
March 31, 2016

RT0972

Computer Science; Network 22 pages

Research Report

Axioms of Density: How to Define and Detect the Densest Subgraph

Hiroki Yanagisawa and Satoshi Hara

IBM Research - Tokyo
IBM Japan, Ltd.
19-21, Hakozaki-cho, Nihombashi, Chuoh-ku
Tokyo 103-8501, Japan

Limited Distribution Notice

This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It has
been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of copyright
to an outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications
and specific requests. After outside publication, requests should be filled only by reprints or copies of the article legally
obtained (for example, by payment of royalties).

Axioms of Density: How to Define and Detect the Densest Subgraph

Hiroki Yanagisawa and Satoshi Hara
IBM Research - Tokyo

{yanagis,satohara}@jp.ibm.com

Abstract

Detecting the densest subgraph is one of the most important problems in graph mining and
has a variety of applications. Although there are many possible metrics for subgraph density,
there is no consensus on which density metric we should use. In this paper, we provide formal
guidelines to choose an appropriate density metric using four axioms. These axioms capture
the necessary conditions any density metric should satisfy to conform with our intuition. We
investigate the existing density metrics to see whether or not they satisfy these four axioms and
determine which ones violate at least one of the four. In addition, we suggest a new density
metric, the discounted average degree, which is an extension of the average degree metric and
which satisfies all four axioms. We also show how to obtain an optimum densest subgraph for
small graphs using typical density metrics, including our new density metric, by using mixed in-
teger quadratic programming. Finally, we develop a new heuristic algorithm to quickly obtain a
good approximate solution for large graphs. Our computational experiments on real-world graphs
showed that our new heuristic algorithm performs best in terms of the quality of the solutions.

Keywords. densest subgraph, graph mining, integer programming, and local search.

1 Introduction

Detecting the densest subgraph is one of the most important problems in graph mining and has a variety of applications
in such fields as social network analysis and biology. For example, in social network analysis, a network may represent
interactions between people and we may be seeking a well-connected community by looking for a dense subgraph in
the interaction network. In another example, a graph may be used to represent interactions between molecules (such
as proteins and DNA in biology) and we can find biologically meaningful sets of entities by detecting dense subgraphs
from the full graph [11]. More examples appear in the survey articles (such as [12]).

Given an unweighted graph G = (V,E) and a density metric f(S) defined on S ⊆ V , we define the densest
subgraph problem as to find a set of vertices S ⊆ V that maximizes the value of f(S). The density metric f(S) is
defined such that it takes a higher value when the induced subgraph G[S] = (S,E[S]) is denser, where E[S] is the set
of edges (u, v) ∈ E such that both u and v are contained in S. In this paper, e[S] denotes the number of edges in E[S].
For simplicity, we consider only unweighted graphs, but it is easy to extend our approach to edge-weighted graphs.

When we solve the densest subgraph problem, there are many definitions that could be used for the density metric
f(S), but there is no consensus on which metric is best. Since a clique is a typical dense graph, where a clique is
defined as a set of vertices in which each pair of vertices has an edge that connects them, one may consider that the
density metric should be designed to measure the degree of similarity to a clique. One of the natural definitions for
such a metric is the clique ratio f(S) = e[S]/

(|S|
2

)
= 2e[S]/|S|(|S| − 1). However, we often obtain a spurious result if

we solve the densest subgraph problem using this metric, because it cannot distinguish among cliques of different sizes.
For example, with this metric, a clique with seven vertices and a clique with three vertices (that is, a triangle) would
have the same density (of 1). Since even a single edge is a clique of size two, we can trivially obtain the maximum
value for this density metric by picking any single edge. Therefore, the clique ratio is unsuitable as a density metric
for the densest subgraph problem. In addition, the clique ratio metric has a tradeoff when choosing between small and

2

r r r r r
r r r r
�
��

A
AA

�
��

A
AA

v5 v6 v7 v8 v9

v1 v2 v3 v4

Figure 1: Optimum solution of the densest subgraph problem in which the average degree metric of
the graph is {v2, v3, v5, v6, v8, v9}.

large graphs. For example, if we compare a clique with 12 vertices and 66 edges and a near-clique with 15 vertices and
102 edges (that is, a clique of size 15 with only three edges missing), the clique ratio favors the clique of size 12 rather
than the near-clique of size 15. Although some people would perhaps prefer the smaller clique, it would generally be
better to choose the larger near-clique as the densest subgraph considering the typical motivations behind the densest
subgraph problem. In many applications, our goal is to extract a large well-connected set of entities, which means it
is unreasonable to choose the smaller clique simply because the larger near-clique is missing a few edges. Even if there
exists a situation when the smaller clique should be preferred over the larger near-clique, the density metric should
have a parameter that can control their relative preferences.

Another natural definition for the density metric is the average degree [9, 10] f(S) = e[S]/|S|. In contrast to
the clique ratio, this metric can distinguish among the sizes of the cliques and gives higher scores for larger cliques.
However, it too involves a tradeoff in choosing between small and large graphs different from the one affecting the
clique ratio metric. Here, suppose that we have a graph with 100 vertices and 500 edges and another clique with 10
vertices and 45 edges. The average degree metric of the size 100 graph is 5, and the average degree metric of the size 10
clique is 4.5, so the size 100 graph is regarded as denser than the size 10 clique when using this metric. However, most
people would think that the larger graph is loosely connected and the smaller one is denser than the larger one. This
problem has already been described in the literature [19]. In addition, the average degree metric has another problem
in the connectivity of the output graphs. For example, when we are given a graph with nine vertices and ten edges as
illustrated in Fig. 1, we may obtain a disconnected subgraph S∗ = {v2, v3, v5, v6, v8, v9} as the densest subgraph for
the average degree metric, since there is no other subgraph whose density is strictly greater than S∗. This result is
not in line with our intuition that any densest subgraph should be connected.

Because these two natural density metrics have limitations, developers use various metrics for various applications.
For example, the authors of [19] suggest using a quasi-clique metric f(S) = e[S] − α

(|S|
2

)
with the parameter α,

Tsourakakis [18] uses a triangle density metric f(S) = t[S]/|S|, where t[S] represents the number of triangles in G[S],
and the authors of [1] use yet another density metric. There are no established guidelines for choosing an appropriate
density metric, and there is no consensus on which metric should be used.

Our first contribution is a set of guidelines to choose an appropriate density metric for the densest subgraph
problem. We have defined four axioms that summarize the necessary conditions any density metric should satisfy so
as to conform to our intuition.

• Concentration Axiom: When we compare two subgraphs that have the same number of vertices, we prefer
the one that contains the larger number of edges.

• Size Axiom: When we compare two subgraphs that have the same number of edges, we prefer the smaller one.

• Clique Axiom: We prefer a larger clique to a smaller clique.

• Connectivity Axiom: We prefer a connected subgraph to a disconnected subgraph.

In Sec. 2, we formalize these statements as formal and decidable ones. Note that some of the axioms similar to our
definitions were discussed in [3, 19], but ours is the first attempt to discuss these four axioms altogether to evaluate
various density metrics. In Sec. 3, we evaluate each of these metrics as to whether or not it satisfies the four axioms,
and show that some such as the clique ratio and average degree violate at least one axiom. Our axiomatic approach
for evaluating the various metrics is similar in spirit to the axiomatic approaches for measuring entropy [5] or for
measuring the importance of the individual vertices in graphs [2, 4].

