

October 16, 2015

RT0968
Computer Science 12 pages

Research Report

Workload Characterization and Optimization
of TPC-H Queries on Apache Spark

Tatsuhiro Chiba and Tamiya Onodera

IBM Research - Tokyo
IBM Japan, Ltd.
19-21, Hakozaki, Chuo-ku
Tokyo 103-8510, Japan

Research Division
Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if
accepted. It has been issued as a Research Report for early dissemination of its contents. In view of the
expected transfer of copyright to an outside publisher, its distribution outside IBM prior to publication
should be limited to peer communications and specific requests. After outside publication, requests should
be filled only by reprints or copies of the article legally obtained (for example, by payment of royalities).

Workload Characterization and Optimization of
TPC-H Queries on Apache Spark

Tatsuhiro Chiba
IBM Research - Tokyo

19-21, Hakozaki, Chuo-ku
Tokyo, 103-8510, Japan

chiba@jp.ibm.com

Tamiya Onodera
IBM Research - Tokyo

19-21, Hakozaki, Chuo-ku
Tokyo, 103-8510, Japan
tonodera@jp.ibm.com

Abstract—Besides being an in-memory oriented computing
framework, Spark runs on top of a Java Virtual Machine
(JVM), so JVM parameters must be tuned to improve Spark
application performance. Misconfigured parameters and set-
tings degrade performance. For example, using Java heaps
that are too large often causes long garbage collection pause
time, which accounts for over 10-20% of application execution
time. Moreover, recent modern computing nodes have many
cores and support running multiple threads simultaneously
with SMT technology. Thus, optimization in full stack is also
important. Not only JVM parameters but also OS parameters,
Spark configuration, and application code itself based on CPU
characteristics need to be optimized to take full advantage of
underlying computing resource. In this paper, we use TPC-H
benchmark as our optimization case study and gather many
perspective logs such as application log, JVM log such as GC
and JIT, system utilization, and hardware events from PMU.
We investigate the existing problems and then introduce several
optimization approaches for accelerating Spark performance.
As a result, our optimization achieves 30 - 40% speed up on
average, and up to 5x faster than the naive configuration.

I. INTRODUCTION

As data volumes increase, distributed data parallel pro-
cessing on large clusters is useful to accelerate computing
speed for data analytics. Hadoop MapReduce is one of the
most popular and widely used distributed data processing
frameworks with scale out and fault tolerance. While this
simple programming model enables us to implement dis-
tributed data-intensive applications more easily, nowadays,
various types of analytics applications such as relational data
processing, machine learning, and graph algorithms have
been applied to Hadoop and its related ecosystem. However,
they do not always work efficiently on the existing Hadoop
system because the current framework is not suitable for low
latency or iterative and interactive analytics applications. As
a result, multiple alternatives to Hadoop systems [1], [2], [3]
have been developed to overcome the deficient area. Apache
Spark [4], [5] is an in-memory oriented data processing
framework that supports various Hadoop compatible data
sources. Spark keeps as much data in a reusable format
in memory as possible, so that Spark can reduce disk I/O
drastically more than Hadoop. Spark provides many oper-

ators and APIs for parallel data collections in Scala, Java,
Python, and R, and also useful libraries and components
for machine learning (MLLib), relational query (SparkSQL
and DataFrame), and graph processing (GraphX). Moreover,
Spark retains scalability and resiliency as well, so it has
attracted much attention recently.

Although Spark has been developed by the open source
community and new features and various Spark runtime
optimization techniques are applied frequently, characterizing
habits of Spark and gaining deep insight into the tuning
of Spark applications from the system-side and application-
side aspects are important for not only Spark users but
also Spark runtime developers and system researchers who
try to apply their own optimization algorithms to Spark
itself and other similar frameworks. However, Spark’s core
concept and design are different from those of Hadoop, and
less is known about Spark’s optimal performance, so how
Spark applications perform on recent hardware has not been
investigated thoroughly. Furthermore, various components
(OS, JVM, runtime, etc.) try to achieve higher performance
in accordance with their own optimization policies, so stable
performance is difficult to achieve unless these components
cooperate.

To do achieve this cooperation, there are several chal-
lenges. First, Spark application performance bottlenecks are
more complex to find than those of Hadoop. Hadoop MapRe-
duce is a disk I/O intensive framework, and I/O throughput
performance influences its data processing performance di-
rectly. In contrast, maximization of I/O throughput is still
important for Spark, but its performance bottlenecks are
moved to CPU, memory, and the network communication
layer because of Spark’s in-memory data processing policies.
Second, Spark runs on top of Java Virtual Machine (JVM)
with many task executor threads and a large Java heap, so
JVM tuning is important for improving performance. Spark
creates many immutable and short-lived objects in heaps, so
GC pause time, which is often a dominant part of application
execution time with a large heap, may be insufferably long if
we do not provide suitable GC algorithms or JVM parameters
for Spark.

To address these challenges, in this paper, we investi-
gate the characteristics of Spark performance with multiple
metrics through running Spark applications. We use TPC-H
queries on Spark as reference applications and capture JVM
logs such as GC and JIT, hardware counter events, and system
resource monitor logs. From these logs, we define several
problems and optimization approaches for them. Finally, we
evaluate how these optimizations help to improve TPC-H
query performance.

We make the following contributions in this paper: (1)
We characterize TPC-H queries on Spark and analyze many
performance metrics to help our comprehension. (2) We
provide several Spark optimization methodologies from JVM
side to reduce GC overhead without increasing heap memory
and also to increase IPC by utilizing NUMA and SMT. (3)
We also provide potential problems we found through our
experiments and it would be useful for design or developing
JVM and Spark core runtime.

The rest of the paper is organized as follows. Section
2 describes the background. Section 3 summarizes TPC-
H workload and breakdown measurement result from many
metrics. Section 4 considers what is the existing problem to
accelerate Spark performance and how we can optimize each
layer, Then, Section 5 describes the results with tuning. Sec-
tion 6 mentions related works. Finally, Section 7 concludes
the summary of this paper.

