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Traffic Velocity Estimation from Vehicle Count
Sequences

Takayuki Katsuki, Tetsuro Morimura and Masato Inoue

Abstract—Traffic velocity is a fundamental metric for inferring
traffic conditions. This paper proposes a new velocity estimation
approach from temporal sequences of vehicle count that does
not require tracking any vehicles or using any labeled data. It
is useful for measuring traffic velocities with low quality and
inexpensive sensors such as web cameras in general use. We
formalize the task as a density estimation problem by introducing
a new model for temporal sequences of vehicle counts wherein
the correlation between the sequences is directly related to the
traffic velocity. We also derive a sampling-based algorithm for
the density estimation. We show the effectiveness of our method
on artificial and real-world datasets.

Index Terms—Intelligent Transportation Systems, Bayes pro-
cedures, Unsupervised learning, Velocity measurement

I. INTRODUCTION

EFFICIENT control of traffic and city planning for better
traffic flow are keys to economic growth and improving

our lives. Intelligent Transportation Systems (ITS) offer such
solutions. Traffic monitoring is a fundamental part of ITS. In
this paper, we tackle an important part of traffic monitoring,
which is obtaining the traffic velocity. The traffic velocity
is a basic measure of traffic congestion and is also useful
information for identifying the travel time [1].

In order to measure the traffic velocity, two basic ap-
proaches have been proposed in the literature: (i) direct
velocity sensing and (ii) indirect velocity estimation. The
first approach attempts to sense velocity directly. Most of
the existing studies on this approach track vehicles or track
feature points in time-series of observations that correspond to
the vehicles’ movements by using techniques for determining
identical vehicles, such as the Global Positioning System
(GPS) [2], [3], video-based vehicle classification [4], [5], and
video-based feature tracking including tracking of edges and
lines characteristic of vehicles [6], [7] and optical flow [8]–
[10], as well as targeted recognition of windshields [11] and
headlights [11], [12]. Once the vehicles have been tracked in
the temporal sequences, we can obtain their moving distances
and can compute the traffic velocity by dividing the distance
by the elapsed time. Moreover, there are variants of this
approach based on matching between consecutive frames, e.g.,
tracking pixels in consecutive observation images using cross-
correlation of an image feature [13], [14] or using matching
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Fig. 1: At low sampling rates, only a few vehicles appear in
consecutive observations [40].

of intensity profiles [15]. These approaches are robust against
variations in the expected conditions of a roadway scene and
are computationally relatively inexpensive. In most cases, such
video-based techniques require camera calibrations, as they
need to find the correct coordinate transform for obtaining the
traffic velocity. An algorithm to detect scene changes was pro-
posed in [16]; this algorithm can determine whether a camera
has to be re-calibrated for video-based velocity estimation.
On the other hand, some algorithms can use un-calibrated
cameras for the velocity estimation. They use parameters
derived from distributions of known vehicle lengths [17], [18],
use an estimation of the camera’s position relative to the
roadway [19], or use a spatio-temporal map [20].

The second approach (indirect velocity estimation) uses
traffic information other than the traffic velocity itself for
estimating the traffic velocity. The loop detector can obtain
the traffic density, the traffic flow, and in some cases, the re-
lationship between this information on neighboring detectors,
and then we can estimate the velocity from them by using
the models in [21]–[26]. If we use only the traffic density
as the observation, we estimates the traffic velocity from
the traffic density with a regression model. The regression
model is determined by solving a regression problem between
the traffic density and velocity on a labeled training dataset.
Many regression models have been proposed, such as the
linear model [27], [28], log-linear model [29], exponential
model [30]–[32], bell-shaped curve model [33], and stochastic
model [34], [35]. Extracting the traffic density from data is
easier than sensing the traffic velocity directly. We can use
many raw features for representing the traffic density, such as,
for image features, the local variances of pixels [36] and the
total area that may correspond to moving objects [37]–[39],
and they do not require high-quality observations with high
sampling rates. Here, the task of velocity regression from the
traffic density is a one-shot estimation for a single observation
and does not use sequences of consecutive observations.
Accordingly, this approach works for any sampling rate.

However, the requirements of these approaches are often
costly. This is particularly the case in cities in developing
countries [37], [41]–[44]. The first approach requires that
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many vehicles be identified in consecutive observations. Their
feasibilities are sensitive to the quality and the sampling rate
of the sensor. When using sensors with low sampling rates,
such as web cameras, instead of expensive infrastructures such
as the special-purpose close-view cameras used in the first
approach, the number of vehicles that appear in consecutive
observations is small, as shown in Fig. 1 [40]. The velocity
regression approach from the traffic density enables us to use
a variety of sensors whose sampling rates are far too slow
for the direct sensing approach, including inexpensive and
non-intrusive ones such as web cameras or mobile phones
equipped with video and audio sensors [37], [41], [42], but
we need to translate the obtained traffic density into a traffic
velocity with a regression model and labeled training dataset.
The dataset involves labeling a lot of training data, which is
time-consuming and costly. We need a lightweight approach
for traffic monitoring.

This paper proposes a new approach in which the traffic
velocity is estimated only from observed temporal-sequences
of the numbers of vehicles on a certain road area without
tracking any vehicles or using any labeled training data. We
use the fact that the some proportion of vehicles in two or
more consecutive observations will be the same vehicles. The
proportion will increase as the traffic velocity v decreases,
and it directly represents the correlation between the numbers
of vehicles in the consecutive observations. On the basis of
the above fact, we first propose an observation model for
observations conditioned on the traffic velocity v. Then, we
estimate the traffic velocity through the density estimation
of the model given the observations. This estimation task is
an unsupervised one without using any labeled training data.
Since our method does not need to track any vehicles, it
can work with low quality and inexpensive sensors with low
sampling rates, such as one observation every several seconds.

