable and X(S`) be the

conditional X given S`, the state at time `, for ` ∈ [0, N ]. Then h′ such that

h′n(X(Sn)) ≡ 1 {E [1 {h`(X(S`)) = 1,∀` ∈ [n,N ]} | Sn] = 1}

for each n ∈ [0, N) is an indicator dynamic RM and non-decreasing.

Proof. Observe that h′ is an indicator dynamic RM, because h′n(X(Sn)) is either

0 or 1 and becomes deterministic at time n for each n ∈ [0, N ] (to see why385

h′n(X(Sn)) is deterministic at time n, notice that h′n(X(sn)) = 1 iff h′`(X(s`))

for any state s` reachable from sn for ` ∈ (n,N ]). It suffices to show, for

n ∈ [1, N ], that

E [h′n(X(Sn)) | Sn−1 = sn−1] = 1. (16)

under the condition that h′n−1(X(sn−1)) = 1 for sn−1 ∈ Sn−1.

Because h′n−1(X(sn−1)) = 1, we have390

E [1 {h`(X(S`)) = 1,∀` ∈ [n− 1, N ]} | Sn−1 = sn−1] = 1,

by the definition of h′. This implies

E [1 {h`(X(S`)) = 1,∀` ∈ [n,N ]} | Sn−1 = sn−1] = 1, (17)

because

1 {h`(X(S`)) = 1,∀` ∈ [n− 1, N ]} ≤ 1 {h`(X(S`)) = 1,∀` ∈ [n,N ]} ≤ 1.

By the recursive property of expectation, we thus have from (17) that

E [E [1 {h`(X(S`)) = 1,∀` ∈ [n− 1, N ]} | Sn] | Sn−1 = sn−1] = 1.

Because the value of the inner expectation is in [0, 1], it must be 1 with proba-

bility one. Then this implies h′(X(Sn)) = 1. Formally, we have

E [1 {h`(X(S`)) = 1,∀` ∈ [n− 1, N ]} | Sn] = 1 ⇒ h′(X(Sn)) = 1

This establishes (16).
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4.5. Necessary conditions

Next, we study necessity of the sufficient condition provided in Theorem 4.1:395

Lemma 4.1. If MDPf,h is consistent for any optimality consistent f , then h

must be non-decreasing. If MDPf,h is consistent for any non-decreasing h, then

f must be optimality-consistent.

Proof. The proof consists of two parts. In Part I, we will prove that h must

be non-decreasing if MDPf,h is consistent for f ≡ 0 (i.e., any feasible policy is400

optimal). In Part II, we will prove that f must be optimality-consistent if MDPf,h

is consistent for h ≡ 1 (i.e., no constraints).

Part I:. It suffices to construct an MDPf≡0,h(S,Π, p) that is not consistent, for

every h that is not non-decreasing. Because h is not non-decreasing, Defini-

tion 4.4 implies that there exist N ∈ [0,∞), a Markov chain on a finite state405

space, S̃, that is augmented with prior states, and an FN -measurable random

variable, Y , such that we have hn−1(Y ) = 1 and hn(Y ) = 0 for an n ∈ [1, N)

with non-zero probability. Let p̃ be the transition probability function of that

Markov chain, where p̃(s̃n | s̃n−1) denotes the probability of transitioning from

s̃n−1 to s̃n for (s̃n−1, s̃n) ∈ S̃n−1 × S̃n, n ∈ [1, N ].410

From the Markov chain on S̃ with transition probability function, p̃, we can

construct the MDPf≡0,h(S,Π, p) that is not consistent. We first augment the

state with cumulative reward with a default policy, π, such that

Sn = {(s̃n, 0) | s̃n ∈ S̃n},∀n < N (18)

