
November 15, 2016
RT0975
Computer Science; Mathematics 11 pages

Research Report

Nonlinear Dynamic Boltzmann Machines for Time-series
Prediction

Sakyasingha Dasgupta and Takayuki Osogami
IBM Research - Tokyo
IBM Japan, Ltd.
19-21, Nihonbashi Hakozaki-cho
Chuo-ku, Tokyo 103-8510 Japan

Limited Distribution Notice
This report has been submitted for publication outside of IBM and will be probably copyrighted if accepted. It
has been issued as a Research Report for early dissemination of its contents. In view of the expected transfer of
copyright to an outside publisher, its distribution outside IBM prior to publication should be limited to peer
communications and specific requests. After outside publication, requests should be filled only by reprints or
copies of the article legally obtained (for example, by payment of royalities).

Nonlinear Dynamic Boltzmann Machines for Time-series Prediction

Sakyasingha Dasgupta and Takayuki Osogami
IBM Research - Tokyo

{sdasgup, osogami}@jp.ibm.com

Note: This is an extended version (main paper with supplementary) of the paper appearing in the proceedings of AAAI 2017

Abstract

The dynamic Boltzmann machine (DyBM) has been pro-
posed as a stochastic generative model of multi-dimensional
time series, with an exact, learning rule that maximizes the
log-likelihood of a given time series. The DyBM, however,
is defined only for binary valued data, without any nonlin-
ear hidden units. Here, in our first contribution, we extend
the DyBM to deal with real valued data. We present a for-
mulation called Gaussian DyBM, that can be seen as an ex-
tension of a vector autoregressive (VAR) model. This uses, in
addition to standard (explanatory) variables, components that
captures long term dependencies in the time series. In our
second contribution, we extend the Gaussian DyBM model
with a recurrent neural network (RNN) that controls the bias
input to the DyBM units. We derive a stochastic gradient up-
date rule such that, the output weights from the RNN can also
be trained online along with other DyBM parameters. Fur-
thermore, this acts as nonlinear hidden layer extending the
capacity of DyBM and allows it to model nonlinear compo-
nents in a given time-series. Numerical experiments with syn-
thetic datasets show that the RNN-Gaussian DyBM improves
predictive accuracy upon standard VAR by up to ⇡ 35%. On
real multi-dimensional time-series prediction, consisting of
high nonlinearity and non-stationarity, we demonstrate that
this nonlinear DyBM model achieves significant improve-
ment upon state of the art baseline methods like VAR and
long short-term memory (LSTM) networks at a reduced com-
putational cost.

Introduction
The Boltzmann machine (BM) (Hinton and Sejnowski 1983;
Ackley, Hinton, and Sejnowski 1985) is an artificial neu-
ral network that is motivated by the Hebbian learning rule
(Hebb 1949) of biological neural networks, in order to learn
a collection of static patterns. That is, the learning rule of
the BM that maximizes the log likelihood of given patterns
exhibits a key property of the Hebb’s rule, i.e. co-activated
neural units should be connected. Although the original BM
is defined for binary values (1 for neuron firing and 0 rep-
resenting silence), it has been extended to deal with real
values in the form of Gaussian BM (Marks and Movellan
2001; Welling, Rosen-Zvi, and Hinton 2004) or Gaussian-
Bernoulli restricted BM (Hinton and Salakhutdinov 2006)
primarily for engineering purposes. Unlike BM, the recently
proposed dynamic Boltzmann machine (DyBM) (Osogami

and Otsuka 2015a; 2015b) can be used to learn a generative
model of temporal pattern sequences, using an exact learn-
ing rule that maximises the log likelihood of given time-
series. This learning rule exhibits key properties of spike-
timing dependent plasticity (STDP), a variant of the Heb-
bian rule. In STDP, the amount of change in the synaptic
strength between two neurons that fired together depends on
precise timing when the two neurons fired. However, similar
to a BM, in the DyBM, each neuron takes a binary value, 0
or 1, following a probability distribution that depends on the
parameters of the DyBM. This has limited applicability to
real-world time-series modeling problems, which are often
real valued.
First Contribution: Here, we extend the DyBM to deal with
real values and refer to the extended model as a Gaussian
DyBM. Although extension is possible in the way that BM is
extended to the Gaussian BM, we also relax some of the con-
straints that the DyBM has required in (Osogami and Otsuka
2015a; 2015b). The primary purpose of these constraints
in (Osogami and Otsuka 2015a; 2015b) was to interpret its
learning rule as biologically plausible STDP. We relax these
constraints in a way that the Gaussian DyBM can be related
to a vector autoregressive (VAR) model (Lütkepohl 2005;
Bahadori, Liu, and Xing 2013), while keeping the key prop-
erties of the DyBM having an exact learning rule intact. This
makes our new model specifically suited for time-series pre-
diction problems. Specifically, we show that a special case of
the Gaussian DyBM is a VAR model having additional com-
ponents that capture long term dependency of time series.
These additional components correspond to DyBM’s eligi-
bility traces, which represent how recently and frequently
spikes arrived from one unit1 to another. This forms the first
primary contribution of this paper.
Second Contribution: Similar to DyBM, its direct exten-
sion to the Gaussian case, can have two restrictions. Firstly,
the maximum number of units has to be equal to the dimen-
sion of the time-series being learned, and secondly, the ab-
sence of nonlinear hidden units. In our second contribution,
we extend DyBM by adding a RNN layer that computes a
high dimensional nonlinear feature map of past input se-
quences (from the time-series data) to DyBM. The output