We formulate the velocity estimation task in Section II
of this paper and propose the velocity estimation model in
Section III. In Section IV, we describe a sampling-based
approach for estimating the traffic velocity v. In Section V, we
evaluate the proposed method using artificial and real-world
datasets. We discuss the method in Section VI and conclude
in Section VII.

II. TASK AND GOAL

Let us define the task. We repeatedly observe the numbers
of vehicles x ≡ [x1, x2, ..., xN ]⊤ ∈ NN on a certain road area
at time t ≡ [t1, t2, ..., tN ]⊤ ∈ RN (t1 < t2 < ... < tN ), as
shown in Fig. 2, where R and N respectively denote the real
number field and the set of natural numbers including zero
and the superscript ⊤ denotes the transpose. All vectors in
this paper are column vectors. Note that the time intervals of
t are generally different from each other. For the length of
the road area in which x is observed, L > 0 is known, and
the road area has no intersections or branches. We refer to the
road area as the observation area.

Our goal is to estimate the average traffic velocity v ≥ 0
throughout the observations only from the available data x
without tracking vehicles or using any labeled training data.
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Fig. 2: Outline of the traffic velocity estimation problem.

In the probabilistic formulation, v is found through the
posterior distribution p(v|x), which represents the probability
distribution of the traffic velocity v given the numbers of
vehicles x. From the Bayesian perspective, we find the optimal
estimator for the traffic velocity, v∗, to be the posterior mean,

v∗ ≡
∫

vp(v|x)dv. (1)

We will discuss the validity of the estimator v∗ in Section VI-
A.

III. MODEL

The estimator of the velocity v is found through the pos-
terior distribution p(v|x) from Eq. (1). The posterior p(v|x)
for v can be decomposed into an observation model for the
number of vehicles p(x|v) that is conditioned on the average
traffic velocity v and the prior model for the velocity p(v):

p(v|x) = p(x|v)p(v)∫
p(x|v)p(v)dv

. (2)

We define the observation model p(x|v) conditioned on v and
the prior model p(v) in the following subsections.

A. Observation Model for Temporal-sequences of Numbers of
Vehicles Conditioned on Traffic Velocity

We derive the observation model p(x|v) for x conditioned
on the average traffic velocity v by considering the proportion
of the number of vehicles that are in consecutive observations.
If the time interval between tn and tn+1 is not too large and
the length of the observation area L is not too small, some
of the vehicles will be the same in consecutive observations.
In particular, the proportion of identical vehicles is supposed
to become large when the average traffic velocity v is small.
Conversely, it becomes small when the velocity is large. Also,
the strength of the correlation between the consecutive obser-
vations in x will increase with this proportion. We use these
relationships between the proportion of identical vehicles, the
average traffic velocity v, and the correlation in x to derive
the observation model.

First, we place two assumptions on the observed traffic
during the period of N observations, tN−t1: (i) all the vehicles
have a common constant velocity, v, toward the observation
area, and (ii) the positions of the vehicles at time zero are
independent and identically distributed. These assumptions
might be strong but can be applicable for many cases when
the period tN−t1 is not so long. We will examine and discuss
these assumptions in Sections V and VI.
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Fig. 3: Positions of observed vehicles at time zero and tn.
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Fig. 4: Positions of observed vehicles at time zero, tn and
tn+1. In this case, there are overlapping area between the con-
secutive n-th and n+1-th observations in [−vtn−L,−vtn+1).

Here, we define the positions of the vehicles as the distance
from the front of the observation area, which is regarded as
the zero position (see Fig. 3). The observation area is defined
as [−L, 0), as shown in the hatched area in Fig. 3, where [•]
denotes a closed interval and (•) denotes an open interval.
If a vehicle is located at the position −y at time zero, the
assumption (i) indicates that the vehicle is observed during
time [(y − L)/v, y/v). Accordingly, the vehicles that will be
observed at time tn in the n-th observation should be located
in the area [−vtn − L,−vtn) at time zero, as shown in the
check-pattern area in Fig. 3.

Since the area in which the vehicles in the n+1-th ob-
servation can exist at time zero is [−vtn+1 − L,−vtn+1),
when −vtn − L < −vtn+1, the areas for the consecutive n-
th and n+1-th observations partially overlap each other. This
overlapping area can be defined as

[max(−vtn+1,−vtn − L),min(−vtn+1,−vtn − L)), (3)

where vehicles that are in this area at time zero are observed
at both times in the n-th and n+1-th observations and are
not observed individually in each of the n-th and n+ 1-
th observations. Note that if there is no overlapping area
between the consecutive n-th and n+1-th observations, Eq. (3)
becomes an empty set. We denote the overlapping area as
[−vtn−L,−vtn+1) in Fig. 4. From Eq. (3), the length of the
overlapping area can be written by v as

|[max(−vtn+1,−vtn − L),min(−vtn+1,−vtn − L))|

= max
(
0,min(−vtn+1,−vtn − L)

−max(−vtn+1,−vtn − L)
)
, (4)

where we make the length to be zero for when Eq. (3) is the
empty set.