SN = {(s̃N , Y (s̃N )) | s̃N ∈ S̃N}, (19)

where Y (s̃N ) denotes the value of Y given that the state of the Markov chain

at time N is s̃N . Let the transition probability, pπ ≡ q, with π be such that

pπ((s̃n, 0) | (s̃n−1, 0)) = p̃(s̃n | s̃n−1),∀(s̃n−1, s̃n) ∈ S̃n−1 × S̃n, n < N

(20)

pπ((s̃N , Y (s̃N )) | (s̃N−1, 0)) = p̃(s̃N | s̃N−1),∀(s̃N−1, s̃N ) ∈ S̃N−1 × S̃N (21)
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The policy π is then feasible (and hence optimal) before time n but can be-

come infeasible at time n. The MDPf≡0,h(S,Π, p) thus constructed is hence not415

consistent.

Part II:. Now, we will construct an MDPf,h≡1(S,Π, p) that is not consistent, for

every f that is not optimality-consistent. Because f is not optimality-consistent,

Definition 4.3 implies that there exist N ∈ [0,∞), a Markov chain on a finite

state space, S̃, that is augmented with prior states, and FN -measurable random420

variables, Y1 and Y2, such that, for an n ∈ [1, N), we have fn−1(Y1) ≥ fn−1(Y2)

and fn(Y1) ≤ fn(Y2) with probability one, and fn(Y1) < fn(Y2) with non-zero

probability. Let p̃ be the transition probability function of that Markov chain.

Analogously to Part I, we can construct the MDPf,h≡1(S,Π, p) that is not

consistent. Let425

Sn = {(s̃n, 0) | s̃n ∈ S̃n},∀n < N (22)

SN = {(s̃N , Y1(s̃N )) | s̃N ∈ S̃N} ∪ {(s̃N , Y2(s̃N )) | s̃N ∈ S̃N}, (23)

where Y1(s̃N ) and Y1(s̃N ) are defined analogously to Y (s̃N ) in Part I.

Consider two policies, π1 and π2, and define their transition probabilities,

pπ1 ≡ q and pπ2 ≡ q, respectively as follows:

pπi((s̃n, 0) | (s̃n−1, 0)) = p̃(s̃n | s̃n−1),∀(s̃n−1, s̃n) ∈ S̃n−1 × S̃n, n < N,

(24)

pπi((s̃N , Yi(s̃N )) | (s̃N−1, 0)) = p̃(s̃N | s̃N−1),∀(s̃N−1, s̃N ) ∈ S̃N−1 × S̃N (25)

for i = 1, 2. The policy π1 is then optimal before time n (fn−1(Y1) ≥ fn−1(Y2)

with probability one) but can become suboptimal at time n (fn(Y1) < fn(Y2)

with non-zero probability). The MDPf,h≡1(S,Π, p) thus constructed is hence not

consistent.430

For a limited class of objective functions, we can establish the necessary

and sufficient condition for MDPf,h to be consistent. Specifically, the following

corollary follows from the results in Section 4.
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Corollary 4. Suppose that there exists ω such that −∞ < ω < fn(X) for

any FN -measurable random variable, X. If we say that any infeasible policy is435

optimal when there is no feasible policy, then MDPf,h is consistent if and only if

f ′(·) ≡ {(fn(·)− ω)hn(·) | n ∈ [0, N ]} is optimality-consistent.

Proof. By Theorem 4.1 and Part II of the proof for Lemma 4.1, MDPf ′,1 is

consistent if and only if f ′ is optimality-consistent. Hence, the corollary can

be established by showing that MDPf,h and MDPf ′,1 are equivalent with respect440

to the optimality of a policy. Consider two policies, π1 and π2. Without loss

of generality, we assume that f ′n(Xπ1(sn)) ≥ f ′n(Xπ2(sn)) at sn ∈ Sn. By

observing the following four cases, we can conclude that the optimality of a

policy in the two MDPs is consistent with each other:

Case 1 Both policies are infeasible:

f ′n(Xπ1(sn)) = f ′n(Xπ2(sn)) = 0⇔ hn(Xπ1(sn)) = hn(Xπ2(sn)) = 0.