Our second contribution is to propose a new density metric, the discounted average degree f(S) = e[S]/|S|β where
β is a parameter such that 1 < β ≤ 2. This density metric satisfies all four of the axioms and is a natural extension
of the average degree metric; they coincide when we set β = 1. The parameter β is used to specify the preference
between a small clique and a larger near-clique. That is, the output subgraph tends to be a small clique if we use a
large β and tends to be a large near-clique otherwise.

Concentration Axiom Size Axiom

Clique Axiom Connectivity Axiom

S1 S2

f(S1) < f(S2)

S1 S2

f(S1) > f(S2)

S1 S2

f(S1) < f(S2)

S1 S1∪ S2

max{f(S1),f(S2)} > f(S1∪ S2)

Figure 2: Illustrations of the four axioms of density

Our third contribution is an exact algorithm to obtain the optimum solution for the densest subgraph when using
a density metric of the form f(S) = e[S]/h(|S|) or f(S) = e[S]−h(|S|), where h(x) is a convex increasing function with
respect to x. This form includes most of the density metrics such as the quasi-clique metric f(S) = e[S]− α

(|S|
2

)
[19]

and our discounted average degree metric f(S) = e[S]/|S|β . Our exact algorithm uses mixed integer quadratic
programming and so it takes exponential time in the worst case, but recent developments in state-of-the-art mixed
integer programming solvers allow us to compute the optimum solutions for small real-world graphs (graphs with up
to 1000 vertices) in a reasonable time. Regarding the computational complexity of the densest subgraph problem, the
authors of [19] conjecture that it is NP-hard to obtain the optimum solution when using the quasi-clique metric; we
conjecture that it is also NP-hard when using our new metric. In Sec. 8, we give evidence that supports this conjecture
by showing the NP-hardness of optimizing the densest subgraph problem using our new density metric with β = 2.
While the exact algorithm is too slow for large graphs, one of the advantages of having an exact algorithm is that
it allows us to evaluate various metrics using small graphs without concerns about the approximate performance of
a heuristic algorithm. In Sec. 6, we compare the optimum solutions of the quasi-clique metric and our discounted
average degree metric, and show that ours has a broader range of control over the output subgraphs.

Our fourth contribution is a new heuristic algorithm that quickly finds an approximate solution for large graphs.
This algorithm can be viewed as a local search algorithm, which consists of expanding and shrinking phases, and the
combination of which is a key ingredient that enables the algorithm to search for a better solution. Our experimental
results show that this algorithm outputs a higher quality solution than the current best algorithms do [6, 19]. Moreover,
the solutions it obtained are almost optimum for all of the small real-world graphs we tested. Therefore, we believe
that our new heuristic algorithm can be a complement to our slow but exact algorithm in practice.

Finally, we briefly discuss how to choose the parameters of the density metrics in Sec. 7.

2 Axioms of Density

While there are many density metrics we can use for the densest subgraph problem, there is no consensus on which
one is the best. Here, we set out some basic properties that any density metric should exhibit as formal and provable
axioms. Specifically, we present a concentration axiom, a size axiom, a clique axiom, and a connectivity axiom (Figure 2
illustrates them).

The first axiom is to favor a subgraph containing more edges if the other parameters are the same.

Axiom 2.1 (Concentration Axiom). Let S1 and S2 be two subgraphs such that G[S1] has n vertices and m1 edges,
and G[S2] has n vertices and m2 edges. Then the density metric f should satisfy f(S1) < f(S2) whenever n ≥ 2 and
m2 > m1 > 0.

The second axiom is to favor a subgraph with fewer vertices if the other parameters are the same.

Axiom 2.2 (Size Axiom). Let S1 and S2 be two subgraphs such that G[S1] has n1 vertices and m edges, and G[S2]
has n2 vertices and m edges. Then the density metric f should satisfy f(S1) > f(S2) whenever n2 > n1 ≥ 2 and
m > 0.

The third axiom is to favor a larger clique when we compare multiple cliques.

Axiom 2.3 (Clique Axiom). Let S1 and S2 be two subgraphs such that G[S1] is a clique of size n1, and G[S2] is a
clique of size n2. Then the density metric f should satisfy f(S1) < f(S2) whenever n2 > n1 ≥ 2.

The fourth axiom is to favor a connected subgraph rather than a disconnected one.

Axiom 2.4 (Connectivity Axiom). Let S1 and S2 be two subgraphs such that G[S1] has n1 vertices and m1 edges,
G[S2] has n2 vertices and m2 edges, and G[S1] and G[S2] are disconnected. Then the density metric f should satisfy
max{f(S1), f(S2)} > f(S1 ∪ S2) whenever n1 ≥ 2, n2 ≥ 2, m1 > 0, and m2 > 0.

As can be easily seen, these four axioms are related to three basic graph characteristics: the number of vertices,
the number of edges, and the connectivity. The concentration, size, and connectivity axioms each focus on one of
these characteristics, whereas the clique axiom is different from the other three in that it simultaneously considers
the number of vertices and the number of edges. In general, we cannot hope for unanimous agreement when choosing
between two subgraphs if we focus on two characteristics simultaneously (for example, choosing between a small clique
versus a large near-clique). However, we believe that the clique axiom should be widely accepted because it avoids the
problem with the clique ratio metric for the densest subgraph problem.

Note that our intention in recommending these axioms is to avoid obtaining counterintuitive results rather than
to prohibit using a density metric that violates one or more axioms. Our belief is that we should at least be aware
which of the axioms are or are not satisfied when we choose a density metric.

3 Density Metrics

This section described our new density metric

• Discounted average degree f(S) = e[S]/|S|β

and the previously studied density metrics,

• Average degree f(S) = e[S]/|S|
• Clique ratio f(S) = e[S]/

(|S|
2

)
• Quasi-clique f(S) = e[S]− α

(|S|
2

)
• Triangle density f(S) = t[S]/|S|.

We can also consider another natural definition of the density metric that uses the notion of a dense graph. In fact,
there are many notions about dense graphs, most of which are distinguished by the sorts of parameters they use. For
example, k-core [16] denotes a class of graphs in which the degree of every vertex is at least k, where k is a parameter.
By fixing k, we can categorize a given graph as dense if it is k-core, or sparse otherwise. As another example, a
γ-clique [1] is defined as a graph of size n that contains at least γ

(
n
2

)
edges, where 0 < γ ≤ 1 is a parameter. Other

notions include k-club [14], k-plex [17], k-clique [13], and DN-Graphs [21]. Here, let χ(S) be the indicator function
for the induced subgraph G[S] for some notion of a dense graph. That is, χ(S) = 1 if G[S] is dense in the sense
of a dense graph, and χ(S) = 0 otherwise. Accordingly, it is natural to define a density metric either of the form
f(S) = χ(S)/h(|S|) or f(S) = χ(S) − h(|S|), where h(x) is a function defined over the integers {2, 3, . . . , |V |}. For
example, the authors of [1] considered the problem of finding a γ-clique with maximum cardinality as a subgraph. This
problem is equivalent to solving the densest subgraph problem using the density metric f(S) = χ(S)/h(|S|), where
χ(S) is the indicator function for a γ-clique and h(x) = 1/x. We refer to these kinds of metrics that use an indicator
function χ(S) for some notion of a dense graph as threshold-based density metrics.

