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Abstract—As the increase of clock frequencies has slowed,
special purpose hardware circuits are becoming increasingly
important to accelerate the performance of computing sys-
tems. In this context, FPGAs offer advantages over hard-
coded ASICs, since FPGAs allow us to use the entire chip
to implement optimized algorithms for specific inputs by
reconfiguring the circuits at runtime. For example, relational
database systems are typically implemented with multiple
algorithms for each relational algebraic operation and the
one that is expected to process a given query most quickly
can be selected as needed. However, previous research on
FPGA acceleration for databases has not paid much attention
to such algorithm selection. This paper describes an FPGA
equi-joiner that switches between two equi-join algorithms, a
hash join and a sort-merge join, to fully allocate the FPGA’s
resources to one algorithm at a time. Our implementation of
each algorithm takes advantage of the fact that it can use most
of the hardware resources on an FPGA to maximize the size
of a key component, a hash table for the hash join and a
sort-merge tree for the sort-merge join, which is critical for
the join performance. Our experimental results have shown
that a simple mathematical model can be used to estimate the
execution time of each algorithm for a given data size to select
the algorithm appropriately.

Keywords-FPGA; Reconfiguration; Relational Database;
Equi Join; Hash Join; Sort Merge Join

I. INTRODUCTION

As the increase of clock frequencies has slowed, special
purpose hardware circuits are becoming increasingly impor-
tant to accelerate the performance of computing systems.
FPGAs enable us to build such special purpose hardware
with less work because their reconfigurability shortens the
turnaround time of the hardware development compared to
developing hard-coded ASICs. Along with the ease of devel-
opment, FPGAs are now attracting developers from various
application fields including networking, data compression,
and graphic processing. The large number of FPGA appli-
cations encourage the mass production of FPGAs, which
also drives increases in the circuit density of FPGAs. The
developers now can use many of the gates in an FPGA to
directly implement applications. In addition, using an FPGA
allows us to use the entire chip to implement optimized
algorithms for specific inputs by reconfiguring the circuits at
runtime, which is another advantage over hard-coded ASICs.

To show the benefits of the runtime reconfiguration, this
paper covers an example of exploiting the reconfigurability

for database systems. Recent database research has studied
methods to use FPGAs in query processing [1]. A query for a
database system is described by using a declarative language
such as SQL and can typically be processed with pre-
determined operators, including projection, selection, and
join. Thus, the research direction is driven toward how to im-
plement such operators and query processing mechanisms on
FPGAs. There are a few proposed FPGA implementations
including selection [2], hash join [3], window joins for data
streams [4][5][6], and multiple operators [7]. A few papers
have also described query processing mechanisms, such as
Glacier for continuous queries [8], FQP for event streams
[9], and LINQits for accelerating LINQ [10]. These projects
address techniques for using FPGAs in query processing.

However, to the best of our knowledge, prior research
work has not utilized the FPGA reconfigurability to use
the entire chip to implement the fastest algorithm for a
specific query. Relational database systems are typically
implemented with multiple algorithms for each relational
algebraic operation and the one that is expected to process
a given query most quickly is selected. FPGAs allow the
system to switch among the FPGA implementations de-
pending on the queries, thus exploiting the entire chip for
the processing. If we use an ASIC for query processing,
we must provide all of the operators on the ASIC, which
limits the available resources for each algorithm. Although
the FPGA reconfigurability allows the system to exploit the
entire chip for query processing, previous research on FPGA
acceleration for databases has not paid much attention to
such algorithm selection.

A database system that can perform such algorithm selec-
tion on an FPGA must have at least these three features:

• Reconfigurable Mechanism
FPGAs are reconfigurable hardware, but we need addi-
tional hardware and software mechanisms to reconfig-
ure the hardware at the time of query processing.