Case 2 One policy is infeasible:

f ′n(Xπ1(sn)) > f ′n(Xπ2(sn)) = 0⇔ hn(Xπ1(sn)) = 1 and hn(Xπ2(sn)) = 0.

Case 3 Two policies are feasible and equally good:445

f ′n(Xπ1(sn)) = f ′n(Xπ2(sn)) > 0

⇔ hn(Xπ1(sn)) = hn(Xπ2(sn)) = 1 and fn(Xπ1(sn)) = fn(Xπ2(sn)).

Case 4 Two policies are feasible, and one is better than the other:

f ′n(Xπ1(sn)) > f ′n(Xπ2(sn)) > 0

⇔ hn(Xπ1(sn)) = hn(Xπ2(sn)) = 1 and fn(Xπ1(sn)) > fn(Xπ2(sn)).
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5. Implications to the previously studied MDPs

Here, we discuss implications of the results in the prior sections to the MDPs

that have been studied in the literature. Although a popular objective is to450

minimize expected cumulative cost, there exists a significant amount of the

work on those MDPs that are sensitive to risk or require to satisfy constraints

to avoid huge loss. In Section 5.1, we review the MDPs that have both risk-

sensitive objectives and constraints. We review the MDPs having constraints in

Section 5.2 and those having risk-sensitive objectives in Section 5.3. We will see455

what objective functions are optimality-consistent and what constraints have

the non-decreasing property.

5.1. Risk-sensitive Markov decision processes with constraints

The tradeoff between the expected value and the variance of the cumulative

reward over a finite horizon is studied in [42]. Specifically, the objective is460

to minimize the variance, which is not optimality-consistent. The constraint

requires that the expected cumulative reward is above a threshold, which does

not have the non-decreasing property. Hence, the corresponding MDPf,h is not

consistent. In addition, “Bellman’s principle of optimality does not hold” [42].

This tradeoff is also studied for the reward at the steady state [15, 36, 60].465

Considering only the reward at the steady state is out of the scope of this paper.

However, when the MDP is a uni-chain, there is a unique distribution of the

steady state. In this case, there is a unique policy that is optimal with respect to

the reward at the steady state. The unique optimal policy found at one moment

stays optimal in the future, because the steady state stays unchanged.470

5.2. Markov decision processes with constraints

MDPs with constraints, or constrained MDPs, have been studied extensively

in the literature. These include MDPs with multiple criteria, where one of

the criteria is used to define the objective function, and others are used for

constraints. Our results apply to such setting with multiple criteria as well.475
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In this section, we identify whether the previously studied constraints have the

non-decreasing property.

Altman [3] studies constrained MDPs that require to minimize the expect

cumulative cost of one type, while keeping the expected cumulative costs of

other types below thresholds. Altman’s class of constrained MDPs has also480

been studied in [19, 20, 21, 27, 28]. In general, these constraints do not have the

non-decreasing property; i.e., the MDPf,h defined with the constrained MDP of

Altman’s class is not necessarily consistent. It has been pointed out that Bell-

man’s principle of optimality is not necessarily satisfied for a constrained MDP

of Altman’s class [32, 34, 55, 58], where counter-examples have been constructed485

for the case where the constrained MDP is a multi-chain over an infinite horizon.

The constraints of Altman’s class do not have to be with respect to the

expected cumulative cost. The constraint that requires the cumulative cost

to be below a predefined level with high probability is studied in [18, 19, 65].

Geibel studies analogous constraints on reward instead of cost [28]. Fulkerson490

et al. [25] study the constraint that the probability of reaching the goal must be

above a desired level. Teichteil-Königsbuch [63] expresses the constrains with

Probabilistic Real Time Computation Tree Logic, which is popular in model

checking. In general, these constraints do not have the non-decreasing property.