We determined whether or not these density metrics satisfy the four axioms. Table 1 summarizes the results,
where the checked results (from the fourth to the seventh columns) are for the parameter settings in the third column.

Table 1: Check List of Density Metrics in Relation to the Four Axioms
Parameter Concentration Size Clique Connectivity

Density metric f(S) Setting Axiom Axiom Axiom Axiom Overall
Average degree e[S]/|S| 3 3 3 7 7

Discounted average degree e[S]/|S|β 1 < β ≤ 2 3 3 3 3 3

Clique ratio e[S]/
(
|S|
2

)
3 3 7 3 7

Quasi-clique e[S]− α
(
|S|
2

)
1/3 ≤ α < 1 3 3 3 3 3

Triangle density t[S]/|S| 7 7 3 7 7
Threshold-based metrics χ(S)/h(|S|) 7 7(at least one of these two) - 7

χ(S)− h(|S|) 7 7(at least one of these two) - 7

3.1 Discounted Average Degree

First, we show that the discounted average degree metric f(S) = e[S]/|S|β satisfies all four axioms as long as 1 < β ≤ 2.
Since the average degree metric can be viewed as a variant of the discounted average degree metric with parameter
β = 1, in this section, we will consider these two metrics together.

With respect to the concentration axiom, we have

f(S1) = e[S1]/|S1|β < e[S2]/|S2|β = f(S2),

where the inequalities hold due to assumptions e[S2] = m2 > m1 = e[S1] > 0 and |S1| = |S2| = n, and β > 0. This
proves that both the average degree metric and discounted average degree metric satisfy the concentration axiom.

With respect to the size axiom, we have

f(S1) = e[S1]/|S1|β > e[S2]/|S2|β = f(S2),

where the inequalities hold due to assumptions e[S1] = e[S2] = m, |S1| = n1 < n2 = |S2|, and β > 0. This proves that
both the average degree metric and discounted average degree metric satisfy the size axiom.

With respect to the clique axiom, we have

f(S1) = e[S1]/|S1|β

= n1(n1 − 1)/2nβ1

= n2−β
1 /2− 1/2nβ−1

1

< n2−β
2 /2− 1/2nβ−1

2

= f(S2),

where the inequalities hold due to assumptions 0 < n1 < n2 and 1 ≤ β ≤ 2. This proves that both the average degree
metric and discounted average degree metric satisfy the clique axiom. Note that if β does not satisfy 1 ≤ β ≤ 2, the
clique axiom is violated.

With respect to the connectivity axiom, we have

max{f(S1), f(S2)} = max

{
e[S1]

|S1|β
,
e[S2]

|S2|β

}
≥ |S1|β

|S1|β + |S2|β
e[S1]

|S1|β
+

|S2|β

|S1|β + |S2|β
e[S2]

|S2|β

=
e[S1 ∪ S2]

|S1|β + |S2|β

>
e[S1 ∪ S2]

|S1 ∪ S2|β

= f(S1 ∪ S2)

where the first inequality uses the fact that the maximum over two values is at least as large as the weighted average
of the two values and the last inequality holds when β > 1. This proves that the discounted average degree metric
satisfies the connectivity axiom. However, the average degree metric does not satisfy this axiom, because a disconnected
subgraph S∗1 ∪ S∗2 satisfies f(S∗1 ∪ S∗2) = f(S∗1) = f(S∗2) for the graph shown in Fig. 1, where S∗1 = {v2, v5, v6} and
S∗2 = {v3, v8, v9}.

3.2 Clique Ratio

Using an analysis similar to that of the discounted average degree metric, we can show that the clique ratio metric
f(S) = e[S]/

(|S|
2

)
satisfies the concentration, size, and connectivity axioms. For the clique axiom, we have f(S1) =

1 = f(S2) for the two cliques S1 and S2, which means that it violates the clique axiom.

3.3 Quasi-Clique

Using an analysis similar to that of the discounted average degree metric, we can show that the quasi-clique metric
f(S) = e[S]− α

(|S|
2

)
satisfies the concentration and size axioms whenever α > 0. For the clique axiom, since f(S1) =

e[S1] − α
(|S1|

2

)
= (1 − α)

(
n1
2

)
, f(S2) = (1 − α)

(
n2
2

)
, and n1 < n2, we have f(S1) < f(S2) as long as α < 1. For the

connectivity axiom, the authors of [19] already proved that this axiom is satisfied only when α ≥ 1/3. Hence, they
concluded that the parameter α of the quasi-clique metric should be set to at least 1/3.

Remark. Note that even a slight modification of the density metric may change the satisfiability of the four axioms.
For example, a variant of the quasi-clique metric, f(S) = e[S]−α|S|2, does not satisfy all of the four axioms. It is easy
to see that α of this metric has to satisfy α < 1/2, since otherwise, the trivial solution (a clique of size 2) maximizes
this density metric. However, although we will omit the proof, the metric does not satisfy the size and clique axioms
when α < 1/2. Even if we change the density metric to f(S) = e[S] − α|S|β by using an additional parameter β, we
can show that there are no valid parameter settings that satisfy all of the axioms. For example, when α = β = 1, the
metric f(S) = e[S]− |S| does not satisfy the connectivity axiom.

3.4 Triangle Density

It is easy to verify that the triangle density metric satisfies the clique axiom. However, it is trivial to construct
counterexamples for the concentration, size, and connectivity axioms.

3.5 Threshold-Based Density

Here, we consider a threshold-based density metric of the form f(S) = χ(S)/h(|S|). (We will omit the proof for
the density metric of the form f(S) = χ(S) − h(|S|) since the argument is quite similar.) First, we show that this
density metric cannot satisfy the concentration axiom. When two subgraphs S1 and S2 satisfy χ(S1) = χ(S2) = 1,
we have f(S1) = 1/h(|S1|) = 1/h(|S2|) = f(S2) by the assumption |S1| = |S2|. This means that this metric cannot
satisfy the condition f(S1) < f(S2) of the concentration axiom. Next, we show that it must violate at least one of
the size or clique axioms. When both S1 and S2 induce cliques, we have χ(S1) = χ(S2) = 1, f(S1) = 1/h(|S1|), and
f(S2) = 1/h(|S2|). If the penalty function h(x) favors large graphs (for example h(x) = 1/x), we have f(S1) ≤ f(S2),
which does not satisfy the condition f(S1) > f(S2) of the size axiom. Otherwise (for example h(x) = x), we have
f(S1) ≥ f(S2), which does not satisfy the condition f(S1) < f(S2) of the clique axiom. Finally, we note that the
indicator function χ(S) (and h(|S|)) determines whether this density metric satisfies the connectivity axiom, but we
will not go into detail on this.

