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Abstract—This paper addresses a problem in which we learn a
regression model from sets of training data. Each of the sets has
an only single label, and only one of the training data in the set
reflects the label. This is particularly the case when the label is
attached to a group of data, such as time-series data. The label is
not attached to the point of the sequence but rather attached to
particular time window of the sequence. As such, a small part of
the time window likely reflects the label, whereas the other larger
part of the time window likely does not reflect it. We design an
algorithm for estimating which of the training data in each of the
sets corresponds to the label, as well as for training the regression
model on the basis of Bayesian modeling and posterior inference
with variational Bayes. Our experimental results show that our
approach perform better than baseline methods on an artificial
dataset and on a real-world dataset.

I. INTRODUCTION

Supervised learning is a fundamental task in pattern recog-
nition and machine learning [1], [2]. A focus of such a task is
in learning a model representing the relationship between data
and a corresponding label, wherein the learned model can be
used for assigning labels to new unlabeled data. The task is
performed by using labeled training data that consists of the
pairs of data and labels.

The quantity and quality of labeled training data has a
huge influence on the quality of the learned model. Recently,
the cost of preparing a huge amount of labeled training data
has come down thanks to growth in crowdsourcing services,
social networking services, and sensor networks [3]. We can
learn a model by using the huge amount of the data labeled
in these ways. However, the training data acquired by these
means may often contain wrong labels and be likely a mixed
bag. When the quality of the training data is expected to
be low, we would traditionally use a robust method such as
one based on a heavy-tailed distribution [4]–[7]. Also, when
we use the crowdsourcing for performing the labeling, we
should use one of many approaches which can handle the
label quality in such situation [8]–[10]. Most of the existing
methods comprising these approaches explicitly or implicitly
rely on the assumption that the proportion of correct labels in
the training data is higher than that of wrong labels. Using
weighting techniques for assessing the noise strength, ability
of crowd workers, and instance difficulty, they learn a model
by majority rule of the labels.
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Fig. 1. Data 1, 2, and 3 are quite different time sequences but they are attached
similar high irregularity label because of the existence of parts having high
irregularity. On the other hand, data 4 is similar to data 2 and 3 in most part
of the window, but is attached low irregularity label. Note that the irregularity
is defined in the interval [0, 1].

In particular, in the case of supervised learning on time-
sequential data, it is possible that the proportion of the correct
labels is lower than that of the wrong labels. Here, a label
is not attached to a point of the sequence but rather attached
to a time window of the sequence. In this case, only a small
part of the data in this window likely reflects the label, and
the remaining part does not reflect it, as shown in Figure 1. In
this case, since the proportion of correct labels may be lower
than that of the wrong ones, we can not use the majority rule
in the robust methods. Also, since the feature vector from
the whole window may not reflect the label, other existing
methods cannot use such data to learn the model. They require
the part of the sequence reflecting the label to be selected from
the sequence.

In this paper, we focus on a regression problem using such
mixed bag data. We formulate a problem in which we learn the
regression model from sets of training data. Each of the sets
has an only single label and only one of the training data in the
set reflects the label. We propose a model to select valuable
data from each of the sets for learning the desired regression
model. Our model has hidden variables representing which of
the training data in the set corresponds to the label. Based on
fully Bayesian framework, we can simultaneously estimate the
hidden variables and parameters of the regression model.

This paper is organized as follows. We formulate the task in
Section II and propose the model in Section III. In Section IV,
we describe a variational Bayes approach for learning the
model. In Section V, we evaluate our method using artificial
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Fig. 2. Our model selects useful parts for learning the model.

and real-world datasets. In Section VI, we discuss the work
related to this paper. We conclude in Section VII.

II. REGRESSION PROBLEM FROM SETS OF TRAINING DATA

Suppose we are given N sets of training samples,
{X(n)}Nn=1, and the n-th set X(n) has K training samples
as X(n) ≡ {x(n)

1 ,x
(n)
2 , . . . ,x

(n)
K }, where x(n)

k ∈ RD is a D-
dimensional feature vector for the k-th sample in the n-
th set. A single label y(n) ∈ R is attached to the n-th
set. Then the N sets of the labels can be represented as
y ≡ {y(1), y(2), . . . , y(N)}. One of the K training samples in
the n-th set corresponds to the label y(n), but we do not know
which of them it is.