The optimal policy for the constrained MDPs of Altman’s class cannot, in495

general, be found with dynamic programming, as is suggested by the violation

of Bellman’s principle of optimality. Geibel [28] thus studies four approaches

for optimization. One of his approaches is to strengthen the constraints in

such a way that the original constraints must be satisfied from potential future

states. This approach is equivalent to our modification of (1) into (15) or that500

in Corollary 3. This approach is also suggested in [26]. As we have discussed in

Section 4, the strengthened constraints have the non-decreasing property.

There also exists work that uses hard constraints that are analogous to the

strengthened constraints in [28]. For example, the constraint that the prob-

ability of terminating in undesirable state is below a threshold for all states505

is studied in [29, 30]. It is required that the constraint must be satisfied for
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every sample path in [32, 55]. These hard constraints directly imply the non-

decreasing property. The above-mentioned [25] also study the hard constraint

that requires that the probability of reaching the goal is 1 (i.e. for every sample

path). In this case, the constraint has the non-decreasing property.510

Another class of constraints having the non-decreasing property is studied

in [66]. They require that the maximum possible total cost is below a threshold.

This is equivalent to 1 {max(Xπ) ≤ δ} that we have studied in Section 4.2 and

hence has the non-decreasing property.

There also exists work that places constraints on policies. For example,515

Dolgov and Durfee [19] limit the search space to the set of deterministic policies

when the optimal policy is in general randomized. This type of a “constraint” is

not considered to be a constraint in this paper. That “constraint” simply defines

the set, Π, of candidate policies, and the Π does not change over time. Therefore,

the corresponding MDPf,h is consistent unless there are other constraints. Abe520

et al. [1] study “constraints” that require that the expected cost with respect

to a given probability distribution over states and the probability distribution

of actions specified by a policy is below a prespecified level. That “constraint”

is also considered to define the set of candidate policies, which stays unchanged

over time. Hence, the corresponding MDPf,h is consistent.525

There are other “constraints” that are studied as constraints but do not fall

into the class of our constraints. These “constraints” also directly limit the

space of possible policies. For example, temporal constraints and precedence

constraints are studied in [9, 10]. A temporal constraint requires that an action

must be executed in a given time window. A precedence constraint requires530

that some actions must be completed before an action can be taken. These

“constraints” can be taken into account with the definitions of states, actions,

and transitions. Hence the MDPf,h having these “constraints” is consistent unless

there are other constraints. Becker et al. [6] consider soft temporal constraints,

where taking an action makes the cost of other actions low or high. These soft535

constraints can also be taken into account with the definitions of states, action,

and transitions, and are not considered to be constraints in this paper.
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5.3. Risk-sensitive Markov decision processes

Expected utility is widely considered to be the objective function for ratio-

nal decision making [56] and so is well studied as the objectives of MDPs [7].540

The standard utility function is an exponential function [12, 16, 35, 37, 39].

Piecewise-linear utility function is studied in [41]. Geibel [27] minimizes the

probability of being absorbed into a fatal state, which can be represented as

the expectation of an indicator random variable (i.e., an expected utility). Xu

and Mannor [65] study probabilistic goal of maximizing the probability that the545

total reward exceeds a given threshold, which again can be represented as the

expectation of an indicator random variable. One can show that the expected

utility is generally optimality-consistent. Notice that, in [41, 65], the state space

is augmented so that an action can depend on the cumulative reward that is

obtained by the time the action is taken.550

Researchers have also investigated objective functions that cannot be repre-

sented as expected utility. We have already seen an example, variance, in Sec-

tion 5.1. Kawai [36] minimizes variance without constraints. White [64] surveys

MDPs, where “principle of optimality fails” (Page 4 from [64]) or “no station-

ary optimal policy exists” (Page 4 from [64]). These statements suggest that555

their objective functions are not optimality-consistent (or not time-consistent)

or their constraints do not have the non-decreasing property.