3.6 Remarks on the Connectivity Axiom

The connectivity axiom requires any density metric to satisfy the strict inequality max{f(S1), f(S2)} > f(S1 ∪ S2),
but it might be acceptable to weaken the condition so that max{f(S1), f(S2)} ≥ f(S1 ∪ S2). This is because, if a
density metric satisfies this weakened connectivity axiom, an optimum subgraph G[S∗] might be disconnected but
any connected component of G[S∗] is guaranteed to have the same density as f(S∗). This means that we can obtain
another optimum connected subgraph simply by using a postprocessing step that seeks any connected component from
the (disconnected) optimum subgraph. The density metrics that satisfy this weakened connectivity axiom include the
average degree metric and the triangle density metric. Note that we still must set α ≥ 1/3 for the quasi-clique metric
because otherwise this density metric does not satisfy even the weakened connectivity axiom.

4 Exact Algorithms

Here, we show how to compute the optimum solution using a density metric of the form f(S) = e[S]/h(|S|) or
f(S) = e[S]−h(|S|), where the function h(x) > 0 is a convex increasing function defined over the integers {2, 3, . . . , |V |},

to impose a penalty depending on the cardinality of S. (Recall that a function h(x) defined over the integers is said to
be convex if h(x− 1) + h(x+ 1) ≥ 2h(x) holds for any x.) This approach can be used for many of the density metrics,
including the discounted average degree and the quasi-clique, which satisfy all four of the axioms in the previous
section.

4.1 Mixed Integer Quadratic Programming

First, we show how to obtain the optimum solution S that maximizes

f(S) = e[S]− λh(|S|), (1)

where λ is a fixed parameter. Our approach is to formulate the problem of maximizing the objective function (1) using
Mixed Integer Quadratic Programming (MIQP).

To represent the first term e[S] of the objective function (1) for MIQP, we use the Laplacian matrix L of graph
G = (V,E), which is formally defined as

Lij =

{ −1 if i 6= j and (i, j) ∈ E
0 if i 6= j and (i, j) 6∈ E
di if i = j,

where di is the degree of vertex i ∈ V . Using this matrix, we can express e[S] as

−1

2

∑
i∈V

∑
j∈V

Lijxixj +
1

2

∑
i∈V

dixi,

where xi is a binary variable defined for each i ∈ V such that xi = 1 means i ∈ S and xi = 0 means i 6∈ S.
Next, we consider how to represent the second non-linear term λh(|S|) of the objective function (1). Since the

function h(x) is convex, we can represent the epigraph y ≥ h(x) using a set of linear inequalities

y ≥ akx+ bk

with appropriate (ak, bk) pairs for k = 3, . . . , |V |. Specifically, we set ak and bk so that the line y = akx + bk goes
through two points (x, y) = (k − 1, h(k − 1)) and (k, h(k)). (For example, when h(x) = xβ , we set ak = kβ − (k − 1)β

and bk = k(k − 1)β − kβ(k − 1).)
In summary, we can formulate the problem of maximizing the objective function (1) as

max −1

2

∑
i∈V

∑
j∈V

Lijxixj +
1

2

∑
i∈V

dixi − λy

subject to y ≥
∑
i∈V

akxi + bk ∀k∑
i∈V

xi ≥ 2

xi ∈ {0, 1} ∀i ∈ V
y ≥ 0.

Here, each variable xi takes the value 1 if vertex i ∈ V is contained in set S, and the value 0 otherwise. The continuous
variable y represents an upper bound of the second term of the objective function (1). If we relax the integral constraint
xi ∈ {0, 1} into a fractional constraint 0 ≤ xi ≤ 1, the relaxed problem becomes a convex programming problem since
L is positive semidefinite. Hence, this problem is often categorized as a convex quadratic integer programming problem,
and there are many programs that can be used to solve it.

4.2 Fractional Programming

Next, we show how to maximize the density metric of the form f(S) = e[S]/h(|S|), by using a technique from [9].
The pseudocode is shown as Algorithm 1. Initially, we find an arbitrary feasible solution S, and compute λ = f(S) =
e[S]/h(|S|). Then we try to find a better feasible solution S′ such that f(S′) = e[S′]/h(|S′|) > λ. Instead of directly
finding such S′, we obtain S′ = argmaxS(e[S] − λh(|S|)) by using the MIQP formulation. If e[S′] − λh(|S′|) > 0 (*)

holds, we have f(S′) = e[S′]/h(|S′|) > λ = f(S). This means we have found a better solution S′ relative to S, and
so, we replace S with S′ and update λ = e[S]/h(|S|) with the new S. We repeat this procedure of finding another
feasible solution S′ such that f(S′) = e[S′]/h(|S′|) > λ for the new λ. Otherwise (if (*) does not hold), we have
maxS′(e[S′] − λh(|S′|)) = 0 (recall that e[S] − λh(|S|) = 0 by the definition of λ) and this means that there is no S′

such that f(S′) = e[S′]/h(|S′|) > λ = f(S). Therefore the algorithm outputs S′ and terminates.

Algorithm 1 Fractional Programming

Input: density metric of the form f(S) = e[S]/h(|S|)
Output: optimum solution S∗ that maximizes f(S)

1: find a feasible solution S′

2: repeat
3: S = S′

4: λ = e[S]/h(|S|)
5: S′ = argmaxS(e[S]− λh(|S|)).
6: until e[S′]/h(|S′|) = λ
7: return S′

A key observation about this algorithm is that the value of λ increases in each iteration. Another is that, after we
first obtain a feasible solution on line 5 of Algorithm 1, the size of S decreases in each iteration, because the penalty
term λh(|S|) increases as λ increases when we solve S′ = argmaxS(e[S] − λh(|S|)) while the first term e[S] does not
change. (We will omit a formal of these facts.)

The number of iterations of this algorithm is at most (|E| + 1)(|V | − 1), because λ takes one of the possible
(|E| + 1)(|V | − 1) values for f(S) and increases in each iteration. (Recall that the nominator and denominator of
f(S) = e[S]/h(|S|) take |E|+1 values (from 0, 1, . . . , |E|) and |V |−1 values (from h(2), h(3), . . . , h(|V |)), respectively.)
Since the number of iterations has a large impact on the total computation time in practice, we should discuss some
ideas to reduce it. The first idea is to find a good initial solution S quickly so that the initial λ is close to the
optimum objective value. In our implementation, we used the greedy algorithm [6] (the details are in Sec. 6) to
obtain a good approximate initial solution. The second idea is to avoid an unneeded final iteration by changing the
termination condition of the algorithm. While we find a better feasible solution in every iteration except for the last,
the last iteration is executed only to confirm that there exists no other solution that is better than the current best
one. Therefore we can skip the last iteration when we know that there is no other better solution from the fact that
the size of S decreases in each iteration. For example, if the current best solution S is a clique, we can stop the
iteration immediately when we use the discounted average degree metric, since we know that there is no S′ such that
f(S′) > f(S) as long as |S′| ≤ |S| and S is a clique.