II. BACKGROUND

A. Apache Spark Overview
Apache Spark is an open source in-memory oriented clus-

ter computing framework with APIs in Scala, Java, Python,
and R. Spark can cache working set data or intermediate
data in memory to reduce data loading latency as much as
possible, so that Spark performs much better than Hadoop
in iterative types of workloads such as machine learning
algorithms and interactive data mining. Not only iterative
workloads but also other general workloads such as batch
jobs, ETL, and relational queries are also run on Spark
by developing various libraries for graph processing, stream
computing, and query processing, so Spark has recently been
used as a general purpose distributed computing engine and
also outperforms Hadoop [6].

Spark provides a functional programming API for the
abstraction of immutable distributed collections called Re-
silient Distributed Datasets (RDDs) [4]. Each RDD contains
a collection of Java objects that is partitioned over multiple
nodes. RDDs are transformed into other RDDs by applying
operations (e.g. map, filter, reducebykey, count, etc.), and this
RDD transformation flow is represented as task DAGs, so
the transformation tasks for partitioned data are launched on
each node. RDDs are evaluated lazily, so computation tasks
are not launched before applying certain types of operations
like count. To process the divided tasks, Spark manages many
task executor threads within a JVM.

0"
50"

100"
150"
200"
250"
300"
350"

1" 2" 3" 4" 5" 6"

El
ap

se
d(
TI
m
e(
(s
ec
.)(
(

expereiment(itera5ons(

Q5"

Q1"

Fig. 1. The transition of Q1 and Q5 response time through six time iterations

B. Spark Benchmarks and Applications

1) Spark workload benchmarks: Some benchmark frame-
works [7][8][9] for Spark have recently been developed that
are mainly used for evaluating performance and searching
for suitable workload configurations. They provide a compre-
hensive set of Spark workloads for machine learning, graph
processing, and streaming and also synthetic data generators
for each workload. In this paper, we select three machine
learning algorithms (Kmeans, Logistic Regression, and Sup-
port Vector Machine) and two graph processing algorithms
(PageRank, SVD++) as iterative types of workloads.

2) TPC-H benchmark: TPC-H1 is a decision support
benchmark, consisting of a suite of business oriented ad-
hoc queries and concurrent data modifications, defined as 22
queries for eight different sized tables. TPC-H was originally
used for evaluating MPP DBMS systems but has recently
been used for Hadoop based query engine systems [10][11].
Spark SQL [12] is a major component in Spark, and it bridges
relational processing and procedural processing with Spark
APIs. With compatibility for Hive, Spark SQL can directly
execute Hive Query on Spark runtime and load data from
existing Hive tables. TPC-H queries include the core part of
SQL (selection, aggregation, and join), and join operation is
the most costly because data shuffling occurs. Consequently,
TPC-H is also useful to evaluate Spark runtime performance
as well. Moreover, TPC-H is not an iterative workload unlike
the above machine learning workloads, so it is compared with
machine learning workloads.

C. Performance Measurement Tools

Spark provides statistical reports about multiple metrics
of executed jobs. For example, the report shows how many
tasks and stages are executed, which part of a stage is the
most expensive, and which phases such as data loading,
computing, and data shuffling are costly. These metrics give
us helpful information about the overall performance and
hints for performance improvement, but it is difficult to tune
application performance by using the given metrics. Perf [13]
and Oprofile [14] are commonly used system profiling tools
on Linux.

1http://www.tpc.org/tpch/

2

0"

10"

20"

30"

40"

0" 100" 200" 300" 400" 500"

CP
U
$U
%l
iz
a%

on
$(%

)$

(sec.)$

""wai" ""sys" ""usr"

Fig. 2. CPU utilization while running Q1 with default

0"

50"

100"

150"

200"

0" 100" 200" 300" 400" 500"

M
em

or
y'
(G
B)
'

(sec.)'

cache" buff" total"used"memory"

Fig. 3. Memory utilization while running Q1 with default

III. SPARK WORKLOAD ANALYSIS

A. Experimental Platform and Setup TPC-H Workloads

First, we introduce our experiment environment. We com-
pared all experiments on a single node of POWER Sys-
tem S824L, which is equipped with two 3.3GHz POWER8
processors. Both POWER8 processors have 12 cores each,
and each core has a private 64KB L1 cache, private 512KB
L2 cache, and a shared 96MB L3 cache. This system has
1TB RAM and 1TB RAID5 disk. The software stack of this
system is Ubuntu 14.10 (kernel: 3.16.0-31-generic), Hadoop
2.6.0, and Spark 1.5.0, and we used IBM J9 JVM(1.8.0 SR1
FP10).

Next, we introduce a TPC-H dataset and queries. We gen-
erated TPC-H table data files using an official data generator
with a 100GB scale factor and then loaded them into Hive
tables on HDFS. The chunk size of HDFS is 128MB. Original
data sizes of all tables are as follows: lineitem is 75GB,
orders 17GB, partsupp 12GB, customer 2.3GB, part 2.3GB,
supplier 137MB, nation 2.2KB, and region 389B. All tables
are stored with Snappy compressed and Parquet columnar
formats.

We used TPC-H Hive queries published at github2 as
a basis. However, several queries did not finish or took
too long because they included wasteful temporary table
creation, so Spark could not generate a Spark-friendly query
execution plan. Therefore, we modified them by eliminating
several temporary tables and changing query order in HiveQL
directly. As a result, the queries can finish in an acceptable

2https://github.com/rxin/TPC-H-Hive

0"

10"

20"

30"

40"

0" 100" 200" 300" 400" 500" 600" 700" 800" 900" 1000"

CP
U
$U
%l
iz
a%

on
$(%

)$

(sec.)$

wait" sys" usr"

Fig. 4. CPU utilization while running Q5 with default

0"

100"

200"

300"

400"

0" 100" 200" 300" 400" 500" 600" 700" 800" 900" 1000"

M
em

or
y'
(G
B)
'

(sec.)'

cache" buff" total"used"memory"

Fig. 5. Memory utilization while running Q5 with default

response time. We also evaluated each query six times and
then chose the best one.