1In the rest of the paper the term neuron and unit are used inter-
changeably.

from the RNN layer is used to update the bias parameter in
Gaussian DyBM at each time. As such, we call this exten-
sion as RNN-Gaussian DyBM. The RNN is modeled similar
to an echo state network (Jaeger and Haass 2004). Such that,
the weights in the RNN layer is fixed randomly, and we only
update the weights from the recurrent layer to the bias layer
for Gaussian DyBM. We derive a stochastic gradient descent
(SGD) update rule for the weights, with the objective of
maximizing the log likelihood of given time-series. RNN-
Gaussian DyBM, thus allows hidden nonlinear units in the
form of the recurrent layer, where by the size of RNN layer
can be selected differently than the dimension of time-series
being modeled. This can significantly improve the learning
of high-dimensional time-series by enabling very long tem-
poral memory in DyBM that can also deal with nonlinear
dynamics of the data.
Evaluation: We demonstrate the effectiveness of this
nonlinear DyBM model, namely, RNN-Gaussian DyBM
through numerical experiments on two different synthetic
datasets. Furthermore, we also evaluate its performance
on more complex real time-series prediction using non-
stationary multidimensional financial time-series and non-
linear sunspot time-series prediction problems . We train the
RNN-Gaussian DyBM and let it predict the future values of
the time-series in a purely online manner with SGD (Tiele-
man and Hinton 2012). Namely, at each moment, we update
the parameters and variables by using only the latest values
of the time-series, and let the DyBM predict the next values
of time-series. The experimental results show that the RNN-
Gaussian DyBM can significantly better the predictive per-
formance against standard VAR methods, as well as match
(and on occasion outperform) the performance of state of the
art RNNs like long short-term memory (LSTM) (Hochre-
iter and Schmidhuber 1997) networks. Furthermore, RNN-
Gaussian DyBM can be implemented in an online manner,
at a significantly reduced cost.

Related work
In the remainder of this section, we review the prior work
related to ours. Besides the DyBM, the BM has also been
extended into temporal horizon to deal with time-series in
various ways, and these extensions have been shown to per-
form effectively in practice (Sutskever, Hinton, and Taylor
2009; Hinton and Brown 1999; Sutskever and Hinton 2007;
Taylor and Hinton 2009; Mittelman et al. 2014). In particu-
lar, Gaussian units have been applied in (Sutskever, Hinton,
and Taylor 2009; Taylor and Hinton 2009; Mittelman et al.
2014). Unlike the DyBM, however, exact learning of the log-
liklihood gradient without back-propagation and sampling,
in these extended models is intractable and needs to be ap-
proximated. On the other hand, the RNN-Gaussian DyBM
can be trained to maximize the log-likelihood of given time-
series without approximation, and this learning rule has the
characteristics of STDP, which is inherited from DyBM.
A large amount of the prior work has compared recurrent
neural networks (RNN) against autoregressive models (Con-
nor, Atlas, and Martin 1992; Zhang, Patuwo, and Hu 1998).
The focus of such study, however, is on non-linearity of sim-
ple RNNs. The Gaussian DyBM formulation, first extends

𝑥𝑖𝑡

𝑥𝑗𝑡

𝑥𝑖𝑡−1

𝑥𝑗𝑡−1

𝑥𝑖𝑡−𝛿

𝑥𝑗𝑡−𝛿

𝑥𝑖𝑡−𝑇

𝑥𝑗𝑡−𝑇

𝑤𝑖,𝑗
𝛿

𝑏𝑖, 𝜎𝑖2

(a)

𝛿

𝑤𝑖,𝑗𝛿

𝑤𝑖,𝑗
𝑑𝑖,𝑗−1

𝑤𝑖,𝑗1

𝑑𝑖,𝑗

𝑘
𝜆𝑘
𝛿−𝑑𝑖,𝑗 𝑢𝑖,𝑗,𝑘

(b)

Figure 1: (a) A Gaussian Boltzmann machine (BM) that
when unfolded in time, gives a Gaussian DyBM as T ! •.
(b) The parametric form of the weight assumed in the Gaus-
sian BMs and its extensions.

the linear VAR model but with the additional variables, re-
lated to DyBM’s eligibility traces, which take into account
the long term dependency in time-series. The addition of the
RNN layer then allows to model the nonlinear components
of the time-series.

Deriving a Gaussian DyBM
We will define a G-DyBM2 as a limit of a sequence of Gaus-
sian BMs. Each of the Gaussian BMs defines a probability
distribution of the patterns that it generates, and an analo-
gous probability distribution for the G-DyBM is defined as
a limit of the sequence of those probability distributions.

Gaussian DyBM as unfolded Gaussian Boltzmann
machines for T ! •
Consider a Gaussian BM having a structure illustrated in
Figure 1 (a). This Gaussian BM consists of T + 1 layers
of units. Let, N be the number of units in each layer. This
Gaussian BM can represent a series of N-dimensional
patterns of length T +1. In the figure, this series of patterns
is denoted as x[t�T,t] ⌘ (xs)s=t�T,...,t for some time t. That is,
the d -th layer represents the pattern, x[t�d] ⌘ (x[t�d]

i)i=1,...,N ,
at time t �d for d = 0,1, . . . ,T .