5 Heuristic Algorithm

Since the exact algorithm presented in the previous section takes too long to obtain the optimum solution for large
graphs, we developed a faster heuristic algorithm, which we refer to as the accordion search algorithm. The pseudocode
is shown in Algorithm 2, and Fig. 3 illustrates its execution. As input, the algorithm receives an initial solution S,
which can be any feasible solution, but preferably it should be small, typically consisting of a single vertex. (The black
vertex in the top left graph in Fig. 3 corresponds to an initial solution.) Then it improves this initial solution in two
phases. In the first phase, it expands S by repeatedly adding a vertex to the incumbent solution S. In each iteration
of this phase, the vertex v to be added is chosen from V \ S such that f(S ∪ {v}) is maximized. This can be done
by finding a vertex v ∈ V \ S such that the number of edges between v and S is maximized for most of the density
metrics. (The numbers in Fig. 3 show the order of the vertices added to S.) The algorithm continues this expand
phase until S satisfies a certain condition (discussed later); then it moves on to the second phase. In the second phase,
it repeatedly removes a vertex u from S until S becomes empty. In each iteration of this second phase, the vertex u is
chosen from S so that f(S \ {u}) is maximized. This can be done by removing the vertex with the minimum degree in
G[S] for most of the density metrics. (Again, the numbers in Fig. 3 show the order of the vertices removed from S.)
The algorithm outputs the best subgraph that appeared during the execution.

Intuitively, an ideal scenario for this algorithm is that it receives an initial solution S such that S ⊂ S∗ where S∗

is an optimum solution, expands S into one large enough to hold S∗ ⊂ S, and finally outputs a near-optimum solution

Algorithm 2 Accordion Search

Input: a density metric f(S) and an initial solution S
Output: a vertex set S′ ⊆ V

1: S′ ← S
2: repeat // the first phase
3: find vertex v ∈ V \ S that maximizes f(S ∪ {v})
4: add v to S
5: if f(S) > f(S′) then S′ ← S
6: until S becomes large enough
7: repeat // the second phase
8: find vertex u ∈ S that maximizes f(S \ {u})
9: remove u from S

10: if f(S) > f(S′) then S′ ← S
11: until S becomes empty
12: return S′

1

3

2

45

2

8

5

1 4

7

6
3

2

1 4

3

Second Phase

First Phase

7

1

6 3

2

4
5

Output the best one

Figure 3: Illustration of Execution of Accordion Search

S′ close to S∗. Therefore, the condition to terminate the first expand phase should be set so that |S| is at least |S∗|.
Since the exact |S∗| is unknown and we know only |S∗| ≤ |V |, we can terminate the first expand phase when S reaches
V . However, this is not a good strategy in terms of the computation time, because we know |S∗| is typically far smaller
than |V | and we can save time if we terminate the first phase sooner. In our implementation, we terminated the first
expand phase when f(S) < f(S′)/5 or |S| > 10000.

Besides the termination condition, the strategy to choose a good initial solution is also important for this algo-
rithm, since the approximation quality of its output strongly depends on the initial solution given as input. In our
implementation, we compute the triangle ratio t(v)/d(v), which was originally introduced in [19], for each vertex v ∈ V
where t(v) is the number of triangles that involve v and d(v) is the degree of v. Then we choose the top-k triangle
ratio vertices v1, v2, . . . , vk and create a set of k initial solutions S1 = {v1}, S2 = {v2}, . . ., and Sk = {vk}. Finally,
we apply our accordion search algorithm to each of the Si (i = 1, . . . , k) and output the best solution from k runs.
Intuitively, by using this multi-start strategy, we intend to increase the possibility that at least one of Si is contained
in S∗.

Table 2: Graph Characteristics
Graph Name |V | |E| |E|/|V |

dolphins 62 159 2.56
polbooks 105 441 4.20
adjnoun 112 425 3.79

celegansneural 297 2345 7.90
bcspwr05 443 1033 2.33

celegans metabolic 453 2025 4.47
email 1133 5451 4.81

bcspwr06 1454 3377 2.32
wb-cs-stanford 9914 27 427 2.77
p2p-Gnutella31 62 586 147 892 2.36

Wordnet3 82 670 120 399 1.46
internet 124 651 193 620 1.55
in-2004 1 382 908 13 591 473 9.83

as-Skitter 1 696 415 11 095 298 6.54
patents 3 774 768 14 970 766 3.97

6 Experiments

Here, we present the experimental results of our new density metric and the exact and approximate algorithms. All
of the experiments were done on a workstation equipped with an Intel Xeon (E5540) with eight cores running at 2.53
GHz, 52 GB of RAM, and Red Hat Enterprise Linux Workstation 6.4. We wrote all of the programs in C++ and used
the gcc 4.4.7 compiler with the -O3 option. We used IBM ILOG CPLEX Version 12.5.1 as a solver for MIQP with the
default parameter settings, including the number of threads (which was set to 16). All of the execution times exclude
the times for reading the input files and are expressed in seconds. We obtained the graph data from the University of
Florida Sparse Matrix Collection [7]. Table 2 summarizes the basic properties of the graphs used in the experiments,
where the second and third columns show the numbers of the vertices and edges, respectively. We converted all of the
graphs into simple undirected graphs by removing self-loops and redundant edges.

First, we measured the computation times of the exact algorithm for small real-world graphs. The results are
summarized in Table 3, where the second and third columns respectively show the computation times for solving the
densest subgraph problem using our Discounted Average Degree (DAD) metric with β = 1.5 and the Quasi-Clique
(QC) metric with α = 1/3, respectively. These results indicate that our exact algorithm can solve the densest subgraph
problem for small graphs in a reasonable amount of times. The numbers in parenthesis in the second column show
the numbers of iterations of Algorithm 1 and mean that the iterations are sufficiently small in number. Overall, the
results of Table 3 suggest that our exact algorithm takes more time for graphs with higher average degrees (|E|/|V |).
To confirm this, we conducted additional experiments on random graphs generated by an Erdös-Rényi model. We
generated random graphs with a G(n, p) model, wherein each graph contained n = 50 vertices and each edge was
included with a probability p independently of every other edge. Table 4 shows the computation times of our exact
algorithm for various p when using the DAD and QC metrics. Each computation time in this table is the geometric
mean of the computation times for five randomly generated instances. The results show that the computation time
increases as p increases as long as p ≤ 0.3.

Next, we compared the optimum solutions of the densest subgraph problem for the graph dolphins using the
DAD metric with β from {1.001, 1.2, 1.4, . . . , 2.0} and the QC metric with α from {1/3, 2/3, 0.999}. The results are
summarized in Table 5, where the second column |S| shows the size of the optimum subgraph, the third column δ
shows the clique ratio (= e[S]/

(|S|
2

)
), the fourth column D shows the diameter (the shortest path length between most

distant vertices in G[S]), the fifth column τ shows the triangle ratio (the number of triangles in S divided by the

number of triangles in a clique of size |S|), and the sixth column λ(G[S])
|S|−1

shows the edge-connectivity normalized to

1 (the edge-connectivity λ(G[S]) for graph G[S] is defined as the minimum number of edges that must be deleted to
disconnect G[S] and it takes values between 0 and |S| − 1). Just for reference, the optimum subgraphs for the DAD
metric with β = 1.001 and β = 2.0 and for the QC metric with α = 1/3 and α = 0.999 are shown in Figures 4 to
6, where the vertices in the optimum subgraphs are colored in red. These results show that the size of the optimum
subgraph for the DAD metric decreases as β increases. The size of the optimum subgraph for the QC metric also