• Relational Algebra Implementations
If the system has multiple operator implementations,
the system can select the one that is expected to process
a given query most quickly

• Execution Time Models
The system needs to estimate the execution time of
each algorithm to select the fastest one. Execution time
models must be developed for each relational algebra



implementation.
This paper describes an FPGA equi-joiner that switches

between two equi-join algorithms, a hash join and a sort-
merge join, to fully allocate the FPGA’s resources to one
algorithm at a time. Our hash join algorithm can use most of
the internal memory blocks on an FPGA for a maximum-size
hash table, which is critical for the join performance. After it
builds hash tables in the memory blocks, it generates the join
results by looking-up the tuples with the same keys in the
hash table. Similarly, our sort-merge join algorithm can use
most of the logic blocks on the FPGA for a maximum-depth
comparator tree, which is the key to faster join performance.
After sorting with the tree, it merges the sorted tuples to
generate the join results. Our joiner selects one of these two
algorithms by using a mathematical model to estimate the
execution time of each algorithm based on the amount of
data.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the basics of the joins. Section 3 describes
the FPGA card that was used for implementing the equi-
joiner. Section 4 focuses on our hash join implementation.
Section 5 describes our sort-merge join implementation.
Section 6 gives a model to predict the execution times of the
proposed FPGA equi-join algorithms. The proposed equi-
joiner is evaluated in Section 7. Section 8 reviews the related
work. We conclude in Section 9.

II. EQUI-JOIN BASICS

This section covers the basics of the equi-join operation
commonly used in query processing. Equi-join 1 is a binary
operation to generate the set of tuples that have matching
keys in two tables. In this paper, only one key is considered
as the target of the join. More formally, a tuple t is defined
as a set consisting of one key k and a set of values v =
{v1, v2, ..., vV } such that

t = (k, v = {v1, v2, ..., vV }) . (1)

Each table is a set of tuples. Here, for tables R and S, the
results of the equi-join R ▷◁ S are defined as

R ▷◁ S = {tr ∪ ts|tr ∈ R ∧ ts ∈ S ∧ Eq(tr, ts) = 0} (2)

Eq(tr = (kr, vr), ts = (ks, vs)) =





1, (kr > ks)
0, (kr = ks)
−1, (kr < ks)

(3)
The equi-join has to find all of the tuple pairs that have

a matching key. Many algorithms and indexing techniques
have been proposed to search for such tuples in tables. This
paper focuses on hash join and sort-merge join, which are
typical algorithms for equi-join.

1This paper treats equi-join in the same way as a natural join that
combines all of the tuples that have matching keys in two tables.

A. Hash Join

Hash join is a traditional equi-join technique that uses a
hash table. We assume there are two tables, R and S. Let |R|
and |S| be the numbers of the tuples in R and S respectively.
If |R| ≤ |S|, the hash join performs a join using these three
steps:

Step 1)Initialize a hash table in memory. Insert each tuple in
R into the hash table. Go to Step 2 when the hash
table fills up the entire memory or all of the tuples
have been inserted into the hash table.

Step 2)For all of the tuples in S, look for tuples that have a
matching key in the hash table. These tuples are the
results of the join.

Step 3)If all of the tuples in R were inserted into the hash
table, then terminate. Otherwise, return to Step 1 and
insert the remaining tuples of R into a fresh hash table.

If the main memory can hold C tuples, then Step 2 has to
be executed

⌈
|R|
C

⌉
times. This means the number of tuples

that this algorithm has to scan is |R| +
⌈

|R|
C

⌉
|S|. Thus the

computational complexity is

O (|R||S|) + O (|R|) . (4)

The hash join completes a join by scanning each table
once as long as the memory can hold all of the tuples in
R. However, it has to perform multiple scans of S if the
memory is smaller than the size of the table. In this case,
the execution time increases based on Equation (4).

B. Sort-Merge Join

Sort-merge join is another equi-join algorithm. It first sorts
both tables and finds the result tuples by comparing the
tuples row by row in the order of the sorted tables. Sort-
merge join performs a join using these five steps:

Step 1)Initialize two integer counters i = 1 and j = 1.
Step 2)Sort the tuples in R and S in ascending key order.

The sorted tables are R =
⟨
r1, r2, ..., r|R|

⟩
and S =⟨

s1, s2, ..., s|S|
⟩
.

Step 3)If Eq(ri, sj) = 0, then ri ∪ sj is the join result.
Step 4)If Eq(ri, sj) = 0, increment both counters. If

Eq(ri, sj) = 1, then increment j. Otherwise, incre-
ment i.

Step5) If i > |R| or j > |S|, then terminate. Otherwise, return
to Step 3.