The Gaussian BM in Figure 1(a) has three kinds of pa-
rameters, bias, variance, and weight, which determine the
probability distribution of the patterns that the Gaussian BM
generates. For i = 1, . . . ,N, let bi be the bias of the i-th
unit of any layer and s2

i be the variance of the i-th unit
of any layer. Let w[d]

i, j be the weight between the i-th unit

2In interest of space, we refer to Gaussian DyBM as G-DyBM
and its RNN extension as RNN-G-DyBM on certain occasions.

of the (s + d)-th layer and the j-th unit of the s-th layer
for (i, j) 2 {1, . . . ,N}2, s = 0, . . . ,T � d , and d = 1, . . . ,T .
We assume that there are no connections within each layer:
namely w[0]

i, j = 0. With this assumption, the most recent val-

ues, x[t]i for i = 1, . . . ,N, are conditionally independent of
each other given x[t�T,t�1].

Hence, the conditional probability density of x[t] given
x[t�T,t�1] can be represented as

p(x[t]|x[t�T,t�1]) =
N

’
j=1

p j(x
[t]
j |x

[t�T,t�1]), (1)

where each factor of the right-hand side denotes the con-
ditional probability density of x[t]j given x[t�T,t�1] for j =

1, . . . ,T . More specifically, x[t]j has a Gaussian distribution
for each j:

p j(x
[t]
j |x

[t�T,t�1]) =
1q

2p s2
j

exp
⇣
�

�
x[t]j �µ [t]

j

�2

s2
j

⌘
, (2)

where µ [t]
j takes the following form and can be interpreted

as the expected value of the j-th unit at time t given the last
T patterns:

µ [t]
j ⌘ b j +

T

Â
d=1

N

Â
i=1

w[d]
i, j x[t�d]

i . (3)

To take the limit of T ! • while keeping the number of
parameters constant (i.e., independent of T), we assume that
the weight has the parametric form illustrated in Figure 1(b).
Here, di, j � 1 is an integer and will represent the conduction
delay from i to j in the G-DyBM. Specifically, for d � di, j,
we use the parametric form of the DyBM (Osogami and Ot-
suka 2015a; 2015b):

w[d]
i, j =

K

Â
k=1

l d�di, j
k ui, j,k, (4)

where, for each k, ui, j,k is a learnable parameter, and the de-
cay rate, lk, is fixed in range [0,1). Unlike the DyBM, we
assume no constraint on w[d]

i, j for 0< d < di, j. Although these
weight could have shared weight in the G-DyBM as well, the
unconstrained weight will allow us to interpret the G-DyBM
as an extension of the VAR model in Section .

Plugging (4) into (3) and letting T ! •, we obtain

µ [t]
j ⌘ b j +

N

Â
i=1

di, j�1

Â
d=1

w[d]
i, j x[t�d]

i +
N

Â
i=1

K

Â
k=1

ui, j,k a [t�1]
i, j,k , (5)

where a [t�1]
i, j,k will be referred to as an eligibility trace and is

defined as follows:

a [t�1]
i, j,k ⌘

•

Â
d=di, j

l d�di, j
k x[t�d]

i . (6)

Notice that the eligibility trace can be computed recursively:

a [t]
i, j,k = lk a [t�1]

i, j,k + x
[t�di, j+1]
i . (7)

Gaussian DyBM as extended vector autoregression
When the expression (5) is seen as a regressor (or predictor)
for x[t]j , it can be understood as a model of vector autoregres-
sion (VAR) with two modifications to the standard model.
First, the last term in the right-hand side of (5) involves el-
igibility traces, which can be understood as features of his-
torical values, x[�•,t�di, j], and are added as new variables of
the VAR model. Second, the expression (5) allows the num-
ber of terms (i.e., lags) to depend on i and j through di, j,
while this number is common among all pairs of i and j in
the standard VAR model.

When the conduction delay has a common value (di, j =
d,8i, j), we can represent (5) simply with vectors and matri-
ces as follows:

µ [t] = b+
d�1

Â
d=1

W[d] x[t�d] +
K

Â
k=1

Uk a [t�1]
k , (8)

where µ ⌘ (µ j) j=1,...,N , b ⌘ (b j) j=1,...,N , x[t] ⌘ (x[t]j) j=1,...,N ,

and a [t�1]
k ⌘ (a [t�1]

j,k) j=1,...,N for k= 1, . . . ,K are column vec-
tors; W[d] ⌘ (w̃i, j)(i, j)2{1,...,N}2 for 0 < d < di, j and Uk ⌘
(ui, j,k)(i, j)2{1,...,N}2 for k = 1, . . . ,K are N ⇥N matrices.

RNN-Gaussian DyBM as a nonlinear model
Having derived the G-DyBM, we now formulate the RNN-
G-DyBM, as a nonlinear extension of the G-DyBM model
by updating the bias parameter vector b, at each time using
a RNN layer. This RNN layer computes a nonlinear feature
map of the past time series input to the G-DyBM. Where in,
the output weights from the RNN to the bias layer along with
DyBM parameters, can be updated online using a stochastic
gradient method.