The worst possible cumulative cost is minimized in [17, 33, 40]. This is the

case where (backward) dynamic programming can find the optimal policy that

stays optimal over time, even though the objective function is not optimality-560

consistent. Figure 2 shows an MDP, represented by an AND/OR graph [44],

that illustrates this point. There are two candidate policies: one chooses action

a20 from state s2, and the other chooses a21. The cost, C, is associated with

the actions from s1 and s2. Either policy is optimal from s0, because the worst

possible cumulative cost is 4, regardless of the action from s2. However, if we565

transition to s2, which can happen with probability 0.5, the policy of choosing

a20 becomes suboptimal. Dynamic programming will, however, find the policy

that chooses a21 from s2. However, there can be a wide range of algorithms,
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Figure 2: An example of an MDP, represented as an AND/OR graph, that illustrates that

worst possible cumulative cost is not optimality-consistent.

including policy iteration, for MDPs [44], and some of these algorithms might

find the policy that is optimal at one moment but will become suboptimal.570

Recently, Ruszczyński [57] studies dynamic programming for an MDP whose

objective is a Markov RM, a particular iterated RM. Osogami [48] studies dy-

namic programming for an MDP whose objective is a particular iterated RM

when the future cost is discounted. Petrik and Subramanian [51] studies an

MDP whose objective is a particular iterated RM for the case where the state575

space and the action space are continuous. However, these iterated RMs re-

quire to satisfy conditions that are not needed for optimality-consistency and

no constraints are considered in [57, 48, 51].

As we have already seen at the end of Section 5.1, some of the prior work

study the performance at the steady state. For example, Filar et al. [22] stud-580

ies the expected reward minus the variance of the reward at the steady state.

Although the objective function is not optimality-consistent, the optimal policy

stays optimal as long as the MDP is a uni-chain.

There also exists a large body of the literature on risk-sensitive reinforcement

learning [4, 14, 45, 46, 47, 50] where objective functions are not explicitly given,585

but learning algorithms are designed with the hope that learning agents can

avoid large loss.
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6. Conclusion

As we have seen in Section 5, risk-sensitive objective functions and con-

straints have been studied extensively in the literature of MDPs, where min-590

imizing cumulative cost is sometimes found inadequate to avoid large loss or

severe damage. However, implications of the use of these risk-sensitive objec-

tive functions and constraints have not been well understood. We show that

the optimal policy can depend on the initial state and thus can change over

time, and following the latest optimal policy at every time step can lead to poor595

results. This is in contrast to the standard MDP, where the optimal policy at

one moment is guaranteed to stay optimal over time (i.e., the standard MDP

is consistent). The nonstationarity of the optimal policy has been reported for

example in [32, 34, 42, 55, 58, 64] for particular risk-sensitive objective functions

and constraints, but our systematic study is new.600

To formally study the stationarity of the optimal policies over time, we have

defined the consistency of MDPf,h. We have provided the sufficient conditions for

MDPf,h to be consistent (Theorem 4.1). Namely, MDPf,h is consistent if the ob-

jective function is an optimality-consistent dynamic RM and the constraints are

given by a non-decreasing indicator dynamic RM. We have shown the necessity605

of these sufficient conditions (Lemma 4.1).

The consistency of optimality of a plan has been discussed primarily in de-

terministic settings. In particular, Strotz [62] shows that future cost should be

discounted exponentially for the consistency of optimality. Sozou [61] provides

an argument that hyperbolic discounting can be made consistent when uncer-610

tainty is involved. There is large body of the literature on how to plan when the

optimal plan changes over time [52]. Such planning is important to understand

how humans make decisions [24] but leads to suboptimal decisions [38].

Optimality-consistency is closely related to but different from the time-

consistency that has been studied in [5, 8, 11, 23, 31, 53, 54, 57, 59]. In the615

context of MDPs, time-consistency is important primarily because the optimal

policy then satisfies the Bellman equation. In general, time-consistency does not
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imply optimal-consistency, and vice versa. In particular, we have shown that

ICTE studied in [31, 48, 49] is time-consistent but not optimality-consistent.