B. TPC-H query results with default settings

Table I shows the query response time on a single Spark
Executor JVM with 48 worker threads and 192GB heap. It
also lists each query characteristic, generated spark operators,
total input data size loaded from HDFS, total shuffled data
size between stages, and the total number of stages and
tasks. We summarized only the key operations of each query
since they affect Spark query execution plan. For example,
Q5 performs a groupby and fix inner joins using six tables.
These operations are converted into RDD based execution
plan, which has three data loading stages, three hash based
shuffle join stages, one broadcast hash join stage, and one
aggregation stage, through the query optimizer in SparkSQL.
The total stage equals the sum of Spark operations listed in
Converted Spark Operation in Table I. Q5 loads 8.8GB table
data in total in three data loading stages for later shuffle
hash join. Then it transfers 14.1 GB shuffle data in total.
The amount of shuffle equals the total read-and-write shuffle
size in a query. As a result, Q5 takes 137 seconds until
eight stages with 1547 tasks are completely calculated by
48 worker threads.

From these results, we can find some trends and character-
istics in queries. First, the queries such as Q1, Q6, and Q19,
which have little shuffling data, can finish early even if the
input size is large and there are multiple shuffle join stages.
These queries performances depend more than others on the
data loading from the disk. Next, the queries such as Q5, Q8
and Q9, which have huge shuffling data, take over 100 sec.

3

Key Characteristics of HiveQL Converted Spark Operation
input
(GB)

shuffle
(GB)

Stages/
Tasks

time
(sec)

Q1 1groupby, 1table 1load, 1Aggregate 4.8 0.002 2 / 793 48.7
Q2 1groupby, 4join, 5table 2load, 2HashJoin, 1BcastJoin 0.92 2.3 5 / 512 23.7
Q3 1groupby, 2join, 3table 3load, 2HashJoin, 1Aggregate 7.3 5.0 6/1345 64.6
Q4 1groupby, 1join, 2table 2load, 1HashJoin, 1Aggregate 4.2 1.0 4/1126 56.2
Q5 1groupby, 5join, 6table 3load, 3HashJoin, 1BcastJoin, 1Aggregate 8.8 14.1 8/1547 125
Q6 1select, 1where, 1table 1load, 1Aggregate 4.8 0 2/594 15.1
Q7 1groupby, 1unionall, 6join, 5table 4load, 1Unionall, 4HashJoin, 1Aggregate 9.3 16.5 10/1755 132
Q8 1groupby, 7join, 7table 4load, 4HashJoin, 1BcastJoin, 1Aggregate 11.7 14 10/1766 159
Q9 1groupby, 5join, 6table 4load, 4HashJoin, 1BcastJoin, 1Aggregate 11.8 34.4 10/1838 370
Q10 1groupby, 3join, 4table 3load, 2HashJoin, 1Aggregate 7.7 3.8 6/1345 49.1
Q11 1groupby, 2join, 3table, 1write 1load, 1HashJoin, 1BcastJoin, 1Aggregate 0.89 1.7 4/493 23.0
Q12 1groupby, 1join, 2table 2load, 1HashJoin, 1Aggregate 5.0 1.5 4/1126 44.5
Q13 1groupby, 1outer join, 2table 2load, 1HashOuterJoin, 1Aggregate 3.9 1.8 4/552 100
Q14 1join, 2table 2load, 1HashJoin, 1Aggregate 6.6 0.3 4/813 20.9
Q15 1groupby, 1table, 1write 1load, 1Aggregate, 1write 6.6 0.4 2/793 29.4
Q16 1groupby, 2join, 3table 2load, 1HashJoin, 1BcastJoin, 1Aggregate 0.65 0.8 4/510 132
Q17 1join, 1unionall, 2table 4load, 1HashJoin, 1BcastJoin, 1Union, 1Aggregate 16.7 7.1 8/3966 297
Q18 3join, 1unionall, 3table 6load, 3HashJoin, 1Union, 1Limit 7.7 13.8 11/3725 202
Q19 3join, 1unionall, 2table 6load, 1Union+3HashJoin, 1Aggregate 19.8 0.4 8/2437 80.8
Q20 1groupby, 4join, 5table 3load, 3HashJoin, 1BcastJoin 6.7 2.2 7/1305 88.7
Q21 1groupby, 4join, 1outer join, 4table 4load, 2HashJoin, 1BcastJoin, 1OuterJoin, 1Aggregate 15.5 13.9 9/2714 -
Q22 1groupby, 1outer join, 3table 3load, 1OuterJoin+CartesianProduct, 1Aggregate 0.6 1 5/571 27.6

TABLE I
CHARACTERIZATION OF ALL OF TPC-H QUERIES IN TERMS OF SQL AND SPARK METRICS

Also, these have more shuffle data than input data, so these
queries performances depend on the data shuffling between
stages. Q21 takes over 10,000 sec because of many execution
failures with default configuration, so we do not describe
the time in the Table I. In consequence, we categorized the
queries into two classes: shuffle light and shuffle heavy. In the
next subsection, we describe several metrics in more detail:
system utilization, Spark log, JVM, and system side.

C. System Utilization and Spark Metrics
We picked up Q1 and Q5 as representatives of the shuffle

light and shuffle heavy categories, respectively. First, we
evaluated actual query response time in each iteration. Figure
2 shows the results of Q1 and Q5 through six iterations. The
first iteration is about 1.5x - 2x slower than other iterations
in both queries, because Just-In-Time (JIT) compilation for
hot methods is not finished. To be more precise, the first
round of each stage takes too long. For example, the Q1
execution plan consists of two stages, and then the data
loading tasks in the first and second stages are divided into
593 and 200 tasks, respectively. Executor JVM has 48 worker
threads, so these threads process assigned tasks individually
and simultaneously. If these threads are evenly assigned tasks,
each worker thread will process 12 - 13 tasks in total, which
means the first stage consists of 13 rounds. The threads in
the second round of a stage can use optimized JITed code,
so processing time is 1.5 - 2x faster than in the first round. A
similar drawback exists in all eight stages in Q5. Moreover,
we often observed a failure in both queries such as the fourth
iteration of Q5. The failure occurs when using a single JVM
with many worker threads and it mentions the failure causes

by calling native snappy compression library. To trace the
cause of it beyonds the scope of our paper, but using one
large JVM provides us unstable.