While the above overlapping area and its length is defined
between the consecutive n-th and n+1-th observations, it
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Fig. 5: Example of Rj,ks and Lj,k(v)s in the case of N = 5.
For example, L3,5(v) = −vt2 − L− (−vt3 − L). The check-
pattern areas represent the areas at which the vehicles that will
be observed at time tn in n-th observation should be located
at time zero.

can be naturally generalized to the overlapping area between
the j-th to k-th consecutive observations in x, Rj,k (j, k ∈
1, 2, ..., N, and j ≤ k). The vehicles, which are in this area
at time zero, are in all of the j-th to k-th observations and are
not observed in the other observations in x. This area Rj,k

can be defined as

Rj,k ≡
N∩

n=1

[−vtn − L,−vtn) (if j ≤ n ≤ k)

[−vtn − L,−vtn) (elsewhere)

, (5)

where
∩N

n=1 denotes intersection over n = 1 to n = N and •
denotes exclusion of •. Figure 5 shows an example of Rj,ks
in the case of N = 5. In Eq. (5), since [−vtn − L,−vtn)
represents the check-pattern area in Fig. 5 at each time, Rj,k

can be computed as the intersection over the corresponding
check-pattern areas:

Rj,k = [max(−vtk+1,−vtj − L),min(−vtk,−vtj−1 − L)).
(6)

where t0 ≡ −∞, tN+1 ≡ ∞. Note that, from the definition in
Eqs. (5) and (6), some of the intervals Rj,k may also be the
empty set, such as R1,5, R2,2, R2,3, R3,3, R3,4, and R4,4 in
Fig. 5. The area Rn,n represents the area in which the vehicles
observed only in the n-th observation exist at time zero. When
N = 2, Eq. (3) and Eq. (6) are identical. Additionally, all
the ranges Rj,k are mutually exclusive. The length of the
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Fig. 6: Example in which c2,4 = 1 and the other components
in c are 0 in the case of N = 5.

overlapping area can be written by v as

Lj,k(v) ≡ |Rj,k|

= max
(
0,min(−vtk,−vtj−1 − L)

−max(−vtk+1,−vtj − L)
)
, (7)

where we also make the length Lj,k(v) to be zero for when
Eq. (6) is the empty set.

Then, we introduce a random variable cj,k (j, k ∈
1, 2, ..., N, and j ≤ k), which denotes the number of vehicles
in the mutually exclusive area Rj,k at time zero and is a de-
composition of x. Figure 6 shows an example where c2,4 = 1
and the other components in c are 0 in the case of N = 5. The
observation variables x can be determined uniquely in terms
of c ≡ [c1,1, ..., c1,N , c2,2, ..., c2,N , ..., cN,N ]⊤:

xn =
∑

1≤j≤n≤k≤N

cj,k. (8)

For simplicity, we introduce an N × 1
2N(N + 1) matrix D

that corresponds to the above summation and satisfies

x = Dc. (9)

Since the position of a vehicle at time zero is random
from assumption (ii), the probability, which is that the vehicle
appears in the area Rj,k at time zero when the velocity is
v, is given by the length of the area Lj,k(v) divided by
the total length of the roads Ltotal in the possible road area,
i.e., Lj,k(v)/Ltotal. Because all the areas Rj,k are mutually
exclusive, the event that this vehicle does not appear among
N observations is a complementary event, and its probability
is given by 1 −

∑
1≤j≤k≤N Lj,k(v)/Ltotal. Thus, the random

vector c obeys a multinomial distribution using these proba-
bilities and the total number of vehicles Mtotal in the possible

c5,5	 c4,4	 c3,3	 c2,2	 c1,1	
c1,2	c2,3	c3,4	c4,5	

c1,3	c2,4	c3,5	
c1,4	c2,5	

c1,5	

(a) high velocity

c5,5	 c4,4	 c3,3	 c2,2	 c1,1	
c1,2	c2,3	c3,4	c4,5	

c1,3	c2,4	c3,5	
c1,4	c2,5	

c1,5	

(b) medium velocity

c5,5	 c4,4	 c3,3	 c2,2	 c1,1	
c1,2	c2,3	c3,4	c4,5	

c1,3	c2,4	c3,5	
c1,4	c2,5	

c1,5	

(c) low velocity

Fig. 7: Examples of p(c|v,Mtotal) where v is low, medium,
and high. The gray regions have non-zero probability.

road area:

p(c|v,Mtotal) (10)

=
Mtotal(

Mtotal −
∑

1≤j≤k≤N cj,k

)∏
1≤j≤k≤N cj,k

×

1−
∑

1≤j≤k≤N

Lj,k(v)

Ltotal

Mtotal−
∑

1≤j≤k≤N cj,k

×
∏

1≤j≤k≤N

(
Lj,k(v)

Ltotal

)cj,k

.

Figure 7 shows examples of p(c|v,Mtotal), which illustrate
typical cases of v. The cj,ks depicted as the gray regions have
a non-zero probability for each of the high, medium, and low
velocity cases. We can see that this distribution p(c|v,Mtotal)
for c dramatically changes with the velocity.

Since Ltotal and Mtotal are usually huge, we consider the
large limit of them while keeping their ratio constant, i.e.,
Mtotal/Ltotal = M/L, where M is a newly introduced param-
eter. Both Mtotal/Ltotal and M/L mean the vehicle density per
unit road length. After taking this limit, p(c) becomes

p(c|v,M) =
∏

1≤j≤k≤N

Poisson (cj,k; qj,k) , (11)

where qj,k ≡
Lj,k(v)

L
M.

Note that by taking the limit, the cj,ks become independent
from one another. The v and M are unknown parameters to
be estimated. Within our Bayesian framework, we introduce
their prior distributions in the next subsection.

Finally, through marginalization over c using Eqs. (9)
and (11), the observation model for x can be written as

p(x|v,M) ≡
∑
c

δx,Dcp(c|v,M), (12)

where δ denotes the Kronecker delta function. However, in
this complicated case, the discrete marginalization in Eq. (12)
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is computationally infeasible. As an alternative, p(x|v,M) is
approximated as a Gaussian distribution in Section IV.

