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Abstract

This manuscript is the supplementary material for the
paper titled, “A deep choice model”, to appear in Pro-
ceedings of the 30th AAAI Conference on Artificial In-
telligence (Otsuka and Osogami 2016).

Additional experiments
Here, we use an experimental setting inspired by the task
used in Shenoy and Yu (2013). In this setting, an agent se-
lects an item from a given choice set containing either two or
three items. Each item is characterized by a two-dimensional
vector of attributes, z ≡ (z1, z2) ∈ [0, 100]2, where each
attribute takes an integer value between 0 and 100. Specif-
ically, items shown in Fig. 1a are represented by the fol-
lowing attribute vectors: z(A) ≡ (40, 60), z(B) ≡ (60, 40),
z(S) ≡ (65, 35), z(C) ≡ (80, 20), and z(D) ≡ (50, 30).

Training examples are generated from the target distribu-
tion shown in Fig. 1b that reflects three typical choice phe-
nomena investigated in prior studies (Shenoy and Yu 2013;
Osogami and Otsuka 2014). For example, when the choice
set is X = {A,B}, the choice probability is p({A}|X ) =
p({B}|X ) = 0.5. For each of the five choice sets shown
in Fig. 1b, we create 20 instances of a pair of a choice set
and a selected item, in such a way that the frequency of each
selected item given a choice set exactly matches the corre-
sponding probability given by the target distribution. These
100 instances (20 instances × 5 choice sets) are randomly
shuffled and used as the training data.

Binarization
We convert the integer-valued attributes to binary features
that can be given as input to the DCM. Here, we set the
Hamming distance (or equivalent L1 distance) in the bi-
nary feature space proportional to the L1 distance in the
attribute space. Specifically, we convert an attribute vector,
z = (z1, z2), into a binary feature vector, x ∈ {0, 1}400, in
such a way that

x =
(
0z1 , 1100, 0100−z1 , 0z2 , 1100, 0100−z2

)
, (1)

where in denotes the n-dimensional vector whose elements
are i for i ∈ {0, 1}, and (u,v) denotes the vector that con-
catenates vectors u and v. Then the L1 distance between

attribute vectors z and z′ is twice as short as the Hamming
distance between the corresponding binary feature vectors x
and x′:

||z− z′||1 = |z1 − z′1|+ |z2 − z′2| =
1

2
||x− x′||1 (2)

Experimental results
We train the DCM with K = 400 and L = 200 by updat-
ing the weights and biases 1,000 times with a small learning
rate fixed to 0.001. For comparison, we also train the MLM
(equivalently, the DCM with K = 400 and L = 0) in an
analogous manner.

Our first set of experimental results demonstrates that the
DCM learns the similarity effect and the compromise effect
from the training data and generalizes these phenomena to
choices from unseen items. Observe that the choice proba-
bilities for the choice sets, {A, B} and {A, B, S}, involve
the similarity effect. Specifically, when item S is added into
the choice set, {A, B}, it steals a larger share from B than
from A. Likewise, the choice probabilities for {A, B} and
{A, B, C} involve the compromise effect in that the share of
B relative to A is high when C is in the choice set, making B
a compromise between A and C.

Here, we evaluate how the trained DCM predicts the
choice probability of selecting an item from a choice set (A,
B, Z), where Z is an item with attributes z = (60+n, 40−n),
which vary linearly from (60, 40) to (100, 0), for n ∈ [0, 40].
The lines in Fig. 2a show the choice probabilities predicted
by the trained DCM. Those predicted by the trained MLM
are shown in Fig. 2b. The dots in the figures denote the target
distribution for the choice set included in the training data:
{A, B, B}, {A, B, S}, and {A, B, C}. In Fig. 2a (DCM),
all three lines come near each dot, while the lines do not
meet most of the dots in Fig. 2b (MLM). This means that
the trained DCM well fits the target distribution in the train-
ing data, while the MLM is incapable of representing the
target distribution.

The results in Fig. 2 show how the DCM and the MLM
generalize the choice probabilities over an unseen choice set
from those learned from the training data. In particular, the
training data involve the similarity effect and the compro-
mise effect, and here we study how these effects are gener-
alized. Observe that the choice probabilities predicted by the
trained DCM (Fig. 2a) show that Z steals a larger share from



B than from A when Z is similar to B (i.e., the similarity
effect). Indeed, A is more likely to be selected than B when
Z has the attribute z = (60 + n, 40 − n) for 0 ≤ n ≤ 6 (Z
is similar to B), but the preference between A and B is re-
versed otherwise. Moreover, the trained DCM predicts that
the choice probability of B is particularly high when Z has
the attribute z = (60 + n, 40− n) for n ≥ 10, which makes
B a compromise between A and C (i.e., the compromise ef-
fect). In the MLM (Fig. 2b), the relative choice probabilities
between A and B are necessarily preserved for any Z and
show neither the similarity effect nor the compromise effect.

In Fig. 3, we move the attribute vector, (z1, z2) ≡ (60 −
n, 40 − n), of item Z linearly from (60, 40) to (20, 0) by
varying n ∈ [0, 40]. Here, we study how the attraction effect
appearing in the training data is generalized to unseen choice
sets. In Fig. 3a (DCM), A is predicted to be more popular
than B when the choice set is {A, B, B}, but the preference
between A and B is reversed when the choice set is {A, B,
D} (i.e., the attraction effect), as is the case in the training
data. The trained DCM generalizes this attraction effect to
unseen choice sets, {A, B, Z} for Z 6∈ {B,D}. Specifically,
A is predicted to be more popular than B when Z has the at-
tribute z ≡ (60− n, 40− n) for n ≤ 3, while B is predicted
to be more popular than A for n > 4. In the MLM (Fig. 3b),
the relative choice probabilities between A and B are nec-
essarily preserved for any Z and do not show the attraction
effect.
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Figure 1: Attributes of items and target distribution used in the additional experiments.
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Figure 2: Evaluation of how the DCM and MLM generalize the similarity effect and the compromise effect to unseen items.
The lines show the choice probabilities predicted (a) by the DCM and (b) by the MLM, where the choice set is {A, B, Z}, and
where the attributes of Z, (z1, z2), vary linearly from (60,40) to (100,0). The dots show the target distribution in the training
data.
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Figure 3: Evaluation of how the DCM and the MLM generalize the attraction effect to unseen items. The lines show the choice
probabilities predicted (a) by the DCM and (b) by the MLM, where the choice set is {A, B, Z}, and where the attributes of Z,
(z1, z2), vary linearly from (60,40) to (20,0). The dots show the target distribution in the training data.