Table 3: Execution Times (in sec.) of the Exact Algorithm for Small Graphs
Graph Name DAD (β = 1.5) QC (α = 1/3)

dolphins 0.61 (1) 0.46
polbooks 1.21 (2) 0.22
adjnoun 1.30 (2) 1.84

celegansneural 445.14 (2) 23.73
bcspwr05 8.23 (2) 1.37

celegans metabolic 12.49 (2) 5.65
email 2743.37 (1) 1679.26

bcspwr06 101.71 (1) 13.97

Table 4: Execution Times (in sec.) of the Exact Algorithm for Random Graphs
n p DAD (β = 1.5) QC (α = 1/3)

0.1 0.32 0.38
0.2 2.24 1.77
0.3 13.57 11.65
0.4 34.07 2.08

50 0.5 58.67 0.53
0.6 81.95 0.15
0.7 127.45 0.49
0.8 190.59 0.50
0.9 315.88 0.55

decreases as α increases, but the optimum size for this metric with α = 1/3 is smaller than that for the DAD metric
with small parameters such as β = 1.001 and β = 1.2. This means we should use the DAD metric rather than the QC
metric if we want to find a large dense graph.

To see the difference in the sizes of the densest subgraphs, we compared the sizes of the optimum subgraphs for
different values of α and β of the QC and DAD metrics for other graphs. Table 6 summarizes the results. The second
and third columns of the table show the sizes of the optimum subgraphs when we vary the parameters of the DAD and
QC metrics between 1/3 ≤ α < 1 and 1 < β ≤ 2. It is not surprising that the QC and DAD metrics are the same for
the lower values of the ranges, because both metrics favor a clique over a near-clique if α and β are large. In contrast,
the upper values of the ranges of the QC metric are smaller than those for the DAD metric for all of the graphs. This
means that the DAD metric has an advantage over the QC metric in the sense that it gives us a broader range of
control over the output size by changing the parameter. Meanwhile, remember that Tables 3 and 4 tell us that we
should use the QC metric when the execution time needed to obtain the optimum solution with the exact algorithms
is important.

Table 5: Characteristics of Optimum Subgraphs for the dolphins Graph
Density Metric |S| δ D τ λ(G[S])

|S|−1
DAD (β = 1.001) 20 0.326 3 0.042 0.211
DAD (β = 1.2) 17 0.382 3 0.065 0.250
DAD (β = 1.4) 6 0.933 2 0.800 0.800
DAD (β = 1.6) 6 0.933 2 0.800 0.800
DAD (β = 1.8) 6 0.933 2 0.800 0.800
DAD (β = 2.0) 5 1.000 1 1.000 1.000
QC (α = 1/3) 9 0.639 3 0.262 0.375
QC (α = 2/3) 6 0.933 2 0.800 0.800
QC (α = 0.999) 5 1.000 1 1.000 1.000

Figure 4: Optimum subgraph
with α = 0.999 and β = 2.0

Figure 5: Optimum subgraph
with α = 1/3

Figure 6: Optimum subgraph
with β = 1.001

Table 6: Sizes of Optimum Subgraphs
Graph DAD (1 < β ≤ 2) QC (1/3 ≤ α < 1)

dolphins 5–20 5–9
polbooks 6–24 6–17
adjnoun 5–48 5–16

celegansneural 8–136 8–25
bcspwr05 3–62 3–5

celegans metabolic 9–45 9–28
bcspwr06 4–23 4–6

Next, we evaluated the approximation performance of our new heuristic algorithm against the best two current
algorithms: a greedy algorithm and a local search algorithm.

• Greedy algorithm presented by Charikar [6]. This algorithm was originally designed for the densest subgraph
problem using the average degree metric, but we extended it so that it could use other density metrics. The
extended algorithm iteratively removes vertices with the minimum degree from the graph G until the graph
becomes empty and outputs the best subgraph that appeared during the execution. This extended algorithm
can be viewed as a special case of our accordion search algorithm when we use the (discounted) average degree
metric, because our algorithm is equivalent to this greedy algorithm when the whole set of vertices V is given
as input. If V is given as the initial solution, the first expand phase of our algorithm is skipped, and the second
phase is equivalent to this greedy algorithm.

• Local search algorithm presented by Tsourakakis et al. [19]. This algorithm receives an initial solution S,
and updates S by adding a vertex v to S or by removing a vertex v from S until f(S) cannot be improved by
adding or removing a single vertex. In the original paper [19], this local search is supposed to start with an
initial solution {v∗} ∪N(v∗), where v∗ is the vertex with the highest triangle ratio (see Sec. 5 for the definition
of the triangle ratio) and N(v∗) is the set of the vertices adjacent to v∗ in G. In our experiments, we extended
this single-start local search into a multi-start local search algorithm. Specifically, we first extract the top-k
triangle ratio vertices v1, v2, . . ., vk. Then we apply the local search to each of {v1} ∪N(v1), {v2} ∪N(v2), . . .,
{vk} ∪N(vk) and output the best subgraph from k runs.

In our experiments, we implemented our accordion search algorithm and these two heuristic algorithms as single-thread
programs, although it is easy to parallelize our accordion search algorithm and the local search algorithm with k initial
solutions by using k threads. For the computation of the triangle ratio, we used the approximate triangle counting
algorithm presented in [15] for large graphs.

First, we compared the solutions obtained by the three algorithms. Table 7 shows the results for the graph p2p-
Gnutella31 using the DAD metric with β from {1.1, 1.5, 1.9}. The third column shows the number of initial solutions
used for the local search algorithm and our accordion search algorithm, the fourth column shows the size of the output
subgraph, and the fifth column shows the objective value of the obtained solution. Comparing the results for the local
search algorithm when we use β = 1.1, we see that the solution obtained by the single-start local search algorithm is
worse than those obtained by the multi-start local search algorithm. We also see that the solution obtained by the
single-start accordion search algorithm is worse than those obtained by the multi-start accordion search algorithm,
when we use β = 1.5. These results prove that our multi-start strategy is effective at improving the quality of the
solutions. Apparently, the objective value of the solution obtained by a multi-start algorithm can be improved by

Table 7: Results of Heuristic Algorithms for Graph p2p-Gnutella31
β Algorithm #init |S| f(S) Time (sec.)