Our goal is to learn the relationship between the feature
vector x and the label y by using the given data {X(n)}Nn=1

and y, and we use the relationship for making the prediction.

III. BAYESIAN REGRESSION MODEL FOR SELECTING A
VALUABLE SUBSET

We design a regression model by introducing hidden vari-
ables h(n) ∈ {0, 1}K ,

∑K
k=1 h

(n)
k = 1 that represent which

of the K training samples in the n-th set corresponds to the
n-th label y(n) in the 1-of-K notation, as shown in Figure 2.
For example, if h(n) = [1, 0, 0, 0, ...], the 1-st training sample
x
(n)
1 in the n-th set corresponds to the n-th label y(n). If
h(n+1) = [0, 0, 1, 0, ...], the 3-rd training sample x(n+1)

3 in the
n+1-th set corresponds to the n+1-th label y(n+1). The N
set of hidden variables is represented as H ≡ {h(n)}Nn=1

Although we use the 1-of-K notation for h(n), our learning
procedure estimates h(n) probabilistically. Thus, we can rep-
resent a situation in which multiple samples in the n-th set
correspond to the n-th label y(n) with specific weights, such
as [0.3, 0.1, 0.6, 0, ...].

Next, we define the regression model for X and y when
hk = 1 as

p(y|X, hk = 1,w, β) ≡ N (y|w>xk, β−1), (1)

where N (x|•, β−1) denotes a Gaussian distribution with mean
• and precision β (see the Appendix-B for the explicit defini-
tion). The parameters w ≡ [w1, w2, . . . , wD] ∈ RD and β > 0
are model parameters to be learned. In particular, w represents
the regression coefficients, and the d-th element in w is that
for the d-th feature in x.

Since we do not know which of the K training samples
in X corresponds to the label y, an arbitrary element in h
can become one. Thus, our model has K mixture components
such that

p(y|X,h,w, β) ≡
K∏
k=1

N
(
y
∣∣w>xk, β−1)hk (2)

=
exp

(
− β

2

∑K
k=1 hk(y −w>xk)2

)
(2πβ−1)

1
2

.

Through the estimation of h in this model for the n-th set,
we can select valuable training samples from the n-th set for
learning the regression model.

Note that we can straightforwardly extend the model in
Eq. (2) so that it can handle a non-linear relationship between
x and y by using the basis function or kernel function, φ(xk),
as follows:

p(y|X,h,w, β) ≡
K∏
k=1

N
(
y
∣∣w>φ(xk), β−1

)hk . (3)

For simplicity, we will continue to use the expression in Eq. (2)
hereafter.

We can also extend our model so that it can be applied to
classification tasks with a specific link function and distribu-
tion. Similarly, we may use other noise models, such as the
t-distribution. Such investigations will be our future work.

IV. LEARNING ALGORITHM

Here, we design a learning algorithm for simultaneously
estimating the hidden variables H for the N sets and the
parameters w and β of the proposed model from the training
data, {X(n)}Nn=1 and y. In the probabilistic formulation, the
goal is to find the posterior distributions p(H|{X(n)}Nn=1,y),
p(w|{X(n)}Nn=1,y), and p(β|{X(n)}Nn=1,y), which represent
the probability distributions forH ,w, and β given the training
data.

A. Joint Distribution

For deriving the posterior distributions for H , w, and β,
we first write down the joint distribution or the complete
likelihood with our model in Eq.(2) and all of the random
variables as

p(y,H,w, β|{X(n)}Nn=1) (4)

≡
N∏
n=1

p(y(n)|X(n),h(n),w, β)p(h(n))p(w)p(β),

where, since we have no prior knowledge on the model
parameters, we just introduce conjugate priors which are
chosen based on the forms of our model: p(h) is a categorical
distribution, p(w) is a Gaussian distribution, and p(β) is
a gamma distribution; these priors are set to be as non-
informative as possible and to have a quite flat distribution.
The explicit definitions are given in the Appendix-A.