The sort-merge join involves two sorts and one merge
scan. Thus the computational complexity is

O (|R|log|R| + |S|log|S|) + O (|R| + |S|) . (5)

Sort-merge join outperforms hash join when both tables
are much larger than the memory and the multiple scans
require long time.



Figure 1. Overview of our FPGA coprocessor card. The card consists
of two FPGAs. The DMA engine on the GX530 offers read and write
interfaces to the application hardware.

III. FPGA EQUI-JOINER

We developed Equi-joiner on our FPGA card that is
connected to a computer bus. Figure 1 shows the overall
architecture of the card. The card consists of two FPGAs,
an Altera Stratix IV SE360 (EP4SE360F35C2) and an Al-
tera Stratix IV GX530 (EP4SGX530KH40C2). The SE360
manages the bus communications. The GX530 has a DMA
(Direct Memory Access) engine and contains the circuitry
for the running equi-join. With the help of the DMA engine,
the equi-joiner can access main memory directly.

A. Algorithm Switch

An Altera Stratix IV has a number of ALMs (Adaptive
Logic Modules) 2[11]. However, preparing both join circuits
for the FPGA reduces the number of ALMs available for
each strategy. This results in a reduction of the size of the
hash tables and lower sorting speeds.

Our software allows us to transfer a predefined FPGA
join implementation to the GX530 as required. We used
Verilog to describe the algorithms. Then we used Quartus II
to generate the FPGA images. A Linux tool we developed
transfers the generated image file to the GX530 chip. The
tool can complete a transfer within a few seconds, which is
much faster than the programming tools provided by FPGA
manufactures. This feature enables us to quickly switch join
implementations based on the optimization decisions that are
explained in Section VI.

After the software writes the image of an FPGA imple-
mentation, the driver of the join sends two memory addresses
for the two tables, their data sizes, and a memory address
to store the join results. The FPGA starts the join after
it receives this information. When the FPGA finishes its
processing, it raises the ‘done’ signal. The event is sent back
to the software.

2The number of LEs is converted based on the calculation power of the
ALMs because the Stratix IV does not use LEs.

B. Data Transfer Interfaces

The DMA engine exports read and write interfaces to
transfer 128-bit data from and to the main memory. As
shown in Figure 1, both interfaces use similar signals. The
read interface provides 128-bit data that was read from
main memory. The engine reads data sequentially from the
memory address specified by the ‘address’ signal for the
size specified by the ‘size’ signal. On each clock edge, the
application logic can read 128-bit data when the ‘valid’
signal is on. When the DMA engine finishes reading the
specified amount of data, the ‘end’ signal is raised. In
a similar way, the write interface is for writing 128-bit
data into memory. The data is stored sequentially from the
memory address specified by the ‘address’ signal.

Here, the ‘ready’ signal is important to represent whether
the join hardware or DMA engine can receive the next data.
In the read interface, the DMA engine must not send the
next data until the ‘ready’ signal from the join hardware is
raised. For example, the hash join implementation requires
two clocks to process a tuple in an insertion phase and has
to cancel the ‘ready’ signal each time for the first clock
cycle of every two clocks. In the write interface, the DMA
engine lowers the signal when it cannot write data due to
bus contention or any other conditions. With the help of
these interfaces, the application hardware can control the
data transfers by itself.

C. Memory Blocks

The key components for our hash join implementation are
the internal memory blocks. FPGAs have a large number
of internal memory blocks, but the size of each memory
block is quite small. For example, the Stratix IV GX530 has
1,280 M9K memory blocks and 64 M144K blocks. Table I
summarizes the memory block features. Each M9K is able
to hold 256 entries of 36-bit data while each M144K is able
to hold 4096 entries of 36-bit data. Note that the number
of entries that a memory block can store depends on the
memory configuration, as shown in Table I.

Figure 2 shows the block diagram of an M9K block when
in single-port RAM mode. It can fetch or store one entry in
each clock cycle. The location of the fetched or stored data is
specified by the address[ ] input. The fetched data is pushed
from the q[ ] output. The data to be stored is input into the
data[ ] input. This use of memory blocks is a special feature
of FPGAs. They form a tightly coupled FPGA architecture
of logic cells and memory blocks. The logic cells can access
the data in a memory block within each clock cycle.