Then we checked system utilization including CPU, mem-
ory, I/O context switches, etc. Figures 2 and 3 show CPU
utilization and memory usage for Q1, while Figures 4 and
5 show Q5 while each query is run six times continuously
on the same Executor JVM. The six hills correspond to the
iterations. In both queries, we can see that 25% of CPU
resources are used for user time and all worker threads can
utilize available slot without I/O wait and system time. This
because we only assigned 48 worker threads, which are one-
fourth the threads of 192 logical CPU, for Executor JVM.
In the Q5 CPU usage graph, we can observe some spikes in
the later part of iteration. This burst is caused by heavy GC
activity in shuffle phase. From the perspective of memory
usage, used memory and page cache grow after iterations
start. The total used memory size in Q1 does not exceed
around 70 GB, while that in Q5 reaches 220 GB. From this
graph, Q5 run out of all available JVM heap.

D. GC, JIT and Hot Method Profiling
Next, we evaluated how many heaps Executor JVM used

and how often GC is called. Figures 6 and 8 show heap
usage and pause time transition while executing Q1 and Q5
six times, so we can see six peaks, and each peak corresponds
to the execution order. The 192 GB heap is divided into two
generational spaces: nursery and tenure. The 48 GB heap is
used as nursery since one-third of the total heap is assigned
to it as default. In the upper graph, the blue, yellow, and red
lines represent total used heap, total used tenure heap, and

4

heap size (G
B

)
G

C
 pause tim

e (sec.)

gl
ob

al
 G

C

nu
rs

er
y

G
C

nu

rs
er

y
G

C

gl
ob

al
 G

C

 time (sec.)

Fig. 6. Q1 with default configuration: GC heap usage (upper), GC pause
time (lower)

53%$

4%$

32%$

1%$

5%$
3%$

2%$

java$

snappy$$$$

j9gc$$$$$$

j9jit$$$$$

kallsyms$$

libc$$$$$$

others$$$$

68%$

10%$

8%$

14%$ sparkSQL$$$$$$

parquet$$$$$$$

serializer$$$$

deserializer$$

Fig. 7. Oprofile method profiling result of Q5 with default configuration

total used nursery heap after GC. The pink line represents
the capacity of nursery, and circles mean the time when GC
occurs and also what GC types are chosen: nursery or global
GC. In the lower graph, the green line represents actual GC
pause time when GC is called, and the light blue line is time
for global GC. In Q1, objects in nursery space are almost
all cleaned up after each nursery GC and also do not flow
into tenure space. As a result, pause time is quite small and
accounts for only 2% of the whole execution time. In Q5, on
the other hand, GC performance is completely different from
that in Q1. Due to running out of nursery space, objects flow
in tenure space gradually and then are collected when tenure
space becomes full. Moreover, pause time in nursery GC is
bigger than in global GC.

To estimate actual GC cost in Q5 execution, we profiled
Q5 with oprofile. By using oprofile, we can also determine
how much time is spent in GC and also what kind of hot
methods there are as well. Figure 7 shows the ratio of hot
methods to total execution time for Q5. We divide parts into
five categories to understand what part should be improved.
As seen in Figure 7, GC cost is obviously higher than other
parts, which accounts for over 30% in whole execution time.
In terms of application related breakdown, over 20% of time
is spent for object serialization and deserialization, and 10%
is for parquet columnar data loading.

heap size (G
B

)

G
C

 pause tim
e size (sec.) time (min.)

G
C

 pause tim
e (sec.)

gl
ob

al
 G

C

nu
rs

er
y

G
C

nu

rs
er

y
G

C

gl
ob

al
 G

C

 time (sec.)

Fig. 8. Q5 with default configuration: GC heap usage (upper), GC pause
time (lower)

Finally, Figure 9 shows how many methods are compiled in
each optimization level. Almost all methods are compiled in
the warm optimization level. On the other hand, a few meth-
ods reach scorching, which is the highest optimization level.
While the first query execution is running, an application
cannot use higher optimization level code, so the performance
is slower than later iterations as explained in the previous
subsection. We also confirmed that the compilation levels of
the top ten methods reach warm, hot, and scorching.

E. PMU Profiling

We captured performance counter events from a perfor-
mance monitoring unit (PMU) for all queries. Table II lists
”perf stat” command results. As you can see, both queries
account for 50 - 60% of wasteful CPU stall cycles on the
backend pipeline. Due to this big backend stall, the rate
of instructions per cycle (IPC) remains low. To know from
where this backend stall comes, we calculated other hard-
ware counter events. The CPI breakdown model is provided
elsewhere [15], and we used it as a reference. Following this
model, we found that 60% of PM RUN CYC spends on
PM CMPLU STALL which stalls mostly in Load Store Unit
(LSU). With a further breakdown, 40% of LSU completion
stall comes from DCACHE MISS that comes from L3MISS.
Then, L3MISS is caused by mainly DMISS DISTANT,
which means distant memory access. Moreover, the CPU
migrations occur frequently, especially in Q5. Consequently,
distant memory access must be reduced while running and
its migration rate kept as low as possible.

IV. PROBLEM ASSESSMENT AND OPTIMIZATION
STRATEGY

In the previous section, we describe several performance
metrics. In this section, we enumerate the existing problems
in each layer on the basis of preliminary experiments and
then decide optimization and performance improvement ap-
proaches.

5

0"

2000"

4000"

6000"

8000"

10000"

0" 500" 1000" 1500" 2000"

JIT
ed

"M
et
ho

ds
"C
ou

nt
""

"(sec.)"

total" cold" warm" hot" profiled_veryhot" scorching"

Fig. 9. JITed methods counts of Q5 in each compilation level

counters Q1 Q5
CPU cycles 6.8⇥ 1012 2.2⇥ 1013

stalled-cycles-frontend 2.1⇥ 1011 (3.20%) 6.2⇥ 1011 (2.76%)
stalled-cycles-frontend 3.3⇥ 1012 (49.0%) 1.3⇥ 1013 (59.1%)
instructions 7.0⇥ 1012 1.5⇥ 1013

IPC 1.03 0.67
context-switches 407K 440K
cpu-migrations 11K 26K
page-faults 308K 1045K

TABLE II
PMU PROFILING RESULT FOR Q1 AND Q5

A. How We Can Reduce GC Overhead
First of all, GC performance has a negative influence as

shown in Figure 8. Choosing optimal GC policy and suitable
heap size for application is the most important factor to
reduce GC overhead. In terms of GC strategies, generational
GC is generally used in J9 JVM though we can use other
GC strategies. Generational GC is also the default GC policy
in OpenJDK, because it is suitable for almost all kinds of
applications, so we use generational GC in this paper. In
terms of heap sizing, the large heap causes a long pause
time when global GC happens, and the small nursery space
causing heavy coping GC occurs as we observed in Q5.
Consequently, we should search for the optimal combination
of total heap and the ratio of nursery space.