We consider a G-DyBM connected with a M-dimensional
RNN, whose state vector changes dependent on a nonlinear
feature mapping of its own history and the N-dimensional
time-series input data vector at time t � 1. Where in, for
most settings M > N. Specifically, for RNN-G-DyBM we
consider the bias vector to be time-dependent. Where in, it
is updated at each time as:

b[t] = b[t�1] +A>Y[t] (9)

Here, Y[t] is the M⇥1 dimensional state vector at time t of
a M dimensional RNN. A is the M⇥N dimensional learned
output weight matrix that connects the RNN state to the bias
vector. Where, the RNN state is updated based on the input
time-series vector x[t] as follows:

Y[t] = (1�r)Y[t�1] +rF (WrnnY[t�1] +Winx[t]), (10)

Where, F (x) = tanh(x). This can however be replaced by
any other suitable nonlinear function, e.g. rectified linear
units, sigmoid etc. Here, 0 < r 1 is a leak rate hyper-
parameter of the RNN, which controls the amount of mem-
ory in each unit of the RNN layer. Wrnn and Win are the
M⇥M dimensional RNN weight matrix and N ⇥M dimen-
sional projection of the time series input to the RNN layer,
respectively. Here, we design the RNN similar to an echo
state network (Jaeger and Haass 2004). Such that, the weight

matrices Wrnn and Win are initialized randomly. Wrnn is ini-
tialized from a Gaussian distribution N (0,1) and Win is
initialized from N (0,0.1). The sparsity of the RNN weight
matrix can be controlled by the parameter f and it is scaled
to have a spectral radius less than one, for stability (Jaeger
and Haass 2004). For all results presented here, the RNN
weight matrix was 90% sparse and had a spectral radius of
0.95.

Online training of a RNN-Gaussian DyBM
We now derive an online learning rule for the RNN-G-
DyBM in a way that the log-likelihood of given time-series
data, D , is maximized. The log-likelihood of D is given by

LL(D) = Â
x2D

Â
t

log p(x[t]|x[�•,t�1]). (11)

Here, we show the case where D consists of a single time-
series, but extension to multidimensional cases is straight-
forward. The approach of stochastic gradient is to update the
parameters of the RNN-G-DyBM at each step, t, according
to the gradient of the conditional probability density of x[t],

— log p(x[t]|x[�•,t�1]) =
N

Â
i=1

— log pk(x
[t]
i |x[�•,t�1]) (12)

=�
N

Â
i=1

⇣1
2

— logs2
i +—

�
x[t]i �µ [t]

i)2

s2
i

⌘
,

(13)

where, the first equality follows from the conditional inde-
pendence (1), and the second equality follow from (2). From
(13) and (5), we can now derive the derivative with respect
to each parameter. These parameters can then be updated,
for example, as follows:

b j b j +h
2
�
x[t]j �µ [t]

j)

s2
j

, (14)

s j s j +h

2
�
x[t]j �µ [t]

j

�2

s2
j

�1

!
1
s j

, (15)

w[d]
i, j w[d]

i, j +h
2
�
x[t]j �µ [t]

j)

s2
j

x[t�d]
i , (16)

ui, j,k ui, j,k +h
2
�
x[t]j �µ [t]

j)

s2
j

a [t�1]
i, j,k (17)

Al, j Al, j +h 0
2(x[t]j �µ [t]

j)

s2
j

y [t]
l , (18)

for k = 1, . . . ,K, d = 1, . . . ,di, j� 1, and (i, j) 2 {1, . . . ,N},
where h and h 0 are learning rates. We set, h 0 < h such
that Al j is stationary while other parameters are updated.
The learning rates can be adjusted at each step according
to stochastic optimization techniques like Adam (Kingma
and Ba 2015) and RMSProp (Tieleman and Hinton 2012).
In (14)-(18), µ [t]

j is given by (5), where a [t�1]
i, j,k and x[t�d]

i
for d 2 [1,di, j � 1], respectively, are stored and updated in
a synapse and a FIFO queue that connects from neuron i to

neuron j. It should be noted that, in the absence of the for-
mulations in (9) and (10), this same learning procedure up-
dates the parameters of an equivalent G-DyBM model, with-
out the need for (18). See algorithmic description in supple-
mentary.

Numerical experiments
We now demonstrate the advantages of the RNN-G-DyBM
through numerical experiments with two synthetic and two
real time series data. In these experiments, we use the RNN-
G-DyBM with a common conduction delay (di, j = d for any
i, j; see (8)). All the experiments were carried out with a
Python 2.7 implementation (with numpy and theano back-
end) on a Macbook Air with Intel Core i5 and 8 GB of mem-
ory.
In all cases we train the RNN-G-DyBM in an online man-
ner. Namely, for each step t, we give a pattern, x[t], to the
network to update its parameters and variables such as eligi-
bility traces (see (7)), and then let theRNN-G-DyBM predict
the next pattern, x̃[t+1], based on µ [t+1] using (8)-(10). This
process is repeated sequentially for all time or observation
points t = 1,2, Here, the parameters are updated accord-
ing to (14)-(18). The learning rates, h and h 0, in (14)-(18) is
adjusted for each parameter according to RMSProp (Tiele-
man and Hinton 2012), where the initial learning rate was
set to 0.001. Throughout, the initial values of the parameters
and variables, including eligibility traces and the spikes in
the FIFO queues, are set to 0. However, we initialize s j = 1
for each j to avoid division by 0 error. All RNN weight ma-
trices were initialized randomly as described in the RNN-G
DyBM model section. The RNN layer leak rate r was set to
0.9 in all experiments.