B. Prior Distributions

We introduce prior distributions for v and M :

p(v,M) ≡ InverseGamma(v; av, bv) (13)
× InverseGamma(M ; aM , bM ),

where InverseGamma represents the inverse gamma distribu-
tion (see the Appendix for the explicit definition) and the
parameters av, bv, aM , and bM are treated as input parameters
given as part of the model. See the Hyperparameter subsection
in the Experimental Results section for these parameters we
actually used. The reason we chose inverse gamma distribu-
tions for v and M is that they are defined as positive variables
and play a role similar to that of the variance parameter in a
Gaussian distribution, where the inverse gamma distribution is
widely used as the conjugate prior distribution for the variance
parameter.

C. Joint Distribution

From Eqs. (12) and (13), we explicitly construct the joint
distribution of all random variables:

p(x, v,M) ≡ p(x|v,M)p(v,M). (14)

All marginal and conditional distributions including the pos-
terior p(v|x) can be derived in terms of this joint distribution.

IV. METHOD

Although the estimator, the posterior mean, in Eq. (1)
is derived from the joint distribution in Eq. (14), an exact
analytical solution is computationally infeasible. We will thus
use an approximate inference method to compute the posterior
mean.

A. Approximate Marginalization in Observation Model

Since the discrete marginalization in Eq. (12) is compu-
tationally infeasible, as stated in Section III, p(x|v,M) is
approximated as a Gaussian distribution with the same mean
and covariance ignoring cumulants higher than second-order:

p(x|v,M) ≃ Gauss(x;µ,Σ), where (15)
µ ≡ Ep(x| v,M)[x] and (16)
Σ ≡ Varp(x| v,M)[x]. (17)

µ and Σ can be exactly calculated as

µ = Ep(c| v,M)[Dc] = DEp(c| v,M)[c] = Mi, (18)

Σ = Varp(c| v,M)[Dc] = DVarp(c| v,M)[c]D
⊤

= D(diag q)D⊤, (19)

where i represents a vector of all ones, q ≡
[q1,1, ..., q1,N , q2,2, ..., q2,N , ..., qN,N ]⊤ and (diag q) denotes
a diagonal matrix whose diagonal elements are q. We will
examine this approximation in Section V-B. Note that D is
defined as the operation

∑
1≤j≤n≤k≤N for each element of

Algorithm 1 Sampling Procedure for Velocity Estimation

1: Initialize the values of v and M with their prior distribu-
tions

2: repeat
3: ξv ← U(ξv|0, p(x, v(τ−1),M (τ−1)))
4: Sample v(τ) uniformly from part of the slice Sv =

{v(τ) : ξv < p(x, v(τ),M (τ−1)))}
5: ξM ← U(ξM |0, p(x, v(τ),M (τ−1)))
6: Sample M (τ) uniformly from part of the slice SM =

{M (τ) : ξM < p(x, v(τ),M (τ)))}
7: until a stopping condition is met.
8: return v(1), v(2), ..., v(T )

an 1
2N(N + 1)-dimensional vector, as shown in Eq. (9). In

Eq. (18), each element of the vector DEp(c| v,M)[c] represents
the sum of all expectations of the corresponding cj,k, which
means

∑
1≤j≤n≤k≤N Ep(cj,k | v,M)[cj,k] and is always M .

Thus, the mean value of the model has no information on the
velocity, but the covariance matrix does. We can hence obtain
the likelihood of the traffic velocity from the covariance
matrix, which represents the correlation between elements of
x.

B. Approximate Posterior Mean Inference for Estimating the
Traffic Velocity

Our goal is to obtain the posterior mean v∗ from the above
joint distribution in Eq. (14) with the model of Eqs. (15)
and (13) given the observations x. However, although we
can compute the joint distribution p(x, v,M), we cannot
analytically compute the posterior p(v|x).

Instead, we derive a sampling-based approximation of the
posterior mean v∗ by using the Markov chain Monte Carlo
(MCMC) method. Given the joint distribution p(x, v,M) and
observations x, we can take T samples for v, {v(τ)}Tτ=1, from
the posterior p(v|x) with the MCMC method, but without
explicitly computing the posterior p(v|x). Then, we use the
empirical mean of {v(τ)}Tτ=1 as an approximation of v∗:

v∗ =

∫
vp(v|x)dv ≃ 1

T

T∑
τ=1

v(τ). (20)

C. Slice Sampling for Traffic Velocity Estimation

For sampling {v(τ)}Tτ=1 in Eq. (20), we use slice sam-
pling [45]. Since we have two different random variables v
and M , we repeatedly sample v and M in turn in the same
manner as Gibbs sampling [45]–[47] and obtain samples only
for v from p(v|x) by ignoring samples for M . For the stop-
ping condition, we simply use the number of iterations. See
the Hyperparameter subsection in the Experimental Results
section for the iteration number we actually used.

Algorithm 1 shows the sampling procedure for the velocity
estimation task. Here, ξv and ξM are auxiliary variables for
v and M , respectively, which are required in the sampling
scheme of slice sampling, • ← ◦ denotes that a sample from
a distribution ◦ is substituted into •, and U denotes a uniform
distribution (see the Appendix for the explicit definition). For
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Fig. 8: True velocity and velocity estimated using the proposed
method for the time interval ∆t = 1 (second) in the artificial
instance. Note that we have used the Tukey boxplot [48].

efficiency, we use the “stepping out procedure” in Steps 3
and 5 and use the “shrinkage procedure” in Steps 4 and 6, as
described in [45].