Local Search 1 6 1.3933 0.047
Local Search 10 22 2.1022 0.122
Local Search 100 22 2.1022 0.853

1.1 Greedy 23 2.6692 0.035
Accordion (new) 1 23 2.6692 0.099
Accordion (new) 10 23 2.6692 0.572
Accordion (new) 100 23 2.6692 5.369

Local Search 1 4 0.7500 0.042
Local Search 10 4 0.7500 0.104
Local Search 100 4 0.7500 0.723

1.5 Greedy 14 0.8400 0.031
Accordion (new) 1 11 0.7949 0.044
Accordion (new) 10 14 0.8400 0.129
Accordion (new) 100 14 0.8400 1.052

Local Search 1 4 0.4308 0.044
Local Search 10 4 0.4308 0.115
Local Search 100 4 0.4308 0.835

1.9 Greedy 10 0.3147 0.032
Accordion (new) 1 4 0.4308 0.044
Accordion (new) 10 4 0.4308 0.117
Accordion (new) 100 4 0.4308 0.860

increasing the number of initial solutions, but we should also notice, upon examining the results for the local search
with β = 1.1, even if we use as many as 100 initial solutions, the quality of the solutions with the local search remains
the same as that of the solution with 10 initial solutions and worse than those obtained by the greedy and accordion
algorithms. This tells us that increasing the number of initial solutions does not necessarily lead to the optimum (or
even a near-optimum) solution. We should also notice that, whereas the greedy algorithm outputs the best results
when we use β = 1.1 and β = 1.5, this algorithm is worse than the local search algorithm and the accordion search
algorithm when we use β = 1.9. As we have seen, at least for the graph p2p-Gnutella31 with β from {1.1, 1.5, 1.9}, the
accordion search algorithm performs the best in terms of the quality of the solution. We conducted further experiments
on other large graphs. In these experiments, the numbers of initial solutions for the local search algorithm and our
accordion search algorithm are set to 25, because the quality of the solutions of the accordion search algorithm are the
same even if we use 100 initial solutions for most of the graphs. The results are summarized in Table 8. An objective
value that has been underlined is smaller than 0.9 times the maximum objective value obtained by the three heuristic
algorithms, and hence, an underlined value means that the solution is far from optimum. The comparison tells us that,
while the local search and greedy algorithm fail to produce near-best solutions for some graphs, all of the solutions
obtained by our accordion search algorithm are the best or nearly the best for the graphs we tested. To confirm that
our accordion search algorithm outputs optimum or near-optimum solutions, we conducted additional experiments on
the seven small graphs (dolphins, polbooks, adjnoun, celegansneural, bcspwr05, celegans metabolic, and bcspwr06) by
using the DAD metric with parameter β from {1.1, 1.3, 1.5, 1.7, 1.9}. Out of 35 (= 7 × 5) combinations of the graph
and the parameter β, we confirmed that the 33 solutions obtained by the accordion search algorithm matched the
optimum solutions obtained by the exact algorithm.

Finally, we should note that the results shown in Tables 7 and 8 compare the solutions in terms of their quality,
not the computation times of the three algorithms. The execution times in the tables are just for reference, because
the implementations of the three algorithms are not optimized to reduce the computation time. We should be aware
that we can easily reduce the execution times of the local search algorithm and the accordion search algorithm with
multiple initial solutions by using multi-threading.

Table 8: Results of Heuristic Algorithms for Large Graphs (execution times are in sec.)
Local Search (#init=25) Greedy Search Our Accordion Search (#init=25)

β Graph Name |S| f(S) Time |S| f(S) Time |S| f(S) Time

wb-cs-stanford 44 9.5581 0.026 44 9.5581 0.004 44 9.5581 0.107
p2p-Gnutella31 22 2.1022 0.243 23 2.6692 0.035 23 2.6692 1.396

Wordnet3 42 2.6542 0.231 76 2.6794 0.036 67 2.6956 0.821
1.1 internet 24 4.7000 0.381 47 4.1695 0.064 24 4.7000 0.742

in-2004 1920 156.2330 9.372 492 132.0730 1.442 2021 156.2630 10.346
as-Skitter 420 48.6402 13.107 420 48.6402 2.012 420 48.6402 23.714
patents 30 3.5110 26.534 49 8.5185 6.412 55 8.5982 35.029

wb-cs-stanford 35 4.5530 0.027 35 4.5530 0.004 35 4.5530 0.061
p2p-Gnutella31 22 1.1329 0.234 19 1.4578 0.033 19 1.4578 0.899

Wordnet3 16 1.3330 0.230 15 1.3609 0.035 18 1.3772 0.639
1.3 internet 21 2.5026 0.390 23 2.2234 0.064 21 2.5026 0.440

in-2004 492 38.2316 9.442 492 38.2316 1.452 492 38.2316 10.320
as-Skitter 286 15.1056 13.122 288 15.1059 2.082 288 15.1059 22.956
patents 12 1.7794 27.766 49 3.9113 6.410 55 3.8577 29.515

wb-cs-stanford 28 2.2610 0.025 32 2.2484 0.004 28 2.2610 0.046
p2p-Gnutella31 4 0.7500 0.207 14 0.8400 0.031 14 0.8400 0.279

Wordnet3 6 0.8165 0.195 10 0.8222 0.032 11 0.8223 0.284
1.5 internet 19 1.3644 0.357 23 1.1876 0.061 19 1.3644 0.363

in-2004 492 11.0670 8.911 492 11.0670 1.393 492 11.0670 9.750
as-Skitter 210 5.0421 12.315 210 5.0421 2.057 210 5.0421 19.916
patents 8 0.9281 26.453 49 1.7959 6.187 54 1.7313 27.457

wb-cs-stanford 23 1.1961 0.026 23 1.1961 0.004 23 1.1961 0.039
p2p-Gnutella31 4 0.5684 0.241 10 0.4988 0.033 4 0.5684 0.251

Wordnet3 5 0.5834 0.224 4 0.5684 0.035 5 0.5834 0.247
1.7 internet 8 0.7872 0.385 23 0.6344 0.066 10 0.7981 0.394

in-2004 492 3.2036 9.422 492 3.2036 1.440 492 3.2036 10.167
as-Skitter 112 1.8384 12.894 133 1.8046 2.139 88 1.8118 17.666
patents 5 0.6483 27.923 48 0.8249 6.360 13 0.8430 28.173

wb-cs-stanford 21 0.6426 0.026 21 0.6426 0.004 21 0.6426 0.033
p2p-Gnutella31 4 0.4308 0.234 10 0.3147 0.032 4 0.4308 0.237

Wordnet3 4 0.4308 0.215 4 0.4308 0.034 4 0.4308 0.226
1.9 internet 7 0.5206 0.365 22 0.3406 0.062 7 0.5206 0.369

in-2004 492 0.9273 9.060 492 0.9273 1.401 492 0.9273 9.961
as-Skitter 75 0.7471 12.331 73 0.7453 2.081 74 0.7535 13.847
patents 5 0.4698 27.120 8 0.4809 6.210 9 0.5075 27.513

7 Parameter Settings for Density Metrics

A remaining question regarding the densest subgraph problem is how to choose the parameters for a given density
metric (such as β for the discounted average degree metric). Since the best parameters depend on the applications and
the parameters intrinsically represent preferences of the user even if the application is determined, there is no single
recommended parameter settings that work for all of the applications and their users. We think that the parameters
should be determined experimentally. That is, we first solve the densest subgraph problem with an arbitrary parameter
setting and repeatedly change the parameters until we get a desired subgraph.

However, for those who want to avoid numerous trials, we can use a standard technique from learning to rank to
determine the best parameters. First, we collect a set of subgraphs D = {S1, S2, . . . , Sn} to be ordered. Then we
specify preferences as a set of ordered pairs O = {(Sik � Sjk) | k = 1, . . . ,m} where each pair Sik � Sjk indicates
that f(Sik) should be larger than f(Sjk). Finally we formulate a problem to find a set of parameters that conform to
O. For example, if we are interested in the discounted average degree metric f(S) = e[S]/|S|β , we can formulate the

problem as

min

m∑
k=1

wk

subject to log
f(Sjk)

f(Sik)
= log

e[Sjk]

e[Sik]

|Sik |
β

|Sjk |β
≤ wk ∀k

wk ≥ 0 ∀k.