All marginal and conditional distributions including
the posteriors p(H|{X(n)}Nn=1,y), p(w|{X(n)}Nn=1,y) and



TABLE I
ESTIMATED PARAMETERS FOR EACH CASE OF K = {2, 5, 10} WITH

NORMAL NOISE (NOISE PRECISION β = 10).

value of each element in w β

true 1.5 −2 0.5 0 0 0 10

estimated (K = 2) 1.5 −2.0 0.50 0.0 0.0 0.0 10
estimated (K = 5) 1.5 −2.0 0.50 0.0 0.0 0.0 10

estimated (K = 10) 1.5 −2.0 0.51 0.0 0.0 0.0 10

p(β|{X(n)}Nn=1,y) can be derived in terms of this joint
distribution.

B. Variational Bayes Algorithm

Here, it is not possible to obtain an exact analytical solution
for the posteriors. Instead, we will derive an approximate solu-
tion by using the variational Bayes (VB) method [11]. The VB
approach approximately finds the posterior distribution over
the set of unobserved variables, p(H,w, β|{X(n)}Nn=1,y), in
a factorized form:

p(H,w, β|{X(n)}Nn=1,y) ' q(H,w, β) (5)
≡ q(H)q(w)q(β).

We identify the optimal approximate distribution that mini-
mizes the Kullback-Leibler (KL) divergence [12] between the
approximate distribution q(H,w, β) and the true posterior dis-
tribution p(H,w, β|{X(n)}Nn=1,y) as the best approximation
of the true distribution. In a popular VB approach [13], we
solve the following iterative updating equations:

q(H) ∝ exp
[ 〈

ln p(y,H,w, β|{X(n)}Nn=1)
〉
w,β

]
, (6)

q(w) ∝ exp
[ 〈

ln p(y,H,w, β|{X(n)}Nn=1)
〉
H,β

]
, (7)

and (8)

q(β) ∝ exp
[ 〈

ln p(y,H,w, β|{X(n)}Nn=1)
〉
H,w

]
,

where 〈·〉∗ represents the expectation with regard to the
distribution q(∗) of the random variables ∗. Thanks to the
use of the conjugate prior distributions, we can compute the
above expectations analytically as

q(H) =

N∏
n=1

Categorical
(
h(n)
∣∣ξh(n)

)
, (9)

q(w) = N
(
w
∣∣µw,Σw), and (10)

q(β) = Gamma
(
β
∣∣aβ , bβ), (11)

where Categorical is the categorical distribution and Gamma
is the gamma distribution (see the Appendix-B for their
definitions). The specific equations of the parameters ξh(n) ,
µw, Σw, aβ , and bβ are omitted here due to space limitations.

We can iteratively update q by simply computing only the
parameters of these distributions in Eqs. (9) to (11). For the
initial values of the parameters, we can use the same values as
those of the corresponding priors. In practice, we stop the VB
iterations when the relative differences between the current

TABLE II
ESTIMATED PARAMETERS FOR EACH CASE OF K = {2, 5, 10} WITH HIGH

NOISE (NOISE PRECISION β = 1).

value of each element in w β

true 1.5 −2 0.5 0 0 0 1

estimated (K = 2) 1.6 −2.1 0.53 0.0 0.0 0.0 1.0
estimated (K = 5) 1.7 −2.3 0.60 0.0 0.0 0.0 0.94

estimated (K = 10) 2.7 −3.6 1.2 0.0 0.0 0.0 0.33

values of the variables, zc, and the previous values of the
variables, zp, are sufficiently low:

‖zc − zp‖22
‖zp‖22

< 10−5. (12)

After the above stopping condition is satisfied, we
obtain the final outcome q(H), q(w) and q(β) di-
rectly, which corresponds to an approximation of the
learned posteriors, p(H|{X(n)}Nn=1,y), p(w|{X(n)}Nn=1,y)
and p(β|{X(n)}Nn=1,y), since the distribution of H , w, and
β has been factorized as shown in Eq. (5).