V. EXPERIMENTAL RESULTS

We examined the proposed approach in numerical exper-
iments. First, we generated artificial datasets to study the
performance of the approximate inference method (Section V-
B) and to examine the robustness of the proposed method in
a situation where each vehicle has a different velocity (Sec-
tion V-C). Next, to see if it could deal with actual traffic, we
applied it to the temporal-sequences of the numbers of vehicles
extracted from real-world web-camera images (Section V-D)
and to publicly available traffic datasets (Section V-E).

A. Hyperparameters for the Model

For the Bayesian inference, we set the hyperparameter
values in Eq. (13) to be as non-informative as possible and
to have a quite flat distribution:

av = aM = 10−4, bv = vlegal × 10−4, bM = µx × 10−4,

(21)

where µx ≡
1

N

N∑
n=1

xn.

For the prior means of v and M , we respectively used
the legal speed limit vlegal on each road and the naively
computed a sample mean of x. The number of effective prior
observations of the inverse gamma distribution within the
Bayesian framework is equal to twice the value of parameter
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Fig. 9: True velocity and estimated velocity using the proposed
method for the time interval ∆t = 4 (second) in the artificial
instance. Note that we have used the Tukey boxplot [48].

a. These settings were considered sufficiently non-informative.
For fairness, we used this hyperparameter setting for all of
the following instances. Also, the number of iterations of the
slice sampling was 1000. A preliminary analysis indicated that
using more iterations, such as 100000, did not improve the
accuracy much.

B. Experiment on Artificial Dataset

In preparing the artificial validation dataset, we randomly
generated c at constant time intervals from the model in
Eq. (11) and computed the observations x as the sum of the
corresponding c. Using the model in Eq. (11) for generating
the dataset and using the approximate model in Eq. (15) for
estimating the velocity, we studied the validity of the Gaussian
approximation for the approximate model in Eq. (15) and the
performance of the approximate posterior mean inference.

Using Eq. (11), we generated x with the following set-
tings: time intervals of t, ∆t = {1, 4} (second), length
of the observation area L = 100 (m), average number of
vehicles on the road Mart = {1, 10, 100}, traffic velocity
v = {10, 20, 30, 40, 50, 60} (km/h), and number of input
observations N = 50. We set the legal speed limit to the one
in Japan, vlegal = 60 (km/h). For each of these settings, we
repeatedly evaluated the proposed method in 100 experiments,
where we used a different random seed in each experiment.
Thus, the total number of experiments was 2× 3× 6× 100 =
3600.

Figures 8 and 9 compare the true velocity with the estimated
velocity using the proposed method. We can see that the over-
all performance of our method is good. Our method performed
consistently for different values of M , even M = 1, which
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Fig. 10: Traffic simulation for validation.

is a difficult setting for this kind of Gaussian approximation
(Eq. (15)). The results show that the Gaussian approximation
and approximate MCMC inference method worked well. They
are also non-trivial because the density-velocity regression
approach cannot work in a scenario where the average number
of vehicles is independent from the traffic velocity.

C. Experiment on Simulated Traffic

Next, we evaluated the proposed method on simulated traffic
data, where the observations x were obtained from our simple
traffic simulation. We examined its robustness in a situation
where each vehicle had a different velocity.

We simulated the traffic as follows (see Fig. 10). First, we
distributed Msim vehicles at random positions on a virtual
circuit whose total length was Lsim. The parameters Msim

and Lsim were respectively equal to one-thousandth of the
total number of vehicles in Japan and the total road length
in Japan. The vehicles moved at different velocities that were
generated from a uniform distribution U(x|ṽ − 10, ṽ + 10),
where the average of the true velocities was set as ṽ =
{10, 20, 30, 40, 50, 60} (km/h). This means the vehicles had
their own velocities. We repeatedly obtained the numbers
of vehicles x from a certain road in the virtual circuit at
constant time intervals. We experimented with time intervals
of t ∆t = {1, 2, 4} (second), a length of the observation area
L = 100 (m), and N = 50 input observations. We set the
legal speed limit in this experiment to the legal speed limit in
Japan, i.e., vlegal = 60 (km/h). For each of these settings, we
evaluated the proposed method in 100 experiments, where we
used a different random seed in each experiment. Thus, the
total number of experiments was 3× 6× 100 = 1800.

Figure 11 compares the true average velocity with the
estimated velocity using the proposed method. Even when
each vehicle had a different velocity, we can see that the
proposed method estimated the average traffic velocity as well
as it did on the artificial dataset in Section V-B.

D. Experiment using Real-world Web-camera Images

We demonstrated the utility of our approach by using it to
estimate the traffic velocity from web-camera images captured
in Tokyo, Japan for the city traffic monitoring scenario [37],
[41], [49] (see Fig. 12). The specific location is at 35.651054N,
139.799986E. The image size was 640×480 pixels. The legal
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Fig. 11: True average velocity and velocity estimated using
the proposed method in the simulation instance. Note that we
have used the Tukey boxplot [48].

Fig. 12: Real-world web-camera image used in our experiment.

speed limit on this road was vlegal = 60 (km/h). The frame
rate of the web camera was about one image per second. Since
the sampling rate of the web camera was low, this was a good
application for our approach. The dataset contained images
captured for 17 minutes, and the images in the set totaled
about 1000.