Synthetic time series prediction
The purpose of the experiments with the synthetic datasets
is to clearly evaluate the performance of RNN-G-DyBM
in a controlled setting. Specifically, we consider a RNN-G-
DyBM with N DyBM units and M RNN units. The DyBM
units are connected with FIFO queues of length d and eligi-
bility traces of decay rate l , where d and l are varied in the
experiments. For l = 0, and in the absence of the RNN layer,
we have a [t] = x[t�d], and this Gaussian DyBM reduces to a
vector autoregressive model with d lags. We use this VAR
model as the baseline for performance evaluation.

Multidimensional noisy sine wave: In the first synthetic
task, we train the RNN-G-DyBM with a five dimensional
noisy sine-wave. Where each dimension xD is generated as:

x[t]D = sin(Dp t/100)+ e [t], D = (1,2,3,4,5), (19)

for each t, where e [t] is independent and identically dis-
tributed (i.i.d) with a Gaussian distribution N (0,1). The
number of DyBM units N = 5 with M = 10 hidden RNN
units.

30th order nonlinear autoregressive moving average
(NARMA): In this task, we train the RNN-G-DyBM for
one step prediction with a one dimensional nonlinear time-
series. Namely, the 30th order NARMA (Connor, Atlas, and

(a) noisy sine, d = 2 (b) noisy sine, d = 4 (c) noisy sine, d = 7

(d) narma-30, d = 2 (e) narma-30, d = 4 (f) narma-30, d = 7

Figure 2: Mean squared error of prediction for the synthetic time series. For each step t, the mean squared error is averaged
over 100 independent runs. Decay rate l is varied as in the legend, and the red curve (l = 0) corresponds to the baseline VAR
model. Conduction delay d is varied across panels. (a)-(c) Prediction performance on the noisy sine task. (d)-(f) Prediction
performance on the 30th order NARMA task.

Martin 1992; Jaeger and Haass 2004) which is generated as:

x[t] = 0.2x[t�1] +0.004x[t�1]
h 29

Â
i=0

x[t�1�i]
i

+1.5u[t�30] u[t�1] +0.01 (20)

Where, u[t] is i.i.d with a Gaussian distribution N (0,0.5).
As such, for future prediction, this task requires the model-
ing of the inherent nonlinearity and up to 30 time-steps of
memory. The number of DyBM units are N = 1 with M = 5
hidden RNN units.

Figure 2 shows the predictive accuracy of the RNN-
G-DyBM. Here, the prediction, x̃[t], for the pattern at
time t is evaluated with mean squared error, MSE[t] ⌘

1
100 Â50

s=t�50(x̃[t]�x[t])2, and MSE[t] is further averaged over
100 independent runs of the experiment. Due to the time-
dependent noise e [t], the best possible squared error is 1.0 in
expectation. We vary decay rates l as indicated in the legend
and d as indicated below each panel. We observe that in the
noisy sine task, although the prediction accuracy depends
on the choice of l , Figure 2 (a)-(c) shows that the RNN-G-
DyBM (with l > 0) significantly outperforms VAR model
(l = 0; red curves) and reduces the error by more than 30 %.
A similar performance benefit is also observed in Figure 2
(d)-(f) for the 30th order NARMA prediction task. Where
in, the RNN-G-DyBM performs robustly across varying de-
cay rates and consistently outperforms the VAR model even
when the lag or delays increases. As this task requires both
long memory and nonlinearity, the gain RNN-G-DyBM has
over the VAR stems from the use of the eligibility traces,
a [t] and the nonlinear RNN hidden units, instead of the lag-

Figure 3: Average root mean squared error after 20 epochs
for one-week ahead prediction plotted for varying decay
rates (l), on the real dataset of weekly retail prices for gaso-
line and diesel in U.S.A. The results shown are using fixed
delay strength d = 2. The star marks show the performance
of the baseline VAR model (l = 0.0). Training error is plot-
ted in red and test error is plotted in blue. See supplementary
results, for plots with d = 3 and d = 4.

d variable, x[t�d]. As such, even with increasing delays the
VAR model does not match the performance of RNN-G-
DyBM. The results for even longer delays can be found in
the supplementary material.

Real-data time series prediction
Having evaluated the performance of RNN-G-DyBM in a
controlled setting, we now evaluate its performance on two
real-data sets. We demonstrate that RNN-G-DyBM consis-
tently outperforms the baseline VAR models as well as, bet-

MODEL Retail-price prediction Sunspots prediction
Test RMSE Test RMSE

LSTM 0.0674 0.07342
VAR (d=2) 0.0846 0.2202
VAR (d=3) 0.0886 0.1859
VAR (d=4) 0.0992 0.2050

RNN-G-DyBM (d=2) 0.0580 0.08252
RNN-G-DyBM (d=3) 0.0564 0.0770
RNN-G-DyBM (d=4) 0.0605 0.0774

Table 1: The average test RMSE after 20 epochs for various
models for online time series prediction tasks with the retail-
price dataset and sunspot number datasets, respectively. The
delay (d) for each model is in brackets. For LSTM model
there was no delay and decay rate (l) hyper-parameters. In
all VAR models l = 0.0. For RNN-G-DyBM models the
best test score achieved across the entire range of decay rates
is reported.