Although we used only a single Executor JVM, there
is no limit to using multiple Executor JVMs on the same
machine. That is another approach to change heap size.
Keeping each JVM heap small helps to reduce GC cost
directly, so we should evaluate the effect of changing JVM
counts. Moreover, we can apply many JVM options that are
also helpful to improve performance. For example, default
JVM manages up to 64 GC threads because there are
192 cores available virtually from OS. However, using too
many GC threads degrades performance due to contention,
many context switches, etc., so we may improve application
performance by reducing GC threads. These options are for
not only GC performance but also application performance.

Hence, we try to find optimal settings for JVM perfor-
mance, especially for GC, to accelerate Spark application in
the following three evaluation metrics: (1) to change nursery

space size, (2) to sweep JVM options, and (3) to change
Executor JVM counts while maintaining the total heap and
working thread count.

B. How We Can Accelerate IPC and Reduce Stall Cycles

As shown in Table II, IPC for TPC-H query on Spark was
not very high. One approach to accelerate IPC is to utilize
more Simultaneous Multi Threading (SMT) features [16].
POWER8 supports up to SMT8 mode, and our POWER8
has 24 cores, so there are 24, 48, 96 and 192 available
hardware threads. In our preliminary experiment, we only
used 48 worker threads in SMT8. Of course, we can assign
192 worker threads in Executor JVM but cannot expect big
improvements by increasing worker threads up to 192 due
to resource contention between threads and other processes.
It would be excessive to have 192 worker threads, but the
performance may be improved more by increasing worker
threads to 96 in total. In this case, we expect that four worker
threads are running on the same physical core ideally.

The other problem that retards the increase of IPC is huge
stall in the backend pipeline. From our investigation into
PMU counter, CPU migration and distant memory access
frequently occurred while queries were running on Spark.
To reduce such wasteful stall, setting NUMA aware affinity
for tasks is one well known approach. Our machine has two
POWER8 processors that are connected via NUMA. More
precisely, each POWER8 processor has two NUMA nodes, so
we can use four NUMA nodes. Therefore, we may improve
application performance by pinning NUMA aware affinity
for Spark Executor JVMs.

Accordingly, we evaluate the following approaches to
increase IPC for TPC-H on Spark: (1) changing SMT mode
and the number of worker threads, and (2) applying NUMA
affinity for Executor JVM.

V. PERFORMANCE EVALUATIONS

In this section, we apply several of the optimization
ideas described above and then evaluate how application
performance is improved in terms of execution time, garbage
collection performance, CPU cycles, etc.

A. Method Level Workload Characterization on Spark

Before starting evaluations for each tuning, we charac-
terized more details about each TPC-H workloads from
the perspective of method sampling. Figure 10 shows the
percentage of sampling methods in all queries and then
summarized them into several categories. Java represents
application code and Spark runtime code, snappy does the
native library call for compression, j9gc, j9jit, and j9vm
include JVM level methods related to GC, JIT, and others
respectively, and kallsyms is derived from Kernel which
attaches debug symbols to kernel code. Figure 11 describes
the drill down of java and the ratio is normalized. SparkSQL
represents actual computation, others are related to I/O such

6

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

Q1" Q2" Q3" Q4" Q5" Q6" Q7" Q8" Q9" Q10" Q11" Q12" Q13" Q14" Q15" Q16" Q17" Q18" Q19" Q20" Q21" Q22"

Pe
rc
en

ta
ge
)o
f)c
on

su
m
ed

)m
et
ho

ds
)(%

)) others"

libc"

kallsyms"

j9vm"

j9jit"

j9gc"

snappy"

java"

Fig. 10. The ratio of categorized eight components of Oprofile sampling result for all of queries

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

Q1" Q2" Q3" Q4" Q5" Q6" Q7" Q8" Q9" Q10" Q11" Q12" Q13" Q14" Q15" Q16" Q17" Q18" Q19" Q20" Q21" Q22"

co
ns
um

ed
)Ja

va
)m

et
ho

ds
)(%

))

ne/y"

deserializer"

serializer"

parquet"

SparkSQL"

Fig. 11. The ratio of details about Java related processes

!40.0%&

!30.0%&

!20.0%&

!10.0%&

0.0%&

10.0%&

0&

100&

200&

300&

400&

Q1& Q5& Q8& Q9& Q19&

Ex
ec
u&

on
)T
im

e)
(s
ec
.))

Xmn48g& Xmn96g& Xmn128g& rela7ve&(%)&

Fig. 12. Performance Comparison while changing nursery heap size

as loading data (parquet), and data shuffling (serialization and
netty). These results collected on the four JVMs instead of
one JVM, because one JVM is a little fragile for query exe-
cution. As mentioned at Section III, shuffle data size oriented
categorization is reasonable for workload characterization.

nursery

tenure P
au

se
 ti

m
e

(s
ec

.) H
eap size (G

B
)

Sec.

Fig. 13. heap statistics and GC pause time while running Q9 on a single
JVM with 128GB nursery heap and 48 worker threads

The queries that has large shuffle data pay relatively higher
GC, snappy and (de)serialization than others. On the other
hand, both of computation and data loading ratio in shuffle
less queries’s is relatively higher as well. In our experiment,
we pick up typical queries such as Q1, Q3, Q5, Q6, Q8, Q9,
Q13, Q16, and Q19 for evaluation.

7

!25.0%'
!20.0%'
!15.0%'
!10.0%'
!5.0%'
0.0%'
5.0%'

0'
20'
40'
60'
80'

100'
120'

op.on'1' op.on'2' op.on'3' op.on'4' op.on'5' op.on'6' op.on'7'

Ex
ec
u&

on
)T
im

e)
(s
ec
.))