For x, we simply used the temporal-sequences of the
numbers of vehicles in the images, which were extracted from
the images by using the method described in [37], [41], [49],
[50]. This method works for any frame rate, even for still
images, is robust even when image quality is poor and is
almost calibration-free because it does not recognize individual
vehicles, but rather estimates their number from the image
features. The road length L can easily be obtained because
we can estimate the size of the vehicles and the length of the
road in the images by using the methods described in [37],
[41], [49], [50]. In particular, L was computed by referring
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Fig. 13: Manually measured velocity and velocity estimated using the proposed method with different prior means. In this
figure, proposed (1) means the proposed method with the prior mean 1 (km/h) for the traffic velocity. Note that we have used
the Tukey boxplot [48].

to the typical sizes of vehicles in the real world. We used the
timestamps attached to the images as t and input N = 60
consecutive images (corresponding to about one minute) for
each estimation. We estimated the traffic velocities about
17 times. To create the validation test dataset, we manually
measured traffic velocities each minute by using a radar speed
gun at the roadside. The average traffic velocity was 41 (km/h).

Since we have only one traffic situation in this real-
world traffic scenario, in which the average traffic veloc-
ity was 41 (km/h), we checked to ensure that the hy-
perparameter setting for the traffic velocity does not ac-
cidentally become the best for estimating this velocity.
We tested the following hyperparameter settings: bv =
{1, 10, 20, 30, 40, 50, 60, 70} × 10−4 and av = 10−4 for the
traffic velocity v. This means that the prior mean bv/av
for v takes over {1, 10, 20, 30, 40, 50, 60, 70} (km/h). In our
Bayesian framework, the traffic velocity estimation is gener-
ally difficult when this prior mean is significantly different
from the true velocity.

Figure 13 compares our estimation results of each prior
mean with the manually measured velocities in the 17 minutes
of observations. We can see that our method can estimate a
reasonable velocity over the different prior mean settings of v,
except for the settings in which the prior means are 1 and 10
(km/h). In these cases (in which the prior means are 1 and 10
(km/h)), the true velocity is more than four times larger than
the prior mean. Since it is not difficult to set the prior mean
in a range that is the true velocity plus or minus 30 (km/h),
this result shows that the dependence of the hyperparameters
is small enough.

E. Experiment using NGSIM Data

Finally, we evaluated the proposed method using the pub-
licly available Next Generation Simulation (NGSIM) datasets
collected by the United States Department of Transportation
Federal Highway Administration [51]. The NGSIM datasets
consist of real-world vehicle trajectory data collected using

digital video cameras at several locations in the United States.
The proposed method only used the number of vehicles every
second in the NGSIM datasets; it did not use the original
speed information. The original speed information was used
only for evaluating the estimation accuracy of the proposed
method.

We used four vehicle trajectory datasets: Peachtree, Lanker-
shim, US-101, and I-80. Each of them was collected at
different locations. The Peachtree and Lankershim datasets
were collected on local roads, which means that vehicles
had relatively lower velocities and the legal speed limit was
vlegal = 56.3269 (km/h). The US-101 and I-80 datasets
were collected on freeways, which means that vehicles had
relatively higher velocities and the legal speed limit was
vlegal = 88.5137 (km/h).

We used the initial 100 (m) areas without intersections
or branches at each location as the observation area, which
means the length of the observation area was L = 100
(m). We used the numbers of vehicles in the trajectories on
the observation area at each time and thinned them to one
observation per second for making the observations x in our
problem setting. We input N = 60 (corresponding to about
one minute) consecutive observations for each estimation.
Since the Peachtree and Lankershim datasets contain vehicle
trajectories for about 30 minutes, the number of estimations
for each of them was about 30. Similarly, since the US-101
and I-80 datasets contain vehicle trajectories for 45 minutes,
the number of estimations for each of them was about 45.
Thus, the total number of estimations for these datasets was
about 150. We used the timestamps attached to the trajectories
as t.

We compared the estimated velocities with the true ones
for each location, as shown in Fig. 14. We can see that
the proposed method can estimate a reasonable velocity at
every location with the different true velocity. For the US-
101 dataset, the estimation results seem to have bias. We
will discuss the bias in Section VI-B. Additionally, Fig. 15
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Fig. 14: Relationship between true NGSIM velocity and velocity estimated by the proposed method. The estimate is good if
the dot is close to the identity line (red line).
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shows typical time-series of the true and estimated velocities,
together with average number of vehicles. We can see that the
proposed method can estimate a reasonable velocity regardless
of the average number of vehicles. In addition, Fig. 16 shows
the relationship between the estimation error and standard
deviation of vehicle velocity. Although we assume that all
vehicles have a common velocity, the standard deviation of
the velocity, which reflects variation of the velocities over
vehicles and time, including situations such as overtaking and
the existence of multiple lanes, did not affect the quality of
the estimation of the real-world NGSIM data, as well as, the
simulated traffic of Section V-C.

VI. DISCUSSION

We discuss the proposed approach in this section. First,
we give the validity of our velocity estimation approach
(Section VI-A). Next, we show the validation of the limitations
of the approach (Section VI-B). Finally, we discuss other
applications of the approach (Section VI-C).

A. Validity of Velocity Estimation Method from Temporal-
sequences of Vehicle Counts

From our experiments shown in Section V, without tracking
any vehicles or using any labeled training data, we con-

firmed that the proposed observation model for the temporal-
sequences of the numbers of vehicles x can properly represent
the likelihood of v given x. Also, we showed that our approxi-
mate estimation method performs consistently and stably well
on the simulation and real-world datasets.