IV. FPGA HASH JOIN

This section describes our hash join implementation using
the FPGA. A traditional hash table that uses pointer chains is
not suitable for handling hash collisions with a FPGA due to
its complex operations. The nearly associative memory for
FPGAs proposed in [12] is an approximate data structure



Table I
THE MEMORY BLOCK FEATURES OF THE STRATIX IV EP4SGX530

Features MLABs M9K Blocks M144K Blocks
Size (bits) 640 9,216 147,456

The Number of Memory Blocks (10,624) 1,280 64
Total Size 6,640 Kb 11,520 Kb 9,216 Kb

Available Configurations
(depth x width)

64x8, 64x9, 64x10,
32x16, 32x18, 32x20

8Kx1, 4Kx2, 2Kx4, 1Kx8, 1Kx9,
512x16, 512x18, 256x32, 256x36

16Kx8, 16Kx9, 8Kx16, 8Kx18,
4Kx32, 4Kx36, 2Kx64, 2Kx72

Maximum Performance 600 MHz 600 MHz 540 MHz

Figure 2. Block Diagram of the M9K Running in Single-Port Mode

and uses a Bloom filter to check for the existence of each
key. However, the false positives due to the approximation
are usually unacceptable for equi-join.

The implementation in this paper uses our proposed novel
hash table for the FPGA to exploit a large number of small-
size memory blocks. The key idea is to use different hash
functions for each memory block to achieve high efficiency
usage of the memory blocks. At first, the implementation
inserts tuples of the smaller table into the hash table in
the FPGA memory blocks. Then, the tuples of the bigger
table are passed through the FPGA and joined with the
tuples of smaller table by searching the hash tables. The
memory blocks can fetch or store data within a clock cycle.
This allows the implementation to exploit the FPGA’s high
performance.

A. Hash Table on FPGA Memory Blocks

Figure 3 and Figure 4 shows the circuits of our hash table
implementation. Our implementation connects the memory
blocks into a long chain and uses different hash functions
for addressing each memory block. More formally, assume
the FPGA has M memory blocks m1,m2, ...,mM . The
structure divides the blocks into groups g1, g2, ..., gG. Let
B be the bit width of an element that a memory block can
maintain, K be the bit width of a key, and V be the bit
width of a value set. Here, each group uses P =

⌈
K+1

B

⌉

memory blocks for storing the keys and uses Q =
⌈

V
B

⌉

memory blocks for storing the values. Thus, the maximum
number of groups is G =

⌊
M

P+Q

⌋
.

Our proposed hash table uses different hash functions
h1, h2, ...., hG for each group to determine the address that
each tuple is stored to. Each hash function returns an
integer value between 1 to C, where C is the depth of
the memory blocks. When inserting a tuple t = (k, v) into
the table, it finds the smallest i where gi[hi(k)] is empty,
and then insert t into gi[hi(k)]. The hash table overflows

Figure 3. Insertion phase circuits

Figure 4. Lookup phase circuits

if the right most memory block gG[hG(k)] is not empty
when inserting tuple t. To look-up a tuple t, it must check
gi[hi(k)] for all i. This idea is the same as the multilevel
hash table[13][14] though the related paper does not mention
any FPGA implementations. Note that the MSB (or LSB)
bit of each entry in the memory blocks is used for indicating
whether or not the slot is empty.

The space efficiency E of this hash table can be defined
as

E =
n

CG
, (6)

where n is the number of already inserted tuples when the
hash table overflows. The small capacity of each memory
block increases the effects of hash contentions with non-
uniform distributions of the hash values. Maximizing E is



important for the hash tables in the FPGA, because the
total size of the memory blocks is limited. Our proposed
hash table addresses this problem by using different hash
functions, as described above.

B. FPGA Implementation and Operation

Figure 3 shows the abstraction of a group of the hash
tables used to insert tuples. It takes two clocks to process
each tuple. On the first clock, it checks if the input key exists
in the group by using the MSB of the memory block that
maintains the keys. On the second clock, if it did not find
the key and the tuple was not inserted in the previous group,
then it inserts the key and the value at the address determined
by the hash function. At the same time, it transfers the tuple
to the next group with the information about whether or not
the tuple was already inserted.

Figure 4 shows an abstraction of two groups use to look
up tuples. It takes one clock to process each tuple. On each
clock, the memory blocks output a key and a value on the
address determined by the hash function. If the stored key
is the same as the input key, then it generates a joined tuple.