Using the learned µw, we can predict the label for the new
data as follows:

y ≡ µ>wx. (13)

Note that we can directly estimate the predictive posterior
distribution p(y|X, {X(n)}Nn=1,y) by using the VB method.
However, since the predictive posterior distribution requires
VB iterations for each new data, it is quite costly to compute.
Instead, we use Eq. (13) as an approximation of the predictive
posterior mean of y that can be computed with a much lower
computational cost. This approximation corresponds to the
predictive posterior mean of y when we assume that q(w)
is the true posterior of w and β is fixed by its mean value
over q(β), aβbβ .

C. Extension for Sparse Solution of Coefficients

For pruning irrelevant features in the feature vector x,
we can use the automatic relevance determination (ARD)
prior [14]–[16] as the prior of the coefficients w:

p(w|α) ≡
D∏
d=1

N (wd|0, αd). (14)

Similarly to [17], since this is also the conjugate prior distri-
bution for w, we can straightforwardly apply the above result
for VB in Eq. (10) to the model in which we use the ARD
prior for w. The parameter α can be also estimated in the
VB framework. Using the ARD prior, we can get a sparse
solution for w: many of their estimated coefficients are zero.
In the experiments described in the next section, we used an
implementation with the ARD prior.

V. EXPERIMENTAL RESULTS

We assessed the effectiveness of our approach in numerical
experiments. First, we artificially generated datasets to study



TABLE III
ESTIMATION ACCURACY OF HIDDEN VARIABLES IN EACH CASE OF

K = {2, 5, 10} AND NOISE PRECISION β = {10, 1}. CHANCE LEVEL IS
THE ACCURACY THAT WOULD BE EXPECTED BY RANDOM CHOICES.

K = 2 K = 5 K = 10

chance level 0.5 0.2 0.1

proposed (noise precision β = 10) 0.95 0.81 0.65
peoposed (noise precision β = 1) 0.84 0.55 0.22

the performance of our algorithm (Section V-A). We then
applied it to real-world time-sequential data from the UCI
machine learning repository [18] (Section V-B).

A. Experiment on Artificial Dataset

We studied the validity of our algorithm by simultaneously
estimating H , w, and β from the artificial validation dataset.
In preparing the artificial validation dataset, we randomly
generated N × K training samples, {X(n)}Nn=1, from the
standard Gaussian distribution N (x|0, I), where the number
of dimensions of x was 6 and I is the identity matrix. Then,
using {X(n)}Nn=1, we generated the corresponding N sets of
labels y from the distribution in Eq. (1), where we randomly
selected one of the K training samples in each n-th set from
a uniform distribution, a limited number of the coefficients,
w, had non-zero values, i.e., w = {1.5,−2.0, 0.5, 0, 0, 0}.
We repeatedly evaluated the proposed method for each of the
following settings: the noise precision β = {10, 1}, which
correspond normal and high noise settings, and number of
training samples in each training set K = {2, 5, 10}. In
the case of K = 10, only 10 percent of the data correctly
corresponds to labels. In general, it is quite hard to learn
regression models using such data. In this experiment, the
number of training sets was N = 10000.

Tables I and II compares the estimated w and β with the
true ones. Also, Table III shows the estimation accuracy of
h, which is defined as the proportion of indexes in which
the maximum value in the estimated h is exactly the same
as the true one selected in generating the data, where 1 is
the best and 0 is the worst. The result confirms that our
method can simultaneously estimate all of the parameters and
hidden variables well except for the most difficult setting in
which K = 10 and β = 1. Note that we can get a sparse
solution for the coefficient thanks to the ARD prior described
in Section IV-C.