We have also developed specific classes of objective functions and constraints620

that one can use to define a consistent MDPf,h. In particular, the iterated RMs

that satisfy the conditions of Corollary 2 are optimality-consistent. These it-

erated RMs are also shown to be time-consistent (Proposition 1). Our results

thus provide a strong incentive to choose an objective function from this class

of iterated RMs. We have established a general method for converting the con-625

straints that do not have the non-decreasing property into the one that we can

use to construct a consistent MDPf,h (Corollary 3). Such constructed constraints

are generally stronger than the original constraints and prevents the optimal

policy to become infeasible by making a policy that becomes infeasible to be

infeasible from the beginning.630

An interesting future direction is to numerically investigate the impact of

the inconsistency of optimal policies in real tasks. How often does the optimal

policy change? How much do we lose (or gain) by following the initial optimal

policy after it becomes suboptimal or by following the latest optimal policy at

every step? How much can we gain by making decisions based on a consistent635

MDPf,h relative to the one without consistency? Our results do not yet provide

quantitative answers to these questions.
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Appendix A. Appendix: Optimality-consistency and time-consistency

Our definition of optimality-consistency (Definition 4.3) is different from

time-consistency that has been studied in the literature [5, 11, 23, 31, 53, 54,

57, 59]. In our context, a time-consistent dynamic RM can be defined as follows:

Definition Appendix A.1. A dynamic RM, ρ ≡ {ρn | n ∈ [0, N)}, is called825

time-consistent if the following is satisfied for any n ∈ [1, N): Pr(ρn(Y ) ≤

ρn(Z)) = 1 implies Pr(ρn−1(Y ) ≤ ρn−1(Z)) = 1 for any FN -measurable random

variables, Y and Z.

34



f
n-1

(Y) > f
n-1

(Z) f
n
(Y) = f

n
(Z)

(a) Optimality-consistent dynamic

RM

g
n-1

(Y) = g
n-1

(Z) g
n
(Y) > g

n
(Z)

g
n-1

(Y) = g
n-1

(Z)

g
n
(Y) > g

n
(Z)

g
n
(Y) = g

n
(Z)

(b) Time-consistent dynamic RM

Figure A.3: Characteristic transitions with (a) an optimality-consistent dynamic RM and (b)

a time-consistent dynamic RM.

The time-consistency of a dynamic RM does not imply the optimality-

consistency of the dynamic RM, and vice versa. For example, iterated con-830

ditional tail expectation studied in [31, 48, 13] is a dynamic RM that is time-

consistent but not optimality-consistent.

Figure A.3 illustrates the difference between optimality-consistency and time-

consistency. Specifically, Figure A.3 (a) illustrates the transition that charac-

terizes optimality-consistency. Here, fn−1(Y ) > fn−1(Z) for an optimality-835

consistent dynamic RM, f , and random variables, Y and Z, at a state. From

that state, we can transition to a state with fn(Y ) = fn(Z) with probability 1.

This transition is not allowed when f is time-consistent. Figure A.3 (b) shows

two of the transitions that are allowed with a time-consistent dynamic RM, g.

These transitions are not allowed when g is optimality-consistent.840

When the transition of Figure A.3 (a) is possible, the Bellman equation

(Equations 3.3 from [44]) is violated. The Bellman equation allows one to find

the optimal policy for a finite-horizon MDP (N <∞) through backward induc-

tion, which implies that we cannot have fn−1(Y ) > fn−1(Z) if fn(Y ) = fn(Z)

surely. If time-consistency is also desirable, one can explicitly require that the845

objective function should be both optimality-consistent and time-consistent,

which we further discuss in Section 4.3 (in particular, see Proposition 1).

35