The execution procedure of the FPGA hash join is similar
to the traditional hash join. Consider performing a join on
table R and table S. If |R| ≤ |S|, tuples in R are passed
through from the left to the right of the circuits shown in
Figure 3 to build the hash table. After that, the tuples in
table S are passed through the circuits shown in Figure 4 to
generate the join results by looking up the tuples with the
same keys in the hash table. Here are more details about the
execution procedures:

Step 1)Initialize an integer r = 1.
Step 2)Initialize the hash table on the memory blocks.
Step 3)Start inserting the tuples from the row r of R into the

hash table. Go to Step 4 when the hash table overflows
or all tuples are inserted into the hash table.

Step 4)For all of the tuples in S, look up the tuples from the
hash table that have the same keys. The found tuples
are the results of the join.

Step 5)Increment r by the number of inserted tuples of R.
Terminate if r = |R|. Otherwise, go to Step 2.

V. FPGA SORT-MERGE JOIN

FPGA sort-merge equi-join is the second FPGA equi-join
implementation proposed in this paper. It first sorts both
tables and then generates the join results by comparing the
tuples of both tables in the sorted order. There are several
papers about FPGA sorting [15][16][17][18]. Our implemen-
tation is similar to an already known implementation [16].

A merge sort tree, the main structure of the implemen-
tation, consists of sorter cells that select the smaller value
from the two input values. A K-way merge-sort tree can be
composed of the sorter cells in the same way as with a binary
tree that has K leaf nodes. As an example, Figure 5 shows
an 8-way sort merge tree. The sorter cells communicate with

Figure 5. An 8-way merge sorter tree. The tree generates one sorted
sequence from the eight sorted sequences. The solid lines represent the
directions of tuple transfers. The dashed lines represent the directions of
the ready-bit transfers. A sort cell selects the smaller value from the two
input values.

the neighboring cells through the FIFO buffers. The buffer
transmits a ready bit as long as the FIFO buffer is not full.
On each clock edge, the sorter cell sends the smaller value
to the FIFO queue if the ready bit is active. As a result,
a K-way merge-sort tree generates a sorted sequence from
K sorted sequences. The output is sorted in ascending order
because all of the sorter cells output the smaller values from
their inputs.

Given K sorted sequences s1, s2, ..., sK as input, each
invocation of a K-way merge sorter results in a sorted
sequence r which consists of all the elements of the inputs
s1, s2, ..., sK . By invoking the sorter iteratively, we can sort
an array l1, l2, ..., lN as described here:

Step 1)Initialize the sequences as si = li (1 ≤ i ≤ N) and
si = ϕ (i > N). That is, we start from N sequences
s1, s2, ..., sN , each consisting of 1 element. Initialize
an integer b = 1.

Step 2)Initialize an integer p = 1. Update b = bK.
Step 3)Invoke the K-way sorter to sort

sK(p−1)+1, sK(p−1)+2, ..., sK(p−1)+K to obtain
a sorted sequence rp as output. Update as p = p + 1.
Repeat this step

⌈
N
b

⌉
times.

Step 4)Renew s as si = ri (1 ≤ i ≤
⌈

N
b

⌉
), si = ϕ (i >⌈

N
b

⌉
). Go to step 2 if b < N . Otherwise, terminate.

VI. EXECUTION TIME MODELS

Estimating execution time for a join is essential for the
equi-joiner. This section gives a model to estimate the
completion time of each join of our two implementations.



A. Basic Model of the FPGA Equi-Join

Let p denote a phase within a join operation. Let wp be
the clock cycles required to process a tuple in phase p. If the
phase p has to process Np tuples and f is the clock speed
of the FPGA, then the completion time Tp of phase p is

Tp =
wpNp

f
. (7)

Assume a join implementation imp consists of n phases
p1, p2, ..., pn to generate the complete results. In this case,
the total execution time Timp to complete the join can be
calculated as

Timp =
∑

i

Tpi =
∑

i

wpiNpi

f
. (8)

B. Execution Time Models of FPGA Joins

This section gives the execution time models from analyz-
ing our two FPGA implementations. The hash join outper-
forms the sort-merge join when one of tables is smaller than
the FPGA memory, because it completes the join operation
by scanning the two tables only once. However, when the
smallest table is larger than the FPGA memory, then the
hash join has to scan the larger table multiple times. In that
case, the sort-merge join can outperform the hash join.