From a theoretical perspective, we give the validity of the
estimator of the traffic velocity, v∗, which is the posterior mean
as defined in Eq. (1), even when there is no labeled training
data. First, we consider the objective error function between
the estimator v∗ and the corresponding true velocity v. Since
the velocity is a positive real number, the use of an all-or-
none type error, such as the Dirac delta or Kronecker delta
function, is nonsensical, whereas the squared L2-norm error
is a conventional way of doing so. The squared L2-norm error
is defined as

∥v∗ − v∥2. (22)

Since only the observations, x, are available for the estimator,
we explicitly express the estimator as a function, v∗(x). The
objective function to be minimized regarding the estimator is
defined as

F (v∗(x)) ≡
∫
∥v∗(x)− v∥2p(x, v)dxdv. (23)

This is because we prefer good estimator performance on
average over various observations, x, and the corresponding
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true traffic velocities, v. Here, we assume that the occurrence
rates of v and x exactly coincide with those of the model
introduced in Section III. Accordingly, we can explicitly
compute the optimal estimator of the velocity for the objective
function as the posterior mean,

v∗(x) = argmin
v∗(x)

F (v∗(x)) =

∫
vp(v|x)dv. (24)

This is a well-known result in the Bayesian framework; that is,
the posterior mean coincides with the minimum mean square
error estimator.

We used slice sampling in the implementation of our
method. Gibbs sampling, which is one of the most common
MCMC methods, is not applicable to our model because
we cannot analytically compute the conditional distributions
required in its sampling procedure. Also, an efficient im-
plementation of the Metropolis algorithm, which is also a
common MCMC methods, is difficult because it is almost
impossible to prepare appropriate proposal distributions for
both of the random variables v and M . We prefer slice
sampling because it does not require such analytical modeling
or sensitive setting of the proposal distributions [45], [46].

With regard to the initial sample value for the traffic velocity
in our slice sampling procedure, we used the prior mean of
the traffic velocity. Here, we recommend that the initial sample
value for the traffic velocity be set sufficiently high regardless
of the prior mean value. The legal speed limit is good enough
for the recommended setting. To make sure, by using the
real-world dataset in Section V-D, we examined whether the
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Fig. 18: An extreme setting: true velocity and velocity esti-
mated by the proposed method for a time interval ∆t = 10
(second) in an artificial instance. The average number of
vehicles Mart = 10. Note that we have used the Tukey
boxplot [48]

proposed method worked well when we set the initial sample
value to the legal speed limit regardless of the prior mean
value. We tested it in settings in which the prior means were
1 and 10 (km/h) and the initial sample value was always the
legal speed limit, 60 (km/h). Although we failed to estimate
the correct traffic velocity by using the prior mean as the
initial sample value in these settings for the prior mean in
the experiment in Section V-D, by using the legal speed limit
as the initial sample value, we could estimate the correct traffic
velocity 41 (km/h), as shown in Fig. 17.

With regard to the number of observations N for x, we
used N = 50 for the artificial and simulation instances and
N = 60 for the real-world instance. Roughly speaking, the
proposed method required more than N = 10 observations to
get a good estimation. A preliminary analysis indicated that
the accuracy did not improve much when more observations
N , such as N = 100, were used. On the other hand, when we
used fewer observations, such as N = 5, the proposed method
could not estimate an appropriate traffic velocity.

With regard to the calculation cost, the proposed algorithm
requires O(N3). This cost is determined by the matrix inver-
sion: Σ in Eq. (15). Also, since we use the MCMC-based
approach, slice sampling, the proposed algorithm requires
a large number of iterations for the inference. The use of
deterministic algorithms, such as variational Bayes [52], seems
to be a promising way of making a more efficient inference.

B. Validation of Limitations of the proposed method

Here, we discuss the limitations of the proposed model,
which is caused by our assumptions on the time interval
(sampling rate) between observations, the quality of the ob-
servation, and the positions of the vehicles at time zero.

When the time interval between observations is quite large,
since all of the Lj,ks for j, k ∈ j < k are zero in Eq. (7), the
likelihood of v given x (Eq. (15)) always takes same value
for any v. In this situation, because the posterior distribution
becomes equivalent to the prior distribution, the estimated
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Fig. 19: Relationship between probability of artificially added
noise to the count and mean absolute error.

traffic velocity converges to the prior mean and we cannot
estimate the reasonable traffic velocity. From the definition
shown in Eq. (7), the condition under which we can estimate
the traffic velocity is

max
j,k∈j<k

Lj,k(v) > 0. (25)

From Eq.(25), we can also derive an upper bound of the traffic
velocity that the proposed method can deal with:

v <
L

minj∈{1,2,...,N−1}(tj+1 − tj)
. (26)

The upper bound is determined by the time interval of t and
the road length L. We have seen that the proposed model can
estimate a reasonable traffic velocity in most practical settings,
including the real-world case study in Section V, where one
can obtain, e.g., one image per second and the length of the
observed area is L = 24 (m). In this section, we examine the
limitation of the proposed model in terms of the time interval
by using the artificial validation dataset in Section V-B with an
extreme setting, that is, the time interval ∆t = 10 (second) and
road length L = 100 (m). Figure 18 compares the true velocity
with the estimated velocity. We can see that the estimated
velocity converges to the prior mean, 60 (km/h), from around
the upper bound velocity, 36 (km/h), in this extreme setting.