MODEL Average runtime/epoch (s)
LSTM 11.2132

RNN-G-DyBM (across delays) 0.7014
VAR (across delays) 0.3553

Table 2: The average CPU time taken in seconds, to train
a model per epoch. The reported values are for the sunspot
nonlinear time series prediction task.

ters in some cases, the performance obtained with the popu-
lar LSTM RNN model. We first evaluate using a highly non-
stationary multidimensional retail-price time series dataset.

Weekly retail gasoline and diesel prices in U.S.3: This
dataset consists of real valued time series of 1223 steps(t =
1, . . . ,1223) of weekly (April 5th, 1993 to September 5th,
2016) prices of gasoline and diesel (in US dollar/gallon)
with 8 dimensions covering different regions in U.S.A. We
normalize the data within the interval [0,1.0]. We use the
first 67% of the time series observations (819 time steps) as
the training set and the remaining 33% (404 time steps) as
the test data set. We train the RNN-G-DyBM with N = 8
units, and M = 20 hidden RNN units with varying d and l .
The objective in this task was to make one-week ahead pre-
dictions in an online manner, as in the synthetic experiments.
We once again use the VAR model as the baseline. Addi-
tionally, we also learn with LSTM RNN (Gers, Schmid-
huber, and Cummins 2000) with 20 hidden units. We set
the relevant hyper-parameters such that they were consistent
across all the models. In all models the parameters of the net-
work was updated online, using the stochastic optimization
method RMSProp (Tieleman and Hinton 2012) with an ini-
tial learning rate of 0.001. LSTM was implemented in Keras
see supplementary.

Monthly sunspot number prediction4: In the second
task, we use the historic benchmark of monthly sunspot
number (Hipel and McLeod 1994) collected in Zurich from
Jan. 1749 to Dec. 1983. This is a one-dimensional nonlinear

3Data obtained from http://www.eia.gov/petroleum/
4Publicly available at https://datamarket.com/data/set/22t4/

time series with 2820 time steps. As before, we normalize
the data within the interval [0,1.0] and used 67% for train-
ing and 33% for testing the models. With goal of monthly
prediction we trained RNN-G-DyBM with N = 1 unit, and
M = 50 hidden RNN units.The LSTM model also had 50
hidden units. All other settings were same as the other real-
data set.
Figure 3 shows the one-week ahead prediction accuracy
of RNN-G-DyBM on the retail-price time series for delay
d = 2. We evaluate the error using the root mean squared er-
ror (RMSE) measure averaged over 20 epochs calculated for
the normalized time series. The figure shows that the RNN-
G-DyBM (solid curves) clearly outperforms VAR (stared
points) by nearly more than 30% (depending on the set-
tings), on both training and test predictions. However for
larger decay rates the test RMSE increases suggesting that
over-fitting can occur if hyper-parameters are not selected
properly. In comparison, while directly using the G-DyBM
model on this task, the best case test RMSE was 0.0718
with d = 3, thus RNN-G-DyBM improves upon G-DyBM
by more than 21% .
As observed in Table 1, on this task the RNN-G-DyBM
with d = 3 achieved the best performance, which remarkably
beats even the LSTM model by a margin of ⇡ 16 %. Consid-
erable performance gain against the VAR baseline was also
observed (Table 1. columns two) using the sunspot time se-
ries. Due to the inherent nonlinearity in this data, both the
VAR and G-DyBM models perform very poorly even for
higher delays. Notably, the best case test RMSE obtained
when using the G-DyBM model was 0.1327 (with d = 3) i.e.
40% lower as compared to the best RNN-G-DyBM model.
With 50 hidden units the LSTM model performs slightly bet-
ter in this case with a normalized test error of 0.07342 as
compared to the 0.0770 for the RNN-G-DyBM with d = 3
(comparison of the true vs predicted time series on this
task for all the three models can be seen in the supplemen-
tary data. Visual inspection shows little difference between
RNN-G-DyBM and LSTM prediction.).
In Table 2. we record the average CPU time taken (in sec-
onds) to execute a single training epoch on the sunspot data,
across the three models. As observed, the RNN-G-DyBM
not only achieves comparable performance to the LSTM
but learns in only 0.7014 sec./epoch as compared to the
11.2132 sec./epoch (16 times more) for the LSTM model.
Notably, after 50 epochs LSTM achieves a best test RMSE
of 0.0674(retail-price dataset) taking ⇡ 566 secs., while af-
ter 50 epochs the RNN-G-DyBM realises a best test RMSE
of 0.0564 in ⇡ 35 secs, on the same task. As such, the non-
linear RNN-G-DyBM model is highly scalable in an online
learning environment. Expectedly, the VAR model without
any eligibility traces and hidden units runs much faster, al-
beit with significantly lower predictive accuracy.