1) Hash Join Time Model: Our implementation of hash
join described in Section IV consists of two phases, p1 that
inserts the tuples into the hash table, and p2 that searches for
the tuples in the hash table. As described in Section II-A, all
of the tuples in the smaller table R are scanned in phase p1.
The larger table S must be scanned

⌈
|R|
C

⌉
times in phase p2,

where C is the number of tuples that the FPGA can hold.
Let Ehj denote the constant overhead to start a hash join.
With the above analysis, the execution time of our hash join
is described as

Thj =
1

f

(
|R|wp1 +

⌈ |R|
C

⌉
|S|wp2

)
+ Ehj . (9)

Here, in phase p1, the FPGA receives a tuple every two
clocks, because in the first clock the phase checks if the
slot of the hash table that the tuple should be stored into is
empty, and then in the second clock inserts the tuple into
the slot if it is empty. Thus wp1 = 2. The looking-up of
tuples from the hash table in phase p2 requires one clock.
Thus wp2 = 1.

2) Sort-Merge Join Time Model: Our implementation of
the sort-merge equi-join consists of three phases, p1 and p2

that sort the two input tables, and p3 that merges the sorted
tables to generate the result. The merging phase p3 has a
more complicated characterization. If the current tuples are
a joined result, then both of the input streams are advanced.
When the number of tuples of the join result is O, then both
of the counters are updated O times (phase p3a). Updating
only the counter of R happens |R| − O times (phase p3b).

Table II
EXPERIMENTAL ENVIRONMENT

CPU POWER7 3.55GHz
Memory 256GB

OS Fedora release 18 (3.9.4-200.fc18.ppc64p7)

FPGA
Card

GX530 (EP4SGX530KH40C2) and
SE360 (EP4SE360F35C2)

Also, updating only the counter for S happens |S|−O times
(phase p3c). Thus, the execution time of the sort-merge join
is

Tsmj =
1

f
(|R|⌈logK |R|⌉wp1 + |S|⌈logK |S|⌉wp2

+wp3aO + (|R| − O)wp3b
+ (|S| − O)wp3c)

+ Esmj .

(10)

Here, Esmj denotes the constant overhead to start a
sort-merge join. This paper does not discuss selectivity
estimation, but traditional techniques can be used to estimate
the number of joined tuples. For that reason, we use O = 0
as a pessimistic estimate. The sorting phase can accept a
tuple at every clock. Thus wp1 = 1, wp2 = 1. When a
tuple is a join result, the system has to read the new tuples
from the both tables, which takes two clocks. Otherwise,
the merging phase can accept a tuple at every clock. Thus
wp3a = 2, wp3b

= wp3c = 1.

VII. EXPERIMENTAL EVALUATION

This section describes our experiments to confirm the
benefit of the algorithm selection. Also, this section shows
the proposed hash table can store tuples with the high space
efficiency. Table II shows the experimental environment used
to evaluate the equi-joiner on an actual system. The FPGA
card described in Section III is connected to the machine
described in Table II.

A. Space Effectiveness of the Hash Tables

The first experiment seeks to show the space efficiency of
our hash table implementation. The spece efficiency is criti-
cal for the join performance. To evaluate the efficiency of our
hash table, the state of the hash tables while inserting tuples
was simulated. Our simple simulator compared the number
of required memory blocks to store specified numbers of
tuples between cases when the blocks use different hash
functions and when the blocks use the same hash function.

Figure 6 shows the results when the tuples have random
keys. The results show that using different hash functions
improved the efficiency. The space efficiency of our imple-
mentation with different hash functions reached 99.70%. If
the memory blocks used the same hash function for all of
the memory blocks, the space efficiency was decreased to
91.83%. The space efficiency was always higher than that of
the corresponding implementation that used the same hash
function. This experiment shows that using multiple hash



functions improves the utilization of the memory blocks. The
simulation used other three different distributions of keys:
sequential, uniform random, and Zipf random. The results
are omitted here because it was similar with the result of
gaussian distribution.

B. Algorithm Switching Benefits
Table III shows the logic utilization of the hash join

implementation. Our hash join uses the FPGA resources
linealy with the number of the hash tables. The size of the
hash tables is the key factor of the join performance. Sharing
the FPGA resources with the sort-merge join, another join
algorithm, reduces the table size.