Q1' Q5' rela.ve'Q1'(%)' rela.ve'Q5'(%)'

Fig. 14. Comparison of JVM Options

B. Heap Sizing
First, we changed nursery heap size from 48GB to 96GB

or 128GB, which are halves or three-fourths of total heap.
J9 JVM reserves one-fourth of total heap as nursery space,
so 48GB is a default value in our setting. Figure 12 shows
query execution time and its relative improvement percentage
on the second y-axis compared with using 48GB nursery
heap. Shuffle data light queries such as Q1 and Q19 are
not improved because heap usage is basically small in these
queries, so GC does not happen frequently even if the nursery
size is increased.

On the other hand, the shuffle data heavy queries improved
by 30 - 40%. By increasing nursery heap, we can prevent
objects in nursery heap from flowing into tenure heap.
Therefore, the frequency of copying GC in nursery heap stays
low. Moreover, there is no global GC while query execution is
run six times because almost all objects are collected within
nursery heap. However, the performance in Q19 is improved
by only 10%. Although the frequency of copying GC within
nursery heap is reduced, 128GB nursery heap is not enough
for keeping all objects for Q19. As a result, many objects
still flow into tenure heap, so global GC occurs periodically
as shown in Figure 13.

C. JVM Options Sweep
Next, we tested several JVM options listed in Table III.

There are many selectable JVM options, but we chose the
following options that are expected to improve GC and
application code execution. The experiments were run six
times per configuration on a single Executor JVM with 48
worker threads. To evaluate which JVM option supports
improvement, we used option 1 as a baseline and then
appended one JVM option in each experiment. Figure 14
shows the query execution time as well as relative improve-
ment percentage in each option compared with option 1. As
shown in Figure 14, all JVM options help to improve query
execution performance. The improvements were especially
drastic when lock reservation with -”XlockReservation”
(option 4) and disabling runtime instrumentation with ”-
XX:-RuntimeInstrumentation” (option 6) were enabled.

Lock reservation [17] enables a lock algorithm to be opti-
mized when a thread acquires and releases a lock frequently.

Fig. 15. Profiling method stack with and without lock reservation option.
Categorized all of related processes (left) and drill-down Java related tasks
(right)

In lock reservation, when a lock is acquired by a thread for
the first time, it is reserved for the thread. In the reserved
mode, the thread acquires and releases the lock without any
atomic instruction. If a second thread attempts to acquire
the lock, the system cancels the reservation, falling back to
the bimodal locking algorithm [18]. In Spark, since many
worker threads are running and all threads process their
respective RDD partitions, performance can be improved if
a synchronized method is heavily called. However, there are
no decisive points in Spark runtime code itself, so that we
checked method call stacks via oprofile.

Figure 15 shows the stacked method profiling results
with and without the lock reservation option. Each stack
corresponds to major components in Spark execution. The
left one describes the whole stack of Executor JVM cycles,
and the Java related ratio changes from 66.8% to 73.6%. The
right graph shows what Java related methods are frequently
called. Without the lock reservation option, the deserializer
part increases from 13.0% to 24.2% and serializer increases
from 10.1% to 13.0%. As a result, we find that the lock
reservation option improvement is derived from the serializer
and deserializer. In Spark, the Kryo serializer is used as
the default serialization implementation and the objects are
serialized or deserialized when intermediate data is shuffled
between other Executor JVMs, so the improvement ratio is
in proportion to the size of shuffle data.

Runtime instrumentation enables compilation heuristics to
be gathered for a JIT compiler. By profiling methods in
several running threads from PMU, the JIT compiler decides
which methods should be compiled and which compilation
level is best. However, our results show that runtime instru-
mentation misdirects the JIT compiler for Q5.

D. JVM Counts
Then we evaluated multiple Executor JVMs on a single

node shown in Figure 16. We varied the JVM counts between
1, 2, 4, and 8. The total number of worker threads and total
aggregate heap size remain the same as those in a single
JVM case; that is, total worker threads equal 48 and total

8

TABLE III
TESTED EXECUTOR JVM OPTIONS: RED MEANS APPENDED OPTION

spark.executor.extraJavaOptions
1 -Xgcthreads48 -Xmn96g -Xdump:system:none -Xdump:heap:none

2
-Xtrace:none
-Xgcthreads48 -Xmn96g -Xdump:system:none -Xdump:heap:none

3
-Xnoloa -Xtrace:none
-Xgcthreads48 -Xmn96g -Xdump:system:none -Xdump:heap:none

4
-XlockReservation -Xnoloa -Xtrace:none
-Xgcthreads48 -Xmn96g -Xdump:system:none -Xdump:heap:none

5
-Xnocompactgc -XlockReservation -Xnoloa -Xtrace:none
-Xgcthreads48 -Xmn96g -Xdump:system:none -Xdump:heap:none

6

-XX:-RuntimeInstrumentation
-Xnocompactgc -XlockReservation -Xnoloa -Xtrace:none
-Xgcthreads48 -Xmn96g -Xdump:system:none -Xdump:heap:none

7

-Xdisableexplicitgc -XX:-RuntimeInstrumentation
-Xnocompactgc -XlockReservation -Xnoloa -Xtrace:none
-Xgcthreads48 -Xmn96g -Xdump:system:none -Xdump:heap:none

heap equals 192GB. By increasing JVM counts, the assigned
worker threads are changed between 48, 24, 12, and 6. Total
heap size is also varied in the same manner.

This result shows that a single JVM is not always the best
choice. In our experiment, utilizing 8 or more JVMs degrades
performance due to overhead between JVMs, but using 2 or 4
JVMs can potentially achieve better performance than using
a single JVM. Since NUMA aware CPU binding that we
describe later should be taken into consideration for tuning
JVM counts at the same time. Figure 16 also represents the
best performance increase or the worst decrease ratio against
a JVM as well. From this result, we observe that the smaller
JVM counts is suitable for shuffle less query such as Q6. For
shuffle heavy ones, 2 or 4 JVMs achieves better than other
counts. Moreover, We observed the another typical tendency
in Q16. Over 30% time is spent in spin lock within JVM, and
this waste spin lock occurs on one JVM only. As a result,
utilizing multiple JVM achieves 3x faster than one JVM.

In addition, multiple JVMs help to remove execution
failure as a secondary effect. While queries are run on a
single JVM with 48 worker threads, the execution often fails
when calling the native snappy compression library during
task execution. Due to this sudden failure, Spark tries to
resubmit failed tasks. As a result, task execution time is often
2x slower than that in the no failure case. We have not yet
found the fundamental reason this failure occurs while native
snappy compression library is processed with many worker
threads, but we believe that there is some non-thread safe
code in the library.