Finally, Figure 3 compares our approach with common
regression methods, which are t-regression [5], [19]–[22] with
L1-regularization [23], relevance vector machine (RVM) with
a linear kernel [16], [17], and random forest [24]. Since these
baseline methods are not able to select valuable samples, in
the training of these models, they select one of the K training
samples in the n-th set from the same uniform distribution
used to generate the data. We evaluated the results with regard
to the mean absolute error (MAE) over M test samples, which
were generated from the same distribution as the training
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Fig. 3. Comparison of the proposed method and several regression methods in
terms of MAE (smaller is better) on an artificial dataset. Error bars represent
the standard error.

samples, and the number of test samples M was M = 10000.
MAE is defined as

MAE ≡ 1

M

M∑
m=1

∣∣∣y(m)
true − y

(m)
estimate

∣∣∣, (15)

where y(m)
true is the true y in the m-th test sample, and y(m)

estimate

is the estimated y for the m-th test sample. We computed the
standard error of the absolute error (the error bars in Fig. 3).
From Fig. 3, we can see that the overall performance of our
method is significantly better than those of the alternatives.
The t-regression with L1-regularization, which is the well-
known robust regression method, achieved a good result in
the case of K = 2, but it did not work in the case of K = 5
or K = 10. Our method can select the valuable samples from
each n-th set in {X(n)}Nn=1 and achieved the best performance
in all of the settings.

B. Experiment using UCI Dataset
We evaluated the proposed method in the prediction task

for indoor temperatures from temporal sequences of sensor
outputs in a house [25]. The dataset for this task was a
real-world dataset collected from the publicly available UCI
machine learning repository [18].

The dataset consisted of 4137 samples and each sample
had 24 number of attributes. Regarding the feature vector,
we used all the attributes except for non numeric attributes
and attributes always taking 0. In this problem setting, y
is the indoor temperature at a future timestamp, which is
standardized by subtracting its mean and dividing by its
standard deviation, and X is the set of K = 4 number of
training samples x which are computed from four different
time windows in an hour before the timestamp; in particular,
we use the features in the first fifteen minutes as x1, the
features in the second fifteen minutes as x2, the features in the
third fifteen minutes as x3, and the features in the last fifteen
minutes as x4. Our model prunes ones corrupted by noise
and outliers and selects valuable ones in the time windows for
training the prediction model.

Table IV compares our approach with RVM [16], [17] with
a linear kernel. Since the baseline method does not have the



TABLE IV
COMPARISON OF THE PROPOSED METHOD AND BASELINE METHOD IN

TERMS OF MAE (SMALLER IS BETTER) ON THE UCI DATASET.

method MAE (smaller is better)

RVM 0.36± 0.0058
peoposed 0.32± 0.0055

ability to select valuable samples, in the training of the model,
it selects one of the K training samples in the n-th set from the
uniform distribution. In prediction, we always use the features
in the last fifteen minutes, x4, for both of our method and the
baseline method. We evaluated the results with regard to the
mean absolute error (MAE) in 5-fold cross validation using the
dataset and also computed the standard error of the absolute
error. From Table IV, we can see that the MAE of our method
is 10% better than that of the baseline method.

Finally, Table V shows a typical examples of the estimation
results of h that represent which of the K training samples
in the n-th set corresponds to the n-th label. We can see
that the estimation results of h are significantly different
from each other. It suggests that the ability to select valuable
training samples in each n-th set is important for the prediction
accuracy even in real-world case.

VI. RELATED WORK

There have been prior studies on handling the uncertainty
of labels. The majority of the prior work has been on robust
estimations, such as an estimation based on heavy-tailed
distributions [4]–[7]. The t-regression, which is based on the
student’s t-distribution, is one of the most common robust
regression methods [5], [19]–[22]. The L1-based estimator,
which is related to median-based methods, is also commonly
used [6], [26]. Most of these methods weight each of the
training data based on its noise level and prune the data to
which a lot of noise was added during the learning of the
regression model. The literature on crowdsourcing has studies
on explicitly handling the uncertainty of manual labeling [8]–
[10]. These approaches learn the regression and classification
models robustly by improving the quality of labels, where they
obtain multiple labels for each training data from multiple
labelers and weight them based on the ability of labelers
and difficulties of labeling examples. It would be interesting
to apply our fully Bayesian approach to a Multiple Instance
Learning (MIL) problem [27]–[30] in future work. Since our
problem setting is different from the problem setting of the
MIL which requires to handle the mixed bag or the multiple
instance even in prediction, it will be required to modify
Eq. (13) for the MIL problem setting.