Conclusion
In this paper we first extended the dynamic Boltzmann
machine (DyBM), into the Gaussian DyBM (G-DyBM) to
model real valued time series. The G-DyBM can be seen
as an extension of vector autoregression model. We fur-
ther extended this to the RNN-Gaussian DyBM in order to

model inherent nonlinearities in time series data. Experi-
mental results demonstrate the effectiveness of the RNN-
G-DyBM model with significant performance gain over
VAR. The RNN-G-DyBM also outperforms popular LSTM
models at a considerably reduced computational cost. Our
model is highly scalable similar to binary DyBM (Dasgupta,
Yoshizumi, and Osogami 2016) that was shown to give sig-
nificant performance improvement on the high-dimensional
moving MNIST task. Furthermore, unlike models requir-
ing back-propagation, in RNN-G-DyBM each parameter can
be updated in a distributed manner in constant time with
Eqs.14-18. This update is independent of data dimension or
the maximum delay. This makes the RNN-G-DyBM model
highly robust and scalable for online high-dimensional time
series prediction scenarios.

Acknowledgments
This work was partly funded by CREST, JST.

References
Ackley, D. H.; Hinton, G. E.; and Sejnowski, T. J. 1985.
A learning algorithm for Boltzmann machines. Cognitive
Science 9:147169.
Bahadori, M. T.; Liu, Y.; and Xing, E. P. 2013. Fast struc-
ture learning in generalized stochastic processes with latent
factors. In Proceedings of the 19th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining,
284–292. ACM.
Connor, J.; Atlas, L. E.; and Martin, D. R. 1992. Recurrent
networks and NARMA modeling. In Advances in Neural
Information Processing Systems 4. 301–308.
Dasgupta, S.; Yoshizumi, T.; and Osogami, T. 2016. Regu-
larized dynamic boltzmann machine with delay pruning for
unsupervised learning of temporal sequences. In Proceed-
ings of the 23rd International Conference on Pattern Recog-
nition (ICPR).
Gers, A. F.; Schmidhuber, J.; and Cummins, F. 2000. Learn-
ing to forget: Continual prediction with lstm. Neural com-
putation 12(10):2451–2471.
Hebb, D. O. 1949. The organization of behavior: A neu-
ropsychological approach. Wiley.
Hinton, G. E., and Brown, A. D. 1999. Spiking Boltzmann
machines. In Advances in Neural Information Processing
Systems 12. 122128.
Hinton, G. E., and Salakhutdinov, R. 2006. Reducing
the dimensionality of data with neural networks. Science
313:504507.
Hinton, G. E., and Sejnowski, T. J. 1983. Optimal perceptual
inference. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition, 448–453.
Hipel, W. K., and McLeod, A. I. 1994. Time series mod-
elling of water resources and environmental systems, vol-
ume 45. Elsevier.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.

Jaeger, H., and Haass, H. 2004. Harnessing nonlinearity:
Predicting chaotic systems and saving energy in wireless
communication. science 304(5667):78–80.
Kingma, D. P., and Ba, J. 2015. Adam: A method
for stochastic optimization. In Proceedings of the Inter-
national Conference on Learning Representations (ICLR),
arXiv:1412.6980.
Lütkepohl, H. 2005. New introduction to multiple time se-
ries analysis. Springer Science & Business Media.
Marks, T., and Movellan, J. 2001. Diffusion networks, prod-
ucts of experts, and factor analysis. In Proceedings of the
Third International Conference on Independent Component
Analysis and Blind Source Separation.
Mittelman, R.; Kuipers, B.; Savarese, S.; and Lee, H. 2014.
Structured recurrent temporal restricted Boltzmann ma-
chines. In Proc. 31st Annual International Conference on
Machine Learning (ICML 2014), 16471655.
Osogami, T., and Otsuka, M. 2015a. Learning dynamic
Boltzmann machines with spike-timing dependent plasticity.
Technical Report RT0967, IBM Research.
Osogami, T., and Otsuka, M. 2015b. Seven neurons mem-
orizing sequences of alphabetical images via spike-timing
dependent plasticity. Scientific Reports 5:14149.
Sutskever, I., and Hinton, G. E. 2007. Learning multilevel
distributed representations for high-dimensional sequences.
In Proceedings of the Eleventh International Conference
on Artificial Intelligence and Statistics (AISTATS-07), vol-
ume 2, 548555.
Sutskever, I.; Hinton, G. E.; and Taylor, G. W. 2009.
The recurrent temporal restricted Boltzmann machine. In
Advances in Neural Information Processing Systems 21.
16011608.
Taylor, G. W., and Hinton, G. E. 2009. Factored conditional
restricted Boltzmann machines for modeling motion style.
In Proc. 26th Annual International Conference on Machine
Learning (ICML 2009), 10251032.
Tieleman, T., and Hinton, G. 2012. Lecture 6.5-rmsprop:
Divide the gradient by a running average of its recent magni-
tude. COURSERA: Neural Networks for Machine Learning
4(2).
Welling, M.; Rosen-Zvi, M.; and Hinton, G. E. 2004. Expo-
nential family harmoniums with an application to informa-
tion retrieval. In Advances in Neural Information Processing
Systems 17. 1481–1488.
Zhang, G.; Patuwo, B. E.; and Hu, M. Y. 1998. Forecasting
with artificial neural networks: The state of the art. Interna-
tional Journal of Forecasting 14(1):3562.

Supplementary Data

Sakyasingha Dasgupta and Takayuki Osogami
IBM Research-Tokyo

Supplementary information
Here we provide further details on the RNN-G-DyBM, G-
DyBM models, settings for the LSTM model and additional
results for the synthetic and real-data experiments shown in
the main paper.