Here, each wk represents a penalty for violating the order Sik � Sjk , and wk = 0 means that the order is satisfied. We
can use the optimum solution β∗ of this formulation for the parameter of the discounted average degree metric.

8 NP-Hardness of the Discounted Average Degree Metric

Finally, we show that it is NP-hard to obtain an optimum solution for the densest subgraph problem by using the
discounted average degree metric with the parameter setting β = 2. To show this, we will use two well-known theorems.

Theorem 8.1 [8] One can construct a graph G = (V,E) such that it is NP-hard to distinguish between these two
cases.

(i) G contains a clique of size at least |V |/3 or

(ii) G does not contain a clique of size |V |/9.

This theorem tells us that, even if we know that the size of the largest clique in G is not between the two cases
(i) and (ii), it is hard to tell if the largest clique is large (Case (i)) or small (Case (ii)). Note that this theorem states
that it is hard even to decide which case G belongs to, since we are not asked to find a clique of size at least |V |/3 for
Case (i) as evidence.

We will also use another famous theorem from graph theory.

Theorem 8.2 [20] (Turán’s Theorem.) If G[S∗] does not contain a clique of size r + 1, then

e[S∗] ≤ |S
∗|2

2

(
1− 1

r

)
.

Using these theorems, we will show the NP-hardness of the problem.

Theorem 8.3 Given a graph G = (V,E), it is NP-hard to find the subgraph S ⊆ V that maximizes f(S) = e[S]/|S|2.

Proof. To prove this theorem, it is sufficient to prove this claim: a graph G = (V,E) contains a clique of size |V |/3
if and only if there exists a subset S∗ ⊆ V such that f(S∗) ≥ 1/2 − 3/2|V |. If this claim is true, then we can decide
whether G contains a clique of size at least |V |/3 by checking whether f(S∗) ≥ 1/2−3/2|V |, where S∗ ⊆ V is a vertex
set that maximizes the density metric f(S) = e[S]/|S|2.

Here is the proof of this claim. If G contains a clique C of size |V |/3, then we have

f(C) =
e[C]

|C|2 =
(|V |/3)(|V |/3− 1)/2

|V |2/9 =
1

2
− 3

2|V | ,

which means that f(S∗) ≥ 1/2− 3/2|V |.
Next we show the opposite direction of the claim. If we have a set S∗ such that f(S∗) ≥ 1/2 − 3/2|V |, then we

have

e[S∗] = f(S∗)|S∗|2 ≥ |S
∗|2

2

(
1− 3

|V |

)
. (2)

As a corollary of Turán’s Theorem (Theorem 8.2), we know that, if

e[S∗] >
|S∗|2

2

(
1− 1

r

)
, (3)

then G[S∗] contains a clique of size r + 1. Since we know that Inequality (3) holds whenever r < |V |/3 from Inequal-
ity (2), we can conclude that G[S∗] contains a clique of size |V |/3.

9 Conclusions

We have presented four axioms for choosing an appropriate density metric for the densest subgraph problem, which
allows us to avoid counterintuitive results due to the use of an inappropriate metric. In addition, we have proposed a
new density metric, the discounted average degree, which satisfies all of the axioms and has a broader range of control
than the quasi-clique metric. As for the algorithms, we have presented exact and approximate algorithms that can
be used with typical density metrics, including the quasi-clique metric and our discounted average metric. The exact
algorithm is useful for evaluating various density metrics and for verifying the approximation performance of heuristic
algorithms. Our approximate algorithm outperforms the current best algorithms in terms of approximation quality
for the graphs we tested.

References

[1] J. Abello, M. G. C. Resende, and S. Sudarsky. Massive quasi-clique detection. In LATIN 2002, pages 598–612,
2002.

[2] A. Altman and M. Tennenholtz. Ranking systems: the PageRank axioms. In EC 2005, pages 1–8, 2005.

[3] A. Angel, N. Koudas, N. Sarkas, and D. Srivastava. Dense subgraph maintenance under streaming edge weight
updates for realtime story identification. PVLDB, 5(6):574–585, 2012.

[4] P. Boldi and S. Vigna. Axioms for centrality. Internet Mathematics, 10(3–4):222–262, 2014.

[5] C. G. Chakrabarti and I. Chakrabarty. Shannon entropy: axiomatic characterization and application. Interna-
tional Journal of Mathematics and Mathematical Sciences, 2005(17):2847–2854, 2005.

[6] M. Charikar. Greedy approximation algorithms for finding dense components in a graph. In APPROX 2000,
pages 84–95, 2000.

[7] T. A. Davis and Y. Hu. The university of Florida sparse matrix collection. ACM Transactions on Mathematical
Software, 38(1):Article No. 1, 2011. http://www.cise.ufl.edu/research/sparse/matrices.

[8] I. Dinur and S. Safra. On the hardness of approximating minimum vertex cover. Annals of Mathematics,
162(1):439–485, 2005.

[9] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric maximum flow algorithm and applications.
SIAM Journal on Computing, 18(1):30–55, 1989.

[10] A. V. Goldberg. Finding a maximum density subgraph. Technical report, University of California, 1984.

[11] H. Hu, X. Yan, Y. Huang, J. Han, and X. J. Zhou. Mining coherent dense subgraphs across massive biological
networks for functional discovery. BIOINFORMATICS, 21:213–221, 2005.

[12] V. E. Lee, N. Ruan, R. Jin, and C. Aggarwal. A survey of algorithms for dense subgraph discovery. Advances in
Database Systems, 40:303–336, 2010.

[13] R. D. Luce. Connectivity and generalized cliques in sociometric group structure. Psychometrika, 15(2):169–190,
1950.

[14] R. J. Mokken. Cliques, clubs and clans. Quality and Quantity, 13(2):161–173, 1979.

[15] R. Pagh and C. E. Tsourakakis. Colorful triangle counting and a MapReduce implementation. Information
Processing Letters, 112(7):277–281, 2012.

[16] S. B. Seidman. Network structure and minimum degree. Social Networks, 5(3):269–287, 1983.

[17] S. B. Seidman and B. L. Foster. A graph-theoretic generalization of the clique concept. The Journal of Mathe-
matical Sociology, 6(1):139–154, 1978.

[18] C. E. Tsourakakis. A novel approach to finding near-cliques: The triangle-densest subgraph problem. Technical
report, ICERM, Brown University, 2014.

[19] C. E. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and M. A. Tsiarli. Denser than the densest subgraph: Extracting
optimal quasi-cliques with quality guarantees. In KDD 2013, pages 104–112, 2013.

[20] P. Turán. Egy gráfelméleti szélsöértékfeladatról (in Hungarian). Mat. Fiz. Lapok, 48:436–452, 1941.

[21] N. Wang, J. Zhang, K.-L. Tan, and A. K. H. Tung. On triangulation-based dense neighborhood graph discovery.
PVLDB, 4(2):58–68, 2010.