In Bayesian inference, we can evaluate the posterior of the
estimation result [2], [31], [32]. This property is quite useful in
the case of that the confidence of the estimation result, which is
computed using the posterior, is important, such as in Bayesian
optimization [33], [34], Bayesian active learning [35], [36],
Bayesian reinforcement learning [37]–[40]. We use it in the
VB updates. By using the confidence of the estimation result

TABLE V
EXAMPLES OF ESTIMATION RESULTS OF HIDDEN VARIABLES h.

data index h
(n)
1 h

(n)
2 h

(n)
3 h

(n)
4

n = 118 0.0025 0.12 0.51 0.37
n = 119 0.65 0.26 0.07 0.02
n = 120 0.25 0.28 0.23 0.24
n = 121 0.12 0.25 0.22 0.41

of each of the variables at each step of VB, we can tune
the update width properly on the estimations of the variables
at each step and can get a stable final estimation result in a
situation in which there are many variables to be learned.

VII. CONCLUSION

We formulated a regression problem selecting a valuable
subset from each set of the mixed bag training data using
Bayesian modeling with hidden variables. For the proposed
model, we designed an efficient learning algorithm by using
VB. Our method does not have any parameters that require
careful tuning, thanks to its fully Bayesian modeling. Ex-
perimental results show that our approach performed better
than baseline methods on an artificial dataset and on a real-
world dataset. Our method can achieve robust regression result
even in the case of that only 10 percent of the data correctly
corresponds to labels.

In the future, we plan to apply our approach to other
learning tasks, such as classification problems.
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APPENDIX

A. Conjugate Priors for Model Parameters

For the prior distributions of H , w and β, we simply use
the conjugate priors:

p(H) ≡
N∏
n=1

Categorical
(
h(n)
∣∣ξ(0)h ), (16)

p(w) ≡ N
(
w
∣∣0,Σ(0)

w

)
, and (17)

p(β) ≡ Gamma
(
β
∣∣a(0)β , b

(0)
β

)
, (18)

where the parameters ξ(0)h , Σ
(0)
w , a(0)β , and b

(0)
β are treated

as input parameters given as part of the model. We chose
the hyperparameter values in Eqs. (16) to (18) to be as non-
informative as possible and to have a quite flat distribution:
ξ
(0)
h = 10−10 × i, a(0)β /N = b

(0)
β /N = 10−10 and Σ

(0)
w =

1010 × I , where i represents a vector of all ones.
In addition, for the model in Eq. (14), we define hyperprior

distributions for α using the conjugate priors:

p(α) ≡
D∏
d=1

Gamma
(
αd

∣∣∣a(0)α , b(0)α

)
, (19)



where the hyperparameter values in Eq. (19) are also non-
informative: a(0)α = b

(0)
α = 10−10.

B. Probability Distributions

Here, we give the definitions of the gamma, Gaussian, and
categorical distributions:

Gamma(x|a, b) ≡ ba

Γ(a)
xa−1e−bx (x > 0),

N (x|µ,Σ)

≡ |2πΣ|− 1
2 e−

1
2 (x−µ)

>Σ−1(x−µ) (x ∈ RN ), and

Categorical(x|ξ) ≡
K∏
k=1

ξxkk (xk ∈ {0, 1},
K∑
k=1

xk = 1),

where Γ denotes the gamma function, | • | denotes the
determinant of the given matrix •, and the parameters are such
that a > 0, b > 0, µ ∈ RN , Σ ∈ RN×N , 0 ≤ ξk ≤ 1, and∑K
k=1 ξk = 1. The variables in these definitions are not related

to the variables that appear in the main text.
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