Algorithmic description for learning with
RNN-G-DyBM

Algorithm 1 Online learning with RNN-G-DybM
Require: All the weight and bias parameters of G-DyBM

are initialized to zero. The RNN weights, W
rnn

initial-
ized randomly from N (0,1), W

in

initialized randomly
from N (0,0.1). FIFO queue is initialized with d � 1
zero vectors. K eligibility traces {a [�1]

k

}K

k=1 are initial-
ized with zero vectors

1: procedure RNN-G-DYBM–LEARN
2: for t = 0, 1, 2, ... do
3: Compute µ [t] using (8) & (9)
4: Predict the pattern at time t using µ [t]

5: Observe the current time series pattern at x[t]
6: Update the parameters with (14) – (18)
7: Update FIFO queues and eligibility traces by (7)
8: Update RNN state vector with (10)
9: Evaluate prediction error

10: end for
11: end procedure

LSTM implementation
In order to do the baseline experiments using the LSTM
network, we implemented it using the standard Keras1:
deep learning library for Theano and TensorFlow. In all
experiments for online time series prediction in order to
match the settings used with the RNN-G-DyBM and VAR
models, the following main settings were used:

model = sequential()
optimizer = rmsprop
learning rate = 0.001

1Keras deep learning library: www.keras.io/

𝑡0

𝑥𝑖𝑡 𝑥𝑗𝑡𝑥𝑖𝑡−2𝑥𝑖𝑡−1 𝑥𝑖𝑡−3

Figure 1: Gaussian DyBM element: A neuron i is con-
nected to a neuron j via a first-in-first-out queue of length
d

i, j � 1, and the synapse stores eligibility traces a
i, j,k for

k = 1, . . . ,K.

maximum number of epochs = 20
batch size = 1
loss function = mean squared error
No shuffle of training data in order to prevent shuffling of
the time series observations

Interpreting G-DyBM as a Simple RNN without
hidden units
In the absence of the RNN layer introduced in RNN-G-
DyBM model, the G-DyBM model can also be interpreted as
a recurrent neural network, however without any nonlinear
hidden units. Specifically, the limit of the sequence of Gaus-
sian BMs as T ! • (Figure 1(a) main paper) can be seen as
a RNN whose element is illustrated in Figure 1. Here, a cir-
cle represents a neuron, which is connected to other neurons
via first-in-first-out (FIFO) queues.

Neuron i generates a spike, x

[t]
i

, at time t according to the
probability density function in (2)-(main paper) with T = •,
where µ [t]

i

is given by (5)-(main paper). The spike generated
at a pre-synaptic neuron i travels along a FIFO queue to-
wards a post-synaptic neuron j and reaches a synapse after
the delay of d

i, j, which is 5 in the example shown in Fig-
ure 1.

At time t, the synapse that connects i to j receives
x

[t�d

i, j+1]
i

and updates the eligibility traces, a [t]
i, j,k for k =

1, . . . ,K, according to (7)-(main paper), using only the in-
formation that is locally available at the synapse. This in
turn implies that the probability density function of a spike

at neuron j can be computed only with the information lo-
cally available around the neuron (specifically, values stored
in the synapses and FIFO queues that are connected to that
neuron).

In the G-DyBM, the probability distribution of the next
values, x[t], depends linearly on the values of the eligibility
traces and the FIFO queues, which captures the information
about the previous values, x[�•,t�1].

Additional results: Noisey sine wave
Figure 1 shows additional results of the experiments shown
in the main paper with the noisy sine prediction task. We
now vary the conduction delay between 3, 21 and 35.

Additional results: 30th order NARMA
Figure 2 shows additional results of the experiments shown
in the main paper with the 30th order NARMA prediction
task. We now vary the conduction delay between 3, 21 and
35.

Additional results: Retail-price financial time
series prediction
In Figure 3, we show additional plots of the average test and
training root mean squared error plots comparing RNN-G-
DyBM and VAR for varying decays on the weekly gasoline
and diesel retail price prediction task. Here we show the re-
sults for longer delay lengths d = 3 (Figure 3(a)) and d = 4
(Figure 3(b)).

Additional results: Monthly sunspot prediction
In Figure 4 we plot the predicted training and test time series
compared against the ground truth curves, for each model
(LSTM, VAR and RNN-G-DyBM). For RNN-G-DBM and
VAR models we select the delay value that gave the best
performance, as mentioned in Table 1. of the main paper.

(a) noisy sine, d = 3 (b) noisy sine, d = 21 (c) noisy sine, d = 35

Figure 2: Mean squared error of prediction for the synthetic noisy sine wave prediction task with longer delay lengths. For each
step t, the mean squared error is averaged over 100 independent runs.

(a) noisy sine, d = 3 (b) noisy sine, d = 21 (c) noisy sine, d = 35

Figure 3: Mean squared error of prediction for the synthetic 30th order NARMA prediction task with longer delay lengths. For
each step t, the mean squared error is averaged over 100 independent runs.

(a) d = 3 (b) d = 4

Figure 4: Average root mean squared error after 20 epochs for one-week ahead prediction plotted for varying decay rates (l),
on the real dataset of weekly retail prices for gasoline and diesel in U.S.A.

(a) Linear vector autoregressive model

(b) RNN-Gaussian DyBM

(c) LSTM

Figure 5: Predicted training time series and test time series vs the ground truth data for each model.