E. NUMA Aware Affinity
Next, we evaluated the efficiency of applying NUMA

aware affinity to Executor JVM to reduce remote NUMA
memory access. Figure 17 shows the average query execution
time of six iterations. In this experiment, we used four JVMs.
We specified CPU affinity for each JVM by numactl com-
mand. As a result, they are assigned to corresponding NUMA
node one by one if they enable NUMA. Also, each JVM

!80%%

!60%%

!40%%

!20%%

0%%

20%%

40%%

60%%

0%

50%

100%

150%

200%

250%

300%

Q1% Q3% Q5% Q6% Q9% Q13% Q16% Q19%

Ex
ec
u&

on
)T
Im

e)
(s
ec
.))

1JVM% 2JVM% 4JVM%
8JVM% best%(%)% worst%(%)%

Fig. 16. Varying the number of JVMs between 1, 2, 4 and 8

!3.5%&
!3.0%&
!2.5%&
!2.0%&
!1.5%&
!1.0%&
!0.5%&
0.0%&

0&

50&

100&

150&

200&

250&

Q1& Q5& Q9&

Ex
ec
u&

on
)T
Im

e)
(s
ec
.))

NUMA&off& NUMA&on& speedup&(%)&

Fig. 17. Average execution time with NUMA aware CPU bindings

utilizes six worker threads. All queries were improved about
2 - 3% by considering NUMA locality, but the performance
did not improve as much as we had expected.

In addition, we evaluated the scheduled CPU for worker
threads and memory access events of PMU to estimate
NUMA efficiency. We periodically capture where worker
threads are running every five seconds and plot them to
the physical CPU cores. By setting NUMA affinity, worker
threads are scheduled only on the corresponding NUMA
node, which means all worker threads get the benefit of
memory locality. On the other hand, in results without
NUMA affinity shown in Figure 18, the worker threads are
scheduled over NUMA at first, and then the threads seem
to be gathered into the same NUMA node. However, several

0"
1"
2"
3"
4"
5"
6"
7"
8"
9"

10"
11"
12"
13"
14"
15"
16"
17"
18"
19"
20"
21"
22"
23"

1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12" 13" 14" 15" 16" 17" 18" 19" 20" 21"

ph
ys
ic
al
"C
PU

"c
or
e"
"m

ap
pi
ng
"

thread"dump/5sec"

w/o"NUMA"
WT1"
WT2"
WT3"
WT4"
WT5"
WT6"
WT7"
WT8"
WT9"
WT10"
WT11"
WT12"

Fig. 18. Transition of worker threads on where they are mapped to actual
CPU cores

9

!30.0%&

!20.0%&

!10.0%&

0.0%&

10.0%&

20.0%&

30.0%&

40.0%&

0&

50&

100&

150&

200&

250&

Q1& Q3& Q7& Q8& Q9& Q17& Q19&

Ex
ec
u&

on
)T
Im

e)
(s
ec
.))

2WT/core&(192GB)& 4WT/core&(192GB)& rela<ve&(%)&

Fig. 19. Scalability Comparison of 48 and 96 worker threads over four
Executor JVMs

threads are often scheduled to another domain NUMA node
due to the OS scheduler’s manner. The Linux Completely Fair
Scheduler (CFS) manages load balancing across CPUs and
tries to schedule tasks while taking NUMA nodes into con-
sideration. However, it does not always bind worker threads
to the same NUMA node. As a result, worker threads need to
access remote NUMA nodes at that time. We also confirmed
that distant memory access events of PMU decreases from
66.5% to 58.9%, but the efficiency is very limited in this
case.

F. Increasing Worker Threads and Summary Result
Finally, we increased the assigned worker threads from

48 to 96. From this change, the estimated running worker
threads per physical core also increases from 2 to 4. Figure
19 represents that many queries receive the benefit of increase
of hardware threads regardless of shuffle data size. Although
Q8 and Q5 are the only two queries which has drawback,
all of any other queries achieved 10 - 20% improvement.
Especially, Q7 and Q17 that has unionall operation are
drastically improved because unionall combines RDDs stored
in memory simultaneously. Figure 20 concludes the com-
parison summary with applying all of optimizations. Shuffle
less queries achieved 10 - 20% improvement. For shuffle
heavy queries, we achieved basically 20% and up to 80%
improvement. Q21 that took too much time with default can
get result in 600 sec after tuning.

VI. RELATED WORK

Several tuning guides and hints have been published on
Spark’s official site and developers blogs, but few research
papers have discussed Spark performance, and no paper
has done so from the perspective of JVM optimization
and system optimization as far as we know. Kaczmarek
et al. discussed GC tuning on OpenJDK [19] and used a
G1GC based algorithm instead of generational GC. Since
Spark is developed for running on computing clusters, data
shuffling over network is an important optimization topic.

!90.0%&
!80.0%&
!70.0%&
!60.0%&
!50.0%&
!40.0%&
!30.0%&
!20.0%&
!10.0%&
0.0%&

0&

50&

100&

150&

200&

250&

300&

350&

Q
1&

Q
2&

Q
3&

Q
4&

Q
5&

Q
6&

Q
7&

Q
8&

Q
9&

Q
10

&
Q
11

&
Q
12

&
Q
13

&
Q
14

&
Q
15

&
Q
16

&
Q
17

&
Q
18

&
Q
19

&
Q
20

&
Q
22

&

Ex
ec
u&

on
)T
Im

e)
(s
ec
.))

default& op9mized& rela9ve&(%)&

Fig. 20. Performance Comparison between default score and all optimization
applied score

Davidson and Or revealed that shuffle connections between
nodes are increased by the product of a mapper and reducer
and proposed an approach to consolidate shuffle data into
one per destination [20]. Lu et al. proposed RDMA based
data shuffling architecture for Spark [21] and showed that
RDMA based shuffle outperformed existing NIO or Netty
based communication layer. Shi et al. compared Hadoop
with Spark in terms of performance and execution model
and then evaluated several machine learning algorithms [22].
Their work is a little similar to us, but the target workload,
profiling approach and the knowledge about tuning strategies
are different.