Figure 7 shows the performance of the two hash join
implementations and the sort-merge join when joining a
3GB table with the various size tables. One hash-join
implementation had 400 hash tables and the other had 200
hash tables. Our FPGA card requires about 1.5 seconds to
transfer an FPGA image to the FPGA. Even so, we can
receive the benefits from the algorithm switching because
there is the differences longer than 1.5 seconds between the
two implementations. Also, we can change the algorithm to
the sort-merge join when the table size is large.

Table III
LOGIC UTILIZATION OF HASH JOIN

Tables Utilization (%)
100 22
200 44
300 65
400 86

C. Execution Time of Equi-Joiner
The purpose of the final experiment is to assess the equi-

joiner performance. The experiment assumes that all of the
source data is stored in memory and all of the results are
also stored in memory. First, the benchmark driver generated
two artificial tables. All of the keys in each table are unique.
Then the driver sends the memory addresses of the two
generated tables and the address for the join results. The
FPGA joiner does the join and sends the result to the
specified address in memory. When the join finishes, the
FPGA notifies the driver. In this experiment, the execution
time is the difference between the time when the memory
addresses are sent and the time when the driver receives the
completion notification from the FPGA.

Figure 8 shows the execution time of both join imple-
mentations. The hash join outperforms the sort-merge join
when the tables are small. If the tables become large, the
sort-merge join outperforms the hash join. The equi joiner
can select the faster algorithm depending on the model. For
the estimation models, we used Ehj = 0.0001[s], Esmj =
0.005[s] The simple mathematical model can be used to
estimate the execution time of each algorithm for a given
data size to select the algorithm appropriately.
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VIII. RELATED WORKS

Database researchers only recently started to consider
how FPGAs can execute database operations [1]. Neteeza
uses FPGAs to filter the data near storage systems [2].
Filtering data that is not required to produce query results
can reduce the amount of data transferred from storage to
main memory. There is still little literature about FPGA
joins [6]. Another paper [7] describes an implementation
that supports selection, sorting, and merging to accelerate an
entire join operation. A limited number of research papers
describe how to apply FPGAs to perform window joins
for data streams [4][5]. Mueller et al. developed Glacier,
which has a compiler that uses pre-built components to
process continuous queries on FPGAs [8]. Najafi et al.
also developed a system for event streams [9]. The special
feature of their system is that it can accept new query
expressions even while it is processing incoming events.
These development and research projects are working on a
line of using FPGAs for (co-)processing of database systems.
There is a paper related to reconfiguration [19]. However,
the target operation of the paper is selection and not join.
To the best of our knowledge, prior research work has not
utilized the FPGA reconfigurability to use the entire chip to
implement the fastest algorithm for a specific query.

Regarding data structures, Dhawan et al. proposed near-
associative memories using FPGAs [12]. However, this data
structure causes false positives, which is unacceptable for
the equi-join. Sorting networks allow for high performance
sorting in hardware. They have been intensively studied
in the past [20]. Sorting networks in FPGAs were well
described in [16]. They proposed various connections with
comparators to realize bitonic sort, bubble sort, insertion
sort, and even-odd merge. However, sorting networks usually
require knowing the amount of data in advance. This means
they cannot complete the sort operations only in the FPGA
when the data is larger than the size the implementation was
designed for.

IX. CONCLUSION

FPGAs allow us to switch among the FPGA implemen-
tations depending on the queries, thus exploiting the entire
chip for the processing. Although the FPGA reconfigurabil-
ity can increase the benefits of FPGAs in query processing,
previous research on FPGA acceleration for databases has
not paid much attention to such algorithm selection.

This paper describes an FPGA equi-joiner that switches
between two equi-join algorithms, a hash join and a sort-
merge join, to fully allocate the FPGA’s resources to one
algorithm at a time. Our implementation of each algorithm
takes advantage of the fact that it can use most of the
hardware resources on an FPGA to maximize the size of
a key component, a hash table for the hash join and a sort-
merge tree for the sort-merge join, which is critical for
the join performance. Our joiner selects one of these two

algorithms by using a mathematical model to estimate the
execution time of each algorithm based on the amount of
data.
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