With regard to the quality of the observation variable, that is,
the vehicle count x, we modeled it probabilistically by taking
into consideration statistical noise, as shown in Eqs. (10)
to (12). Here, let us examine the influence of the counting
error. Using the NGSIM data in Section V-E, we tested the
proposed method when some vehicles were constantly missing

Fig. 20: Traffic at intersection captured by web camera in
Nairobi [40].

or double-counted through all the observations; this situation
corresponds to one in which we cannot find some vehicles
because they blend in with the background or one in which
some vehicles, such as busses or trucks, are double-counted
because they are larger than ordinary vehicles. Figure 19 shows
the mean absolute error for the settings in which vehicles
are (a) missing (negative noise) in a particular proportion, (b)
double-counted (positive noise) in a particular proportion, and
(c) missing or double-counted (mixed noise) in a particular
proportion. They show that our method is robust against the
counting error even when 40 percent of the vehicles are
missing or double-counted. The counting error for the double-
count has a greater effect on the accuracy since the double-
counted vehicles do not become independent. We also tried
a more extreme (but unrealistic) setting, where vehicles are
miscounted independently in every second during the one
minute of the N observations. As shown in Figure 19 (d),
the proposed method cannot achieve good accuracy when
the noise proportion is more than 5 percent. This is because
this type of noise makes the correlation between the obser-
vation sequences quite low. Since the velocity estimated by
the proposed model is high when the correlation is low, it
overestimates the velocity when it is given such fluctuating
observations.

To derive the observation model, we assume that the posi-
tions of the vehicles at time zero are random and independent
from each other. In real world traffic data, the positions of the
vehicles are not exactly random and the number of vehicles
in the current observation depends on and is correlated to the
one of the former observations even if the observations do not
have an overlapping area between them. This correlation may
cause that our estimation results have an underestimation bias
since the strong correlation means larger overlapping area and
slower velocity in the proposed model. The experiments using
the real-world datasets indicated that such a bias occurred.
While the proposed method can estimate velocities with con-
siderable accuracy, the estimated mean values of the velocities
are slightly lower than the means of the true velocities in
four of the five real-world datasets described in Sections V-
D and V-E. However, since this bias is only −2.7 (km/h) on
average and is statistically significant (paired t-test, p ≤ 0.05)
in only one of the five datasets (US-101 dataset in the NGSIM
datasets), we conclude that the bias is not so large. Solving
this problem will be part of our future work.
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C. Other Applications of the Proposed Method

While we assume for the proposed model that v is the same
for all of the vehicles during the timestamps, our experiment
showed that the model is robust enough for situations where
each vehicle has a different velocity. Additionally, because
the definition in Eqs. (5) and (7) is invariant with respect
to the movement direction of the vehicles, we can use it in
situations where the observations x include vehicles moving
inbound as well as outbound without any changes to the model
or algorithm. It estimates a common absolute value of the
velocity for both lane directions. The directional invariance
is preserved even in other multi-directional cases, such as at
intersections, as shown in Fig. 20, which shows an image
captured in Nairobi, Kenya [40]. The above capabilities also
mean that we can use the proposed method for estimating the
velocities of crowds, molecules, etc. It can also be used to
estimate the velocity separately for each of the three legs of
that intersection if we can separately obtain the number of
vehicles in each leg.

The Gaussian approximation has another advantage in that
we can straightforwardly extend the model so that it can use
low-level features by taking x to be real numbers, where the
features need to be such that larger values correspond to larger
vehicle counts. For example, in the case of analyzing web-
camera images, we can use the total area that may correspond
to moving objects in an image (TAM) [37]–[39], [41], [49],
[50] as x. Since we can usually obtain such low-level features
more easily than the number of vehicles, this ability is quite
useful when we do not have any way to determine the
explicit number of vehicles from the raw input data. Here,
we examined this extension by using the Web-camera dataset
in Section V-D. We tested the proposed method by inputting
TAM as x. Figure 21 compares manually measured velocity,
velocity estimated using the proposed method with TAM as
input, and velocity estimated using the proposed method with
the vehicle count as input. We can see that the degradation
in the estimation accuracy is small when we use the TAM as
input of the proposed method.

Regarding future work, it would be interesting to apply the
proposed approach to other applications, such as crowds or
microscopic images. Also, introducing a more hierarchical
model for the hyperparameters may be a way to achieve
higher accuracy and robustness within the Bayesian frame-
work. Additionally, we may try deterministic algorithms, such
as variational methods, for efficient estimation.

VII. CONCLUDING REMARKS

This study tackled the novel task of traffic velocity esti-
mation from temporal-sequences of the numbers of vehicles
without tracking any vehicles or using any labeled training
data for the purpose of traffic monitoring using sensors with
low sampling rates. We formulated the task as a density
estimation problem by deriving a new model for the temporal-
sequences of the numbers of vehicles, which represents the
likelihood of the traffic velocity v given temporal-sequences
of the numbers of vehicles x. For this model, we proposed
an efficient approximate method of estimating the posterior
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Fig. 21: Manually measured velocity, velocity estimated using
the proposed method with the low-level image feature, TAM,
as input, and velocity estimated using the proposed method
with the vehicle count as input. Note that we have used the
Tukey boxplot [48].

mean of the traffic velocity by using slice sampling. In
experiments, the proposed approach can estimate a reasonable
traffic velocity.
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APPENDIX

A. Definitions of Distributions

Here are the definitions of the uniform, inverse gamma,
and Gaussian distributions in terms of their probability density
function:

U(x|a, b) ≡

{
1

b−a , a ≤ x ≤ b,

0, otherwise,
(x ∈ R),

InverseGamma(x|a, b) ≡ ba

Γ(a)

(
1

x

)a+1

e−
b
x (x > 0),

N (x|µ,Σ) ≡ |2πΣ|− 1
2 e−

1
2 (x−µ)⊤Σ−1(x−µ) (x ∈ RN ),

where Γ denotes the gamma function. | • | denotes the deter-
minant of the given matrix. The variables in these definitions
are not related to the variables that appear in the main text.
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