VII. CONCLUSION AND FUTURE WORK

In this paper, we characterized TPC-H Queries on Spark
from many aspects such as application log, GC log, sys-
tem utilization, method profiling and performance counters
in order to establish a common optimization insights and
existing problems for Spark. Our optimization strategies
outperform up to 5x faster than default, and 10 - 40%
improvement in many queries on average. GC cost is still
high because of Spark in-memory feature and generating
immutable objects massively, however we can reduce the
GC overhead from 30% to 10% or less not by increasing
heap memory unnecessarily but by optimizing JVM counts,
options and heap sizing even if limited heap. Then, NUMA
aware affinity takes a little advantages to prevent remote
memory access, and SMT can increase IPC potentially as
long as Spark runtime can keep data in heap and Spark
runtime itself remove wasteful stall cycle more and more.
Our analysis helps to improve Spark core runtime itself, apply
various system side optimization approaches, and then brings
a chance to develop more advanced algorithms about JVM
including GC, thread scheduler, cluster scheduler, etc. for us.
In our future work, we will plan to evaluate how our tuning
is effective on other Spark workloads, and then move our
focus into more deeper side of JVM and operating system.

10

REFERENCES

[1] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A system for large-scale graph
processing,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’10, (New York, NY,
USA), pp. 135–146, ACM, 2010.

[2] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “Haloop: efficient
iterative data processing on large clusters,” Proceedings of the VLDB
Endowment, vol. 3, no. 1-2, pp. 285–296, 2010.

[3] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and
G. Fox, “Twister: a runtime for iterative mapreduce,” in Proceedings
of the 19th ACM International Symposium on High Performance
Distributed Computing, pp. 810–818, ACM, 2010.

[4] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in
Proceedings of the 9th USENIX Conference on Networked Systems
Design and Implementation, NSDI’12, pp. 2–2, USENIX Association,
2012.

[5] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of
the 2Nd USENIX Conference on Hot Topics in Cloud Computing,
HotCloud’10, pp. 10–10, USENIX Association, 2010.

[6] M. Armbrust, T. Das, A. Davidson, A. Ghodsi, A. Or, J. Rosen,
I. Stoica, P. Wendell, R. Xin, and M. Zaharia, “Scaling spark in
the real world: performance and usability,” Proceedings of the VLDB
Endowment, vol. 8, no. 12, pp. 1840–1843, 2015.

[7] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura, “Sparkbench: a
comprehensive benchmarking suite for in memory data analytic plat-
form spark,” in Proceedings of the 12th ACM International Conference
on Computing Frontiers, p. 53, ACM, 2015.

[8] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia,
Y. Shi, S. Zhang, et al., “Bigdatabench: A big data benchmark suite
from internet services,” in High Performance Computer Architecture
(HPCA), 2014 IEEE 20th International Symposium on, pp. 488–499,
IEEE, 2014.

[9] spark perf, “https://github.com/databricks/spark-perf/.”
[10] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,

and M. Stonebraker, “A comparison of approaches to large-scale data
analysis,” in Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data, pp. 165–178, ACM, 2009.

[11] A. Floratou, U. F. Minhas, and F. Özcan, “Sql-on-hadoop: Full circle
back to shared-nothing database architectures,” Proc. VLDB Endow.,
vol. 7, pp. 1295–1306, Aug. 2014.

[12] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia,
“Spark sql: Relational data processing in spark,” in Proceedings of
the 2015 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’15, (New York, NY, USA), pp. 1383–1394, ACM,
2015.

[13] A. C. de Melo, “The new linux’perf’tools,” in Slides from Linux
Kongress, 2010.

[14] J. Levon and P. Elie, “Oprofile: A system profiler for linux,” 2004.
[15] https://www-01.ibm.com/support/knowledgecenter/linuxonibm/, “CPI

events and metrics for POWER8.”
[16] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multi-

threading: Maximizing on-chip parallelism,” in ACM SIGARCH Com-
puter Architecture News, vol. 23, pp. 392–403, ACM, 1995.

[17] K. Kawachiya, A. Koseki, and T. Onodera, “Lock reservation: Java
locks can mostly do without atomic operations,” in ACM SIGPLAN
Notices, vol. 37, pp. 130–141, ACM, 2002.

[18] T. Onodera and K. Kawachiya, “A study of locking objects with
bimodal fields,” ACM SIGPLAN Notices, vol. 34, no. 10, pp. 223–237,
1999.

[19] https://spark-summit.org/2015/events/taming-gc-pauses-for-
humongous-java-heaps-in-spark-graph computing/.

[20] A. Davidson and A. Or, “Optimizing shuffle performance in spark,”
tech. rep., University of California, Berkeley - Department of Electrical
Engineer- ing and Computer Sciences, Tec Rep., 2013.

[21] X. Lu, M. W. U. Rahman, N. Islam, D. Shankar, and D. K. Panda,
“Accelerating spark with rdma for big data processing: Early experi-
ences,” in High-Performance Interconnects (HOTI), 2014 IEEE 22nd
Annual Symposium on, pp. 9–16, IEEE, 2014.

[22] J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang, B. Reinwald, and
F. Özcan, “Clash of the titans: Mapreduce vs. spark for large scale
data analytics,” Proceedings of the VLDB Endowment, vol. 8, no. 13,
pp. 2110–2121, 2015.

11

https://github.com/databricks/spark-perf/
https://www-01.ibm.com/support/knowledgecenter/linuxonibm/

	Introduction
	background
	Apache Spark Overview
	Spark Benchmarks and Applications
	Spark workload benchmarks
	TPC-H benchmark

	Performance Measurement Tools

	Spark Workload Analysis
	Experimental Platform and Setup TPC-H Workloads
	TPC-H query results with default settings
	System Utilization and Spark Metrics
	GC, JIT and Hot Method Profiling
	PMU Profiling

	Problem Assessment and Optimization Strategy
	How We Can Reduce GC Overhead
	How We Can Accelerate IPC and Reduce Stall Cycles

	Performance Evaluations
	Method Level Workload Characterization on Spark
	Heap Sizing
	JVM Options Sweep
	JVM Counts
	NUMA Aware Affinity
	Increasing Worker Threads and Summary Result

	Related Work
	Conclusion and Future Work
